

NPTEL ONLINE CERTIFICATION COURSES

EARTHQUAKE SEISMOLOGY

Dr. Mohit Agrawal

Department of Applied Geophysics , IIT(ISM) Dhanbad

Module 03 : Surface Waves and Dispersion Lecture 03: Love wave and its characteristics, Modes of Dispersion

CONCEPTS COVERED

> Love waves and its dispersion

> Summary

Dr. Mohit Agrawal

Love Waves

Love waves:

- 1. Love waves consist of SH motion.
- 2. A positive velocity jump is required for Love waves to exist.
- 3. They are dispersive in nature.

Fig 2.7-2 Geometry for surface waves propagating in a vertical plane containing the source and receiver. Rayleigh(P+SV) waves appear on the vertical and radial components. Love(SH) waves appear on the transverse component.

Love Waves

- In order to understand Love waves, let's consider a lower velocity layer over an infinite (and higher velocity) half space.
- Consider an SH wave travelling with multiple bounces in this layer. Since it is harmonic (i.e. a sine wave), there are multiple places on the wave path with the same phase.

Love Waves

Let's consider case where the wave is such that it undergoes constructive interference at the surface: we'll look for conditions where the phase at point A is the same as point Q.

Before we do so, let's recall how we designate phase. A complex number, $z = re^{i\theta}$, can be represented as such in the complex plane:

So, for a typical SH wave, in which:

$$u = Be^{i(\omega t - k_x x - k_z z)}$$

 $\phi = \omega t - k_x x - k_z z$

The phase is:

θ

Rotating the spatial component into the direction of propagation of the ray:

$$u=Be^{i(\omega t-k_eta d)}$$

where

- k_{β} is the wave vector component in the direction of the ray, and
- 'd' is the distance in the direction of the ray.

In this case we'll define distance as distance from point A. Some relationships that will come in handy in a bit are

kß

The phase for the ray is given by $\phi = \omega t - k_eta d$

We want to examine the phase difference between the wave at point A and point Q.

If it is some multiples of 2π , then the waves constructively interfere. We'll do this at time t=0.

$$\phi(A)=(\omega t-k_eta d)=(\omega.0-k_eta\cdot 0)=0$$

AtQ,

But there is one other factor that needs to be considered.

That is, a phase change will occur when the wave is reflected at the interface between the layer and the half space.

The magnitude of the phase angle is given by:

 $\Delta \phi = 2 an^{-1} \left(rac{\mu_2 r^\star_{eta_2}}{\mu_1 r_{eta_{12}}}
ight)$

AB+BQ = BQcos2j + h/cosj= (cos2j + 1)(h/cosj)= 2hcosj

So, the condition for constructive interference is thus that the total phase change

$$k_eta(AB+BQ)+2 an^{-1}\left(rac{\mu_2 r^\star_{eta_2}}{\mu_1 r_{eta_{12}}}
ight)=2n\pi$$

Using some trigonometric substitutions for AB and BQ, the equation turns into

$$k_eta(-2h\cos j) + 2 an^{-1}\left(rac{\mu_2 r^\star_{eta_2}}{\mu_1 r_{eta_{12}}}
ight) = 2n\pi$$

And since

And since
$$\frac{k_z}{k_\beta} = \cos(j)$$
 and $r_\beta = \frac{k_z}{k_x}$
 $-k_x r_\beta h + \tan^{-1}\left(\frac{\mu_2 r_{\beta_2}^*}{\mu_1 r_{\beta_{12}}}\right) = n\pi$
We can take the tangent of both sides to get:

$$- an\left(k_xr_eta h
ight)+\left(rac{\mu_2r^*_{eta_2}}{\mu_1r_{eta_{12}}}
ight)= an\left(n\pi
ight)$$

since $tan(n\pi) = 0$, then

$$\left(rac{\mu_2 r^*_{eta_2}}{\mu_1 r_{eta_{12}}}
ight) = an\left(k_x r_eta h
ight)$$

We will write in terms of r_β and k_x

As we know,

$$r_eta = \left(rac{c_x^2}{eta^2} - 1
ight)^{1/2},\,k_x = rac{\omega}{c_x}$$

$$an\left[rac{\omega h}{c_x}igg(rac{c_x^2}{eta_1^2}-1igg)^{1/2}
ight]=rac{\mu_2igg(1-rac{c_x^2}{eta_2^2}igg)^{1/2}}{\mu_1igg(rac{c_x^2}{eta_1^2}-1igg)^{1/2}}$$

Because the tangent function is defined only for real values, the square roots above must be real for

$$egin{array}{lll} rac{c_x^2}{eta_1^2} > 1 \implies eta_1 < c_x \ rac{c_x^2}{eta_2^2} > 1 \implies eta_2 > c_x \end{array}$$

So, $eta_1 < c_x < eta_2$

A graphical solution can be derived by defining a new variable,

Note that

$$egin{array}{lll} \zeta_{\min} &= 0 \,\, {f when} \,\,\, c_x = eta_1 \ \zeta_{\max} &= h \left(rac{1}{eta_1^2} - rac{1}{eta_2^2}
ight) \,\,\, {f at} \,\,\, c_x = eta_2 \end{array}$$

ζ can only vary between these two values, because the conditions necessary for the Love wave

 $\zeta = \left(rac{h}{c_x}
ight) \left(rac{c_x^2}{eta_1^2}-1
ight)^{1/2}$

require. With
$$\boldsymbol{\zeta}$$
, our equation becomes

$$an \, {
m becomes} \ an \, (\omega\zeta) = \left(rac{\mu_2 \Big(1-rac{c_x^2}{eta_2^2}\Big)^{1/2}}{\mu_1}
ight) \Big(rac{h}{c_x\zeta}
ight)$$

 $eta_1 < c_x < eta_2$

The LHS of the equation is 0 at $\zeta = \frac{n\pi}{\omega}$ and goes to +/infinity at $\zeta = \frac{m\pi}{2\omega}$ for m = 1,3,5.....

The RHS is hyperbolic because of $1/\zeta$ dependence, is infinite for $c_x = \beta_1$, where $\zeta = 0$, and decays monotonically to zero at $c_x = \beta_2$, where $\zeta = \zeta_{max}$.

Where the two plots meet are the values of $\boldsymbol{\zeta}$ that solve the equation

The lowest c_x (i.e. n=0) for which there is a solution is called "fundamental mode". Higher values of c_x solutions are called higher nodes or overtones.

Let us consider the effect of wave period on the tanh (ζ) term. Since tan is 0 at integral multiples of π ,

then zeros of the tan($\pmb{\zeta}$) term will occur when, $\left(rac{2\pi}{T}
ight) \zeta = n\pi$

This occurs when

 $\zeta = \frac{nT}{2}$

So, when wave period goes up, the amount that $\boldsymbol{\zeta}$ has to change to get from one zero to the next

increases.

$$\zeta_{n+1}-\zeta_n=rac{1}{2}$$

This causes the normal modes to be further apart.

We can plot mode velocity (c_x) verses wave period to get.

Figure 2.7-9: Dispersion curves for Love waves in a layer over a halfspace.

D

Dr. Mohit Agrawal

Summary

- Love waves have SH motion , need positive velocity jump or gradient to exist, are inherently dispersive.
- The condition for the constructive interference at surface is given by

 $k_{\beta}(AB + BQ) + 2\tan^{-1}\left(\frac{\mu_2 r_{\beta_2}^{\star}}{\mu_1 r_{\beta_{12}}}\right) = 2n\pi \quad \tan\left(\omega\zeta\right) = \left(\frac{\mu_2 \left(1 - \frac{c_x^2}{\beta_2^2}\right)^{1/2}}{\mu_1}\right) \left(\frac{h}{c_x\zeta}\right)$ wher $\zeta = \left(\frac{h}{c_x}\right) \left(\frac{c_x^2}{\beta_1^2} - 1\right)^{1/2}$

- The lowest c_x for which there is a solution is called "fundamental mode". Higher values of c_x solutions are called higher nodes or overtones.
- To make love wave we need either "velocity gradient" or curved surface.

REFERENCES

- Stein, Seth, and Michael Wysession. An introduction to seismology, earthquakes, and earth structure. John Wiley & Sons, 2009.
- Lowrie, William, and Andreas Fichtner. Fundamentals of geophysics. Cambridge university press,
 2020.
- Kearey, Philip, Michael Brooks, and Ian Hill. An introduction to geophysical exploration. Vol. 4. John Wiley & Sons, 2002.
- https://geologyscience.com/geology-branches/structural-geology/stress-and-strain/
- https://www.wikipedia.org/
- Seismology course, Professor Derek Schutt, Colorado State Univ., USA.

