

NPTEL ONLINE CERTIFICATION COURSES

EARTHQUAKE SEISMOLOGY

Dr. Mohit Agrawal

Department of Applied Geophysics, IIT(ISM) Dhanbad

Module 11: Source parameters, Earthquake statistics. Lecture 02: Source spectra and magnitude saturation

CONCEPTS COVERED

- > Source Spectra
 - Convolution of two boxcar functions
 - Corner frequency and moment magnitude
 - \succ Saturation Of M_s and m_b
- > Summary

Recap

- The general form of earthquake magnitude is M = log₁₀ (A/T) + F(h, Δ) + C
 A is the amplitude of the signal,
 T is its dominant period,
 F is a correction for the variation of amplitude with the earthquake's depth h
 Δ is epicentral distance,
 C is a regional scale factor.
 - Richter Scale magnitude is:

$$M_L = \log A + 2.76 \log \Delta - 2.48$$

- Body wave magnitude ${\sf m}_{\sf b}$ is $m_b = \log_{10}{(A/T)} + Q(h,\Delta)$
- Surface wave magnitude M $_{\sf s}$ is: $M_s = \log_{10}{(A/T)} + 1.66 \log_{10}{\Delta} + 3.3$
- Body and surface wave magnitudes do not correctly reflect the size of large earthquakes and saturate about 6.2 and 8.3 respectively.

Recap

 Different techniques (body waves, surface waves, geodesy, geology) can yield different estimates.

$$M_w = \frac{\log M_o}{1.5} - 10.73$$

- Moment magnitude is given as:
- It gives a magnitude directly tied to earthquake source processes that does not saturate.

We may begin with a simple model where rupture start from rest with rupture velocity v_r . They reach to its full velocity in time τ_r .

Displacement pulses (s(t)) can be represented by a convolution of boxcar functions with width τ_r (rise time) and τ_d (rupture duration time). This will yield a trapezoid:

Source spectra

- Our aim: In order to understand magnitude saturation of M_s and M_b, we first have to briefly discuss about source spectra.
- The source-time spectrum of an earthquake can be approximated by slip function that is shown below.
- This in turn can be represented by T_D*T_R

A simple mode for time function: Convolution of two boxcar time functions

- A boxcar function is chosen due to finite length of the fault and the infinite rise time of the faulting at any point
- The Fourier transform of the resulting time function is the product of the transforms of boxcars

Convolution of two boxcar time functions

The transform of a boxcar of height 1/T and length T is $F(\omega) = \int_{-T/2}^{T/2} \frac{1}{T} e^{i\omega t} dt = \frac{1}{Ti\omega} \left(e^{i\omega T/2} - e^{-i\omega T/2} \right) = \frac{\sin(\omega T/2)}{\omega T/2}$

This function sometimes written as $x = (\sin x)/x$, it appear in applications in which only part of the signal is selected.

https://www.google.com/search?client=ubuntu&hs=W9p&hl=en&sxsrf= AB5stBhNmeA9HQ-6XtUVFXFBSAwFthl8g:1688102525153&q=fourier+transform+of+convolution+of++two+b ox+car+function&tbm=isch&sa=X&ved=2ahUKEwiNq-z6nr_AhWHcGwGHSzRDysQ0pQJegQICxAB&biw=1920&bih=995&dpr=1 #imgrc=cNEAM2juXeZE6M

Fig. 11.5: A shortcut to the Fourier transform of the product of two sinc functions through the convolution of two boxcars.

sinc(x)

times

convolution

 $sinc^{2}(x)$

Convolution of two boxcar time functions

Thus the spectral amplitude of the source signal is the product of the seismic moment and two sinc term

$$|A(\omega)| = M_0 igg| rac{\sin{(\omega T_R/2)}}{\omega T_R/2} igg| igg| rac{\sin{(\omega T_D/2)}}{\omega T_D/2} igg|$$

where T_R and T_D are the rupture and rise times. The above equation is used in the form of logarithm

An approximation can be made for sinc(x)

 $\operatorname{sinc}(x) \approx \begin{cases} 1, \ x < 1 \\ \frac{1}{x}, \ x > 1 \end{cases}$

If $T_R > T_D$, we can divide the equation up into three segments

$$\omega < \frac{2}{T_R}$$
 then $\operatorname{sinc}\left(\frac{\omega T_R}{2}\right) \approx 1 \quad \operatorname{sinc}\left(\frac{\omega T_D}{2}\right) \approx 1$
 $\log[A(\omega)] \approx \log M_0 + \underbrace{\log(1)}_{=0} + \underbrace{\log(1)}_{=0}$
 $\frac{2}{T_R} < \omega < \frac{2}{T_D}$ then $\operatorname{sinc}\left(\frac{\omega T_R}{2}\right) \approx \frac{2}{\omega T_R} \quad \operatorname{sinc}\left(\frac{\omega T_D}{2}\right) \approx 1$

$$\log[A(\omega)] \approx \log M_0 + \log\left(\frac{2}{\omega T_R}\right) + \log(1)$$
$$\log\left(\frac{2}{\omega T_R}\right) = \log\left(\frac{\omega T_R}{2}\right)^{-1}$$
$$= -1\log\left(\frac{\omega T_R}{2}\right)$$
$$= -1\left[\log\left(\frac{T_R}{2}\right) + \log(\omega)\right]$$

$$\log[A(\omega)] \approx \log M_0 - \log\left(\frac{T_R}{2}\right) - \log(\omega)$$
$$\frac{2}{T_D} < \omega \quad \text{then } \operatorname{sinc}\left(\frac{\omega T_R}{2}\right) \approx \frac{2}{\omega T_R} \quad \operatorname{sinc}\left(\frac{\omega T_D}{2}\right) \approx \frac{2}{\omega T_D}$$

$$\log[A(\omega)] = \log M_0 + \log\left[\left(\frac{2}{\omega T_R}\right)\left(\frac{2}{\omega T_D}\right)\right]$$
$$= \log M_0 - \log\left(\frac{T_R T_D}{4}\right) - \log(\omega^2)$$
$$= \log M_0 - \log\left(\frac{T_R T_D}{4}\right) - 2\log(\omega)$$

Figure 4.6-4: Approximation of the $(\sin x)/x$ function, and derivation of corner frequencies.

Assuming $T_R > T_D$ we have $|A(\omega)| =$

 $egin{aligned} & \log M_0 & \omega < 2/T_R \ & \log M_0 - \log \left(T_R/2
ight) - \log \omega & 2/T_R < \omega < 2/T_D \ & \log M_0 - \log \left(T_R T_D/2
ight) - 2\log \omega & 2/T_D < \omega \end{aligned}$

- → The spectrum is flat for frequencies less than the first corner, goes as ω⁻¹ between the corners, and decays as ω⁻² for the high frequencies.
- → Thus the spectrum is parametrized by three factors: seismic moment, rise time, and rupture time.

Key Points!!

- We can use other source spectral model to add third corner frequency to this model. Model representing the effects of fault width and yielding an ω^{-3} segment at high frequency.
- As a result, the interpretation of observed earthquake spectra depends somewhat on the source model.
- Seismic moment is the scale factor for the spectral amplitude at low frequencies ω → 0. This is the reason why it is also called the "static" moment.
- It is defined as the $\ M_0 = \mu ar{D}S = \mu ar{D}fL^2$

Here, the fault area is written in terms of a shape factor f and the square of a dimension L

Key Points!!

• The rupture time needed for the rupture to propagate along the fault is approximately

$$T_R = L/v_R = L/(0.7eta)$$

we assume that the rupture velocity is about 0.7 times the shear velocity.

• The rise time needed for the dislocation to reach its full value at any point on the fault has been predicted to be about

$$T_D = \mu ar{D} / (eta \Delta \sigma) = 16 f^{(1/2)} / ig(7 eta \pi^{1.5}ig)$$

where $\Delta \sigma$ is the stress drop in the earthquake.

- As the fault length increases, the seismic moment, rupture time, and rise time increase.
- The moment, M₀, determines the zero-frequency level, which rises as the earthquake becomes larger.

As T_R increases, $2/T_R$ will decrease. Likewise, the $2/T_D$ also increases. Hence, the point at which $log(A(\omega))$ starts to roll off will move to lower and lower frequencies.

Saturation Of M_s

- The surface wave magnitude, M_s, is measured at a period of 20 s, and so depends on the spectral amplitude at this period.
- For earthquakes with moments less than about 10²⁶ dyncm, a 20 s period corresponds to the flat part of the spectrum, so M_s increases with moment.
- However, for larger moments, 20 s is to the right of the first corner frequency, so M_s does not increase at the same rate as the moment.
- Once the moment exceeds about 5×10^{27} dyn-cm, 20 s is to the right of the second corner, on the ω^{-2} portion of the spectrum. Thus M_s saturates at about 8.2, even if the moment increases.

Saturation Of M_b

- A similar effect occurs for body wave magnitude, which depends on the amplitude at a period of 1 s. Because this period is shorter than the 20 s used for M_s, m_b saturates at a lower moment (about 10²⁵ dyn-cm), and remains about 6 even for much larger earthquakes.
- Similar saturation effects occur for other magnitude scales which are measured at specific frequencies.

Saturation Of M_s

Figure 4.6-6: Demonstration of the saturation of body and surface wave magnitudes.

- M_s saturates even as the moment and fault areas increase. Open and closed circles denote intraplate and interplate earthquakes, respectively.
- For earthquakes above about 10^{28} dyn-cm, M_s saturates even for progressively larger fault areas and thus seismic moments.
- As a result, M_s is not a useful measure of the size of very large earthquakes.

Summary

- The relations between the moment and various magnitudes arise from the spectrum of the radiated seismic waves
- Seismic moment is the scale factor for the spectral amplitude at low frequencies $\omega \rightarrow 0$. This is the reason why it is also called the "static" moment and defined as the $M_0 = \mu \bar{D}S = \mu \bar{D}fL^2$

Here, the fault area is written in terms of a shape factor f and the square of a dimension L

- The rupture time needed for the rupture to propagate along the fault is approximately $T_R = L/v_R$
- The rise time needed for the dislocation to reach its full value at any point on the fault has been predicted to be about

$$T_D = \mu ar{D}/(eta \Delta \sigma) = 16 f^{(1/2)}/ig(7eta \pi^{1.5}ig)$$

where $\Delta \sigma$ is the stress drop in the earthquake

Summary

- The moment, M₀, determines the zero-frequency level, which rises as the earthquake becomes larger.
- Once the moment exceeds about 5×10^{27} dyn-cm, 20 s is to the right of the second corner, on the ω^{-2} portion of the spectrum. Thus M_s saturates at about 8.2, even if the moment increases. M_s saturates even as the moment and fault areas increase.
- m_b saturates at a lower moment (about 10₂₅ dyn-cm), and remains about 6 even for much larger earthquakes.

REFERENCES

- Stein, Seth, and Michael Wysession. An introduction to seismology, earthquakes, and earth \succ structure. John Wiley & Sons, 2009.
- Lowrie, William, and Andreas Fichtner. Fundamentals of geophysics. Cambridge university press, \succ 2020.
- Kearey, Philip, Michael Brooks, and Ian Hill. An introduction to geophysical exploration. Vol. 4. \succ John Wiley & Sons, 2002.
- https://geologyscience.com/geology-branches/structural-geology/stress-and-strain/ \succ
- https://www.wikipedia.org/ \succ
- Seismology course, Professor Derek Schutt, Colorado State Univ., USA.

