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Hello everyone, in the last class, we saw that how we can determine the stress distribution using 

the elastic analysis of the circular tunnels. Today we will learn about deriving the expression 

for displacements, radial displacement and the displacement perpendicular to the direction of 

this radial displacement. So let us start the derivation again. We start with the theory of 

elasticity using plane stress as well as the plane strain condition both, we will take up.  

And then, we will try to compare that in which situation the displacements are more or less, or 

they are equal.  
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So here we obtain the displacement from the stress displacement equation for plane stress state 

and integrating these. So, what are these stress displacement equation for plane stress situation. 

So first, we will take a plane stress situation and then we will also discuss about the plane strain 

state. So here, we have these equations in the polar coordinate form in this manner that is: 

𝜕𝑢

𝜕𝑟
=  

1

𝐸
 (𝜎𝑟 − 𝜇𝜎𝜃) 

 This is equation to 1a. Then another one is: 

(1a) 



𝑢

𝑟
+

1

𝑟

𝜕𝑣

𝜕𝜃
=  

1

𝐸
(𝜎𝜃 − 𝜇𝜎𝑟) 

Then the third equation is: 

1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
=  

2(1 + 𝜇)

𝐸
𝜏𝑟𝜃 

Now, we already have this equation number 12 for the state of stresses that we discussed in the 

previous class. So, we connect these 2 equations like we have the expression for σr, σθ and τrθ. 

So, we substitute the expression for these in these equations from equation number 12, so I am 

connecting it with the previous lecture. So here, it is substituting from equation number 12, so 

what we get here? Just substitute expression for σr as well as expression for σθ, so that is going 

to be bit long an expression. But then still let us write it: 

𝜕𝑢

𝜕𝑟
=  

1

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 −

𝑎2

𝑟2) +
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2 ) 𝑐𝑜𝑠2𝜃]

−
𝜇

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 +

𝑎2

𝑟2) −
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4 ) 𝑐𝑜𝑠2𝜃] 

Make this equation as equation number 2a. Then what we can do? This is the differential 

operator. If I integrate this equation, we will be able to get the expression for u.  
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So let us try to do that so if I integrate it, what is that we are going to get is? 

𝑢 =  
1

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) 𝑐𝑜𝑠2𝜃]

−
𝜇

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3) 𝑐𝑜𝑠2𝜃] + 𝑔1(𝜃) 

(1b) 

(1c) 

(2a) 

(3) 



We will have a constant of integration which will be function of theta only because here, the 

integration was done with reference to r. So here, this g1(θ) I am calling as constant of 

integration. Now, I make this equation as equation number 3. So, what I do is? I substitute this 

equation 3 to this equation 1b and see what we get. So, substituting this equation number 3 in 

equation 1b that we had in the previous slide. 

So, your equation 1b, I can write as: 

𝑢 +
𝜕𝑣

𝜕𝜃
=

𝑟

𝐸
(𝜎𝜃 − 𝜇𝜎𝑟) 

Or I can write it as: 

𝜕𝑣

𝜕𝜃
=

𝑟

𝐸
(𝜎𝜃 − 𝜇𝜎𝑟) − 𝑢 

Now, I just substitute this expression u in this; let us see what we get.  
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𝜕𝑣

𝜕𝜃
=

𝑟

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 +

𝑎2

𝑟2) −
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4 ) 𝑐𝑜𝑠2𝜃]

−
𝜇𝑟

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 −

𝑎2

𝑟2) −
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2 ) 𝑐𝑜𝑠2𝜃]

− 
1

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) 𝑐𝑜𝑠2𝜃]

+
𝜇

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3) 𝑐𝑜𝑠2𝜃] − 𝑔1(𝜃) 

And then I have constant of integration as well, so I will write it like this so just further simplify 

this many terms will get cancel out and ultimately, what you will get is: 



𝜕𝑣

𝜕𝜃
=

1

2𝐸
(𝑠𝑥 − 𝑠𝑦) [(−2𝑟 −

2𝑎4

𝑟3
−

4𝑎2

𝑟
) + 𝜇 (−2𝑟 −

2𝑎4

𝑟3
+

4𝑎2

𝑟
)] 𝑐𝑜𝑠2𝜃 + 𝑔1(𝜃) 

It is the expression that you are going to get.  
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Now just, we will rearrange these terms and see what we get as: 

𝜕𝑣

𝜕𝜃
=

1

𝐸
[−2 (

𝑠𝑥 − 𝑠𝑦

2
) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3)] 𝑐𝑜𝑠2𝜃 −
𝜇

𝐸
[2 (

𝑠𝑥 − 𝑠𝑦

2
) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3)] 𝑐𝑜𝑠2𝜃 − 𝑔1(𝜃) 

 

Please do not make mistake. I understand this is a long-expression but then ultimately, what 

we need to get is the distribution of the displacement all along the periphery. 

So do not make mistake and do not miss any of these steps, so mark this equation as equation 

number 4. Now, if you just integrate this equation, what we will get is? We integrating this 

equation number 4, so what we get here as v now here we have to integrate with reference to 

theta. Because then only you will get the expression for v, so this is going to be: 

𝑣 =
1

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3)] 𝑠𝑖𝑛2𝜃 −
𝜇

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3)] 𝑠𝑖𝑛2𝜃

− ∫ 𝑔1(𝜃)𝑑𝜃 + 𝑔2(𝑟) 

Make this equation as equation number 5. In this case, here we have your g2(r) as the again the 

constant of integration.  

(4) 

(5) 



Now what we do is we differentiate this equation number 3 with respect to θ. So, equation 

number 3 with respect to θ and equation number 5 with respect to r differentiation.  
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So, what are we going to get? So here, we have: 

𝜕𝑢

𝜕𝜃
=

1

𝐸
[−2 ×

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) 𝑠𝑖𝑛2𝜃] −

𝜇

𝐸
[2 ×

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃] +
𝑑𝑔1(𝜃)

𝑑𝜃
 

 

This is going to be my equation number 6. And the next one we will have as: 

𝜕𝑣

𝜕𝑟
=

1

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (1 −

2𝑎2

𝑟2
−

3𝑎4

𝑟4 ) 𝑠𝑖𝑛2𝜃] −
𝜇

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

2𝑎2

𝑟2
−

3𝑎4

𝑟4 ) 𝑠𝑖𝑛2𝜃]

+
𝑑𝑔2(𝑟)

𝑑𝑟
 

I will have this equation as equation number 7. So basically, what I need to is now that I will 

substitute this ∂u/∂θ and ∂v/∂r in equation number 1 see that we obtained from the theory of 

elasticity.  
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(6) 

(7) 



 

So, what we do is that we substitute equations 5, 6 and 7 in equation 1c. So ultimately, again, 

we are going to get very long-expression and also, we will substitute the expression for τrθ from 

equation number 12c. That we obtain in the previous class the expression for the stresses, so 

what we are going to get is: 

1

𝑟

1

𝐸
[−(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) 𝑠𝑖𝑛2𝜃] −

1

𝑟

𝜇

𝐸
[(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃] +
1

𝑟

𝑑𝑔1(𝜃)

𝑑𝜃

+
1

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (1 −

2𝑎2

𝑟2
−

3𝑎4

𝑟4 ) 𝑠𝑖𝑛2𝜃]

−
𝜇

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

2𝑎2

𝑟2
−

3𝑎4

𝑟4 ) 𝑠𝑖𝑛2𝜃] +
𝑑𝑔2(𝑟)

𝑑𝑟

−
1

𝑟

1

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃]

+
1

𝑟

𝜇

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃] +
1

𝑟
∫ 𝑔1(𝜃)𝑑𝜃 −

1

𝑟
𝑔2(𝑟)

=  
2(1 + 𝜇)

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (1 −

3𝑎4

𝑟4
+

2𝑎2

𝑟2 ) 𝑠𝑖𝑛2𝜃] 

So, although it is a very long-expression but no need to worry. Here, what we are going to do 

is. We are going to compare the terms on the both sides of equation because we need to find 

out constants of integration g1(θ) and g2(r).  
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So, what we do is; we comparing the terms on either side of the equation, so you will see what 

we get is: 

[
𝑑𝑔1(𝜃)

𝑑𝜃
+ ∫ 𝑔1(𝜃)𝑑𝜃] + [𝑟

𝑑𝑔2(𝑟)

𝑑𝑟
− 𝑔2(𝑟)] = 0 

Make this equation as equation number 8. Now, we know that this g1(θ) is only the function of 

θ and not the function of r and g2(r) is the function of r only here. 

So basically, if this equation is to have some meaning, both of these terms, that is this term and 

this term individually. They should be as: 

𝑟
𝑑𝑔2(𝑟)

𝑑𝑟
− 𝑔2(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , 𝑘 (𝑠𝑎𝑦) 

𝑑𝑔1(𝜃)

𝑑𝜃
+ ∫ 𝑔1(𝜃)𝑑𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑘 (𝑠𝑎𝑦) 

Say I make that constant as k, and of course, the other term also should be a constant. Now, the 

solutions of these differential equations so mark it as 9a, and this as 9b. So, the solutions is 

going to be for the 9a it is going to be say: 

𝑔2(𝑟) = 𝐶𝑟 − 𝑘 

𝑔1(𝜃) = 𝐴𝑠𝑖𝑛𝜃 + 𝐵𝑐𝑜𝑠𝜃 

Now, these constants A, B and C, these are to be determined from the boundary conditions, as 

I already mentioned to you. So, we will apply these, and we will try to get these constants A, 

B and C.  
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(8) 

(9a) 

(9b) 

(10a) 

(10b) 



 

But before that, we substitute equation 10b in our equation number 3 so, we will get the 

expression for u now. So that is going to be: 

𝑢 =
1

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) 𝑐𝑜𝑠2𝜃]

−
𝜇

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3) 𝑐𝑜𝑠2𝜃] +  𝐴𝑠𝑖𝑛𝜃 + 𝐵𝑐𝑜𝑠𝜃 

 

So, I mark this as 11a, and if I just substitute equation in 10a in equation number 5. So what 

we get as the expression as v as: 

𝑣 =
1

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃 ] −
𝜇

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃] +  𝐴𝑐𝑜𝑠𝜃

− 𝐵𝑠𝑖𝑛𝜃 + 𝐶𝑟 
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(11a) 

(11b) 



 

So, this is what is going to be the equation for v, makes it as 11b. Now, let us try to apply the 

boundary condition to obtain these constants. So, the first boundary condition here is going to 

be that displacement v will be equal to 0, when θ = 0 or π by 2 for all values of r. This is due 

to symmetry so let us substitute C to be equal to 0 at θ = 0. What we get is? 

𝑣 = 0 𝑎𝑡 𝜃 = 0  ⇒ 𝐴 + 𝐶𝑟 = 0 

𝑣 = 0 𝑎𝑡 𝜃 =
𝜋

2
  ⇒ −𝐵 + 𝐶𝑟 = 0 

And the solutions for these 2 will be only that is A = B = C will be equal 0. 

So, for the general biaxial state of stress, how can we write the expression for u and v. Let us 

see, u will equal to: 

𝑢 =
1

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) 𝑐𝑜𝑠2𝜃]

−
𝜇

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3) 𝑐𝑜𝑠2𝜃] 

That is going to be say 12a and similarly we can write this expression for v as: 

𝑣 =
1

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃 ] −
𝜇

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃] 

 

This as 12b. Now, what happens at tunnel periphery? What is the value of r, which is equal to 

a.  
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(12a) 

(12b) 



 

So, let us try to take a look that what happens at the tunnel periphery at r = a to this 

displacement. So, we get u as: 

𝑢 =
1

𝐸
[(𝑠𝑥 + 𝑠𝑦)𝑎 + 2(𝑠𝑥 − 𝑠𝑦)𝑎𝑐𝑜𝑠2𝜃] 

And expression for v will be: 

𝑣 = −
1

𝐸
[2(𝑠𝑥 − 𝑠𝑦)𝑎𝑠𝑖𝑛2𝜃] 

So, you see how from such long expressions and at the tunnel periphery, we get much more 

simplified expressions for this displacement. 

So, any point on this periphery will be defined by the θ. Now, we take typically the uniaxial 

state of stress and hydrostatic state of stress. And then try to see that what are this displacement 

and how we can draw their variation. So, for a typical uniaxial state of stress, that is when you 

have Sx to be equal to 0 and Sy is not equal to 0. We have the variation as has been shown in 

this particular figure. 

But before I discuss this figure, let us go back and first try to see that what happens to their 

expression first. So, typical hydrostatic state of stress what we have is Sx – Sy = -p, which is 

compressive in nature. So, what we have here as u equal to so just substitute, so this term will 

become equal to 0. So, all you will have is: 

𝑢 = −
2𝑝𝑎

𝐸
   &  𝑣 = 0 

(13a) 

(13b) 

(14) 



So, this is what is going to be for the hydrostatic of stress and for the uniaxial state of stress 

where you the stress only in the y-direction or the vertical direction. 

And no stress in the x-direction. So, this is going to be the variation but then if we just substitute 

the value of Sx and Sy in those 2 expressions which were given by equation number 13. Let us 

see that what all are the equations that we get. So, expression that we will get here will be: 

𝑢 =
𝑆𝑦

𝐸
(𝑎 − 2𝑎𝑐𝑜𝑠2𝜃)    

𝑣 =
𝑆𝑦

𝐸
(2𝑎𝑠𝑖𝑛2𝜃)    

So, we will represent it in the non-dimensional forms displacement so that can be written as: 

𝑢𝐸

𝑆𝑦𝑎
= 1 − 2𝑐𝑜𝑠2𝜃   

𝑣𝐸

𝑆𝑦𝑎
= 2𝑠𝑖𝑛2𝜃    

Now, you see the variation we have plotted here. That is on x-axis you have various values of 

theta varying from 0 to 90 degree. And on y-axis you have this non-dimensional displacement 

in terms of uE upon Sy into a or vE upon Sy into a. 

So, this orange colour curve is showing you the variation of u and the black colour one is giving 

you the expression for v. So, you take a typical value may be let us say you take θ = 45 degree 

and just substitute it here in this expression, see you will get vE upon Sy into a as 2. So, this is 

what is the one that you are getting from on this figure. As well similarly for, let us say 75 

degree of θ say here, this is 75 degree.  

Or you can take here as, I mean θ = 15 degree so just substitute the value and see what you will 

get is this vE upon Sy into a as 1, these two values. For the 90 degree, you have seen that the 

displacements how it is going to be here it is u is going to be non-dimensional one is going to 

be 3, and here it is going to be -1 at θ = 0. So, this is how we can find out the variation of the 

displacement for the uniaxial state of stress.  
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(15a) 

(15b) 



 

Now the displacements which occur when the circular hole is subjected dimensional stress field 

under the condition of the plane strain. As of now, we were discussing about the plane stress 

condition. In case, if we consider it to be a plane strain condition. So then, in that case, we have 

to consider the stress displacement equation for plane strain condition and then carry out the 

integration. 

So, let us take a look that what all are those equations for the plane strain situation, so these are 

given as, 

𝜕𝑢

𝜕𝑟
=

1

𝐸
[(1 − 𝜇2)𝜎𝑟 − 𝜇(1 + 𝜇)𝜎𝜃] 

𝑢

𝑟
+

1

𝑟

𝜕𝑣

𝜕𝜃
=

1

𝐸
[(1 − 𝜇2)𝜎𝜃 − 𝜇(1 + 𝜇)𝜎𝑟 ] 

1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
=

2(1 − 𝜇)

𝐸
𝜏𝑟𝜃 

So, these are the 3 equations providing stress displacement relationship under plane strain 

condition. So, if we just substitute the expressions for σr, σθ, and τrθ from the previous lecture 

that, we derived all these expressions.  
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(1) 

(2) 

(3) 



 

So, if we just substitute what we are going to get is: 

𝜕𝑢

𝜕𝑟
=  

1 − 𝜇2

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 −

𝑎2

𝑟2) +
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2 ) 𝑐𝑜𝑠2𝜃]

−
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 +

𝑎2

𝑟2) −
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4 ) 𝑐𝑜𝑠2𝜃] 

I make this as equation number 4, and I will have another equation that is: 

𝑢

𝑟
+

1

𝑟

𝜕𝑣

𝜕𝜃
=  

1 − 𝜇2

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 +

𝑎2

𝑟2) −
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4 ) 𝑐𝑜𝑠2𝜃]

−
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (1 −

𝑎2

𝑟2) +
1

2
(𝑠𝑥 − 𝑠𝑦) (1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2 ) 𝑐𝑜𝑠2𝜃] 

This will be equation number 5 and then last equation that is: 

1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
=  

−2(1 − 𝜇)

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (1 −

3𝑎4

𝑟4
+

2𝑎2

𝑟2 ) 𝑠𝑖𝑛2𝜃] 

Now, if we integrate these three equations: 4, 5 and 6. We will be able to get the expression for 

u and v as we have done in the previous case of the plane stress condition.  
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(4) 

(5) 
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So, I (refer time: 45:39) integrate these equations 4, 5 and 6. So, what we get is: 

𝑢 =  
1 − 𝜇2

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) 𝑐𝑜𝑠2𝜃]

−
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑠𝑥 + 𝑠𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

𝑎4

𝑟3) 𝑐𝑜𝑠2𝜃] 

And we can also obtain the expression for v as: 

𝑣 =  
1 − 𝜇2

𝐸
[−

1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃] −
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑠𝑥 − 𝑠𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3) 𝑠𝑖𝑛2𝜃] 

 

This is equation number 8. So, you see here that these equations 7 and 8; these are the 

generalized expression for u and v. And these are the functions of a, r, θ, sx, sy, μ, and E. So, if 

we want to find out the displacement at the tunnel periphery, so what we do is. We need to 

substitute r to be equal to a.  
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So, let us see that what happens at the (refer time: 48:39) periphery of the tunnel that is at r = 

a, what we have u here as: 

𝑢 =  
1 − 𝜇2

𝐸
[𝑎(𝑠𝑥 + 𝑠𝑦) + 2𝑎(𝑠𝑥 − 𝑠𝑦)𝑐𝑜𝑠2𝜃] 

And we have v as: 

𝑣 =  −
1 − 𝜇2

𝐸
[2𝑎(𝑠𝑥 − 𝑠𝑦)𝑠𝑖𝑛2𝜃] 

Now, if I compare the expression, and 9 and 10 which are for plane strain situation to the 

expressions which were similar for the plane strain situation, that is expression 13a and 13b. 

These were for the plane stress condition so, if we take μ to be equal to say 0.25. 

Then, we will see that u or v for the plane strain situation will be equal to 0.94 times u, v of 

plane stress condition. So, since we are conducting the elastic analysis so, this is what is going 

to be the relationship between the displacements, if you follow the plane strain straight or if 

you follow plane stress state. So, in case of the elastic ground conditions, basically tunnels, 

they do not require much support or the lining. 

So, most of the time, they are stable, and they stand on its own but then if the excavation is at 

the shallow depth, then what happens is? The seismic effect plays an important role, so one 

needs to be careful with reference to that. So, most of the time, in case, if it is elastic ground 

conditions, tunnels are more or less stable so this is how following the theory of elasticity, we 

can determine the expression for the displacement all around the circular tunnels. 

(9) 

(10) 



So, this is what I wanted to discuss with you as far as the elastic analysis of circular tunnels is 

concerned. So, we learnt about the derivation for the expression of stress all the component of 

stresses. And both the components of the displacements now. Write now; we are not 

considering any lining or any support system for the tunnels. But in case if let us say you have 

a concrete lining, then how to carry out the analysis following the theory of elasticity yes, we 

have the close-form solution available for that and that we will learn in the next class. Thank 

you very much. 


