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CONCEPTS COVERED

> Source Spectra
> Convolution of two boxcar functions
> Corner frequency and moment magnitude
> Saturation Of M_ and m,

> Summary



Recap

e The general form of earthquake magnitudeis M = log,, (A/T) + F(h,A) +C

A is the amplitude of the signal,

T is its dominant period,

F is a correction for the variation of amplitude with the earthquake’s depth h
A is epicentral distance,

Cis a regional scale factor.

® Richter Scale magnitude is: M =log A +2.76log A — 2.48
e Body wave magnitude m,is my; = log;, (A/T) + Q(h,A)
e Surface wave magnitude M, is: M =logy, (A/T) +1.661og;y A + 3.3

e Body and surface wave magnitudes do not correctly reflect the size of large
earthquakes and saturate about 6.2 and 8.3 respectively.



Recap

e Different techniques (body waves, surface waves, geodesy, geology) can yield different

estimates. log Mo

M,=——10.73
1.5

e Moment magnitude is given as:

e It gives a magnitude directly tied to earthquake source processes that does not saturate.




We may begin with a simple model where rupture start from rest with
rupture velocity v,. They reach to its full velocity in time t..

M(1) M(t)

R(1) B(t)




Figure 4.3-2: Derivation of a boxcar rupture time pulse.
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Displacement pulses (s(t)) can be represented by a convolution of boxcar functions with
width T, (rise time) and Ty (rupture duration time). This will yield a trapezoid:

Figure 4.3-3: Derivation of a trapezoidal source time function.
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Source spectra

e Our aim: In order to understand magnitude saturation of M, and M,, we first have to briefly discuss

about source spectra.
The source-time spectrum of an earthquake can be approximated by slip function that is shown below.

e This in turn can be represented by T,*T,

Figure 4.3-3: Derivation of a trapezoidal source time function.
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A simple mode for time function: Convolution of two boxcar time functions

e A boxcar function is chosen due to finite
length of the fault and the infinite rise time of
the faulting at any point

® The Fourier transform of the resulting time
function is the product of the transforms of 0 |
boxcars |




Convolution of two boxcar time functions

The transform of a boxcar of height 1/T and length T is

F(LU) — / Te’LWtdt 9 T_ (esz/2 . e_sz/g) i S1n (w / )
—T/2 1w wT/z

sinc(x) sinc(x) sinc’(x)
This function sometimes written as # = (sinz)/xz /o ™ alllo. —
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convolution

https://www.google.com/search?client=ubuntu&hs=W9p&hl=en&sxsrf=
AB5stBhNmMeA9IHQ-6XtUVFXFBSAWFt-

hl8g:1688102525153&q=fourier+transform+of+convolution+of++two+b
ox+car+function&tbm=isch&sa=X&ved=2ahUKEwiNg-z6n- Fig. 11.5: A shortcut to the Fourier transform of the product of two sinc functions through the
r_AhWHcGWGHSzRDysQ0pQJegQICxAB&biw=1920&bih=995&dpr=1
#imgrc=cNEAM2juXeZE6M

convolution of two boxcars.




Convolution of two boxcar time functions

Thus the spectral amplitude of the source signal is the product of the seismic moment and two sinc
term

[A(w)| = My

sin (wTgr/2) ‘
wTR/2

sin (WT /2) ‘
WTh/2

where T;and T, are the rupture and rise times. The above equation is used in the
form of logarithm

L x<=1

An approximation can be made for sinc(x) sinc(x) = 4




If Tz > T, we can divide the equation up into three segments
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Figure 4.6-4: Approximation of the (sin x)/x function, and derivation of

corner frequencies. Assu m i ng TR >TD We
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=> The spectrum is flat for frequencies less than
A . £ the first corner, goes as w™! between the
""" o« corners, and decays as w2 for the high

Slope =1

dlbpe= frequencies.

Log A(w)

Slope = 1/’ => Thus the spectrum is parametrized by three
factors: seismic moment, rise time, and
rupture time.




Key Points!!

® We can use other source spectral model to add third corner frequency to this model. Model
representing the effects of fault width and yielding an w3 segment at high frequency.

® As a result, the interpretation of observed earthquake spectra depends somewhat on the source
model.

e Seismic moment is the scale factor for the spectral amplitude at low frequencies w - 0. This is the
reason why it is also called the “static” moment.

e Itis definedasthe My = uDS = ;quL2

Here, the fault area is written in terms of a shape factor f and the square of a
dimension L



Key Points!!

e The rupture time needed for the rupture to propagate along the fault is approximately

Tr = L/vr = L/(0.78)

we assume that the rupture velocity is about 0.7 times the shear velocity.

® The rise time needed for the dislocation to reach its full value at any point on the
fault has been predicted to be about

Tp = uD/(BAc) = 161/ /(78r?)

where Ag is the stress drop in the earthquake.



e As the fault length increases, the seismic moment, rupture time, and rise time increase.

e The moment, M,, determines the zero-frequency level, which rises as the earthquake becomes

larger.

Figure 4.6-7: Empirical relations between slip, fault length, and moment.
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As Ty increases, 2/TR will decrease.
Likewise, the 2/Tp also increases.

Hence, the point at which log(A(w)) starts
to roll off will move to lower and lower
frequencies.
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Saturation Of M,

e The surface wave magnitude, M, is measured at a period of 20 s, and so depends on the spectral

amplitude at this period.

e For earthquakes with moments less than about 10%¢ dyn-
cm, a 20 s period corresponds to the flat part of the
spectrum, so M. increases with moment.

e However, for larger moments, 20 s is to the right of the
first corner frequency, so M, does not increase at the
same rate as the moment.

e Once the moment exceeds about 5 x 1027 dyn-cm, 20 s is
to the right of the second corner, on the w2 portion of the
spectrum. Thus M, saturates at about 8.2, even if the

moment increases.
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Saturation Of M,

e A similar effect occurs for body wave magnitude, which Body waves
depends on the amplitude at a period of 1 s. Because T
this period is shorter than the 20 s used for M, m v 17
saturates at a lower moment (about 10%> dyn-cm), and

. 126
remains about 6 even for much larger earthquakes.

Similar saturation effects occur for other magnitude

scales which are measured at specific frequencies.




Saturation Of M,

e M, saturates even as the moment
Figure 4.6-6: Demonstration of the saturation of body and surface wave and fault areas increase, Open and

magnitudes.

6r closed circles denote intraplate and

30 interplate earthquakes, respectively.
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e For earthquakes above about 1028

28
dyn-cm, M, saturates even for

progressively larger fault areas and
thus seismic moments.

27

Log M, (dyn-cm)
Log S (km?)

26

25 e As a result, M, is not a useful

measure of the size of very large

earthquakes.



Summary

® The relations between the moment and various magnitudes arise from the spectrum of the radiated
seismic waves

e Seismic moment is the scale factor for the spectral amplitude at low frequencies w - 0. This is the

reason why it is also called the “sEatic" moment and defined as the
My = uDS = uDfL?

Here, the fault area is written in terms of a shape factor f and the square of a dimension L

e The rupture time needed for the rupture to propagate along the fault is approximately
TR = L/’UR

® The rise time needed for the dislocation to reach its full value at any point on the
fault has been predicted to be about

Tp = uD/(BAc) = 16f1/?) / (78r5)

where Ao is the stress drop in the earthquake



Summary

e The moment, M,, determines the zero-frequency level, which rises as the earthquake becomes larger.

e Once the moment exceeds about 5 x 10%’ dyn-cm, 20 s is to the right of the second corner, on the w2

portion of the spectrum. Thus M saturates at about 8.2, even if the moment increases. M, saturates eve
as the moment and fault areas increase.

m,, saturates at a lower moment (about 10,. dyn-cm), and remains about 6 even for much larger
earthquakes.
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