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Stress Distribution around Non–Circular Openings in Elastic Ground Conditions: 

Greenspan Method 

 

Hello everyone, in the previous class, we discussed the elastic analysis of the concrete lining 

of a circular tunnel, and this problem was taken care of by a problem in the theory of elasticity 

of thick cylinders, and then I mentioned to you that till now, we discussed the circular tunnels 

only. But then, in practice, you have various shapes of the tunnels, which may be non-circular. 

So, today we will see how we can determine the stress distribution around the non-circular 

openings in elastic ground conditions.  

So, the method that is adopted to obtain the stress distribution is called as Greenspan method. 

Let us try first to understand that what are the various shapes of the tunnels that are used in the 

field. And then, we will learn about the Greenspan methods and using which how we can obtain 

the stress distribution around these non-circular openings, especially in elastic ground 

conditions, so you take a look here.  
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In this slide, I have pasted a few pictures of non-circular tunnels. So, the first picture gives you 

the idea about the horseshoe-shaped tunnel. You can see why it is called this. Because of the 

shape of the tunnel, the cross-section of the tunnel is the shape of a horseshoe. Then take a look 

at this figure this looks like the shape D. So, this is called a D-shaped tunnel. This is an egg-



shaped tunnel while this one is giving you the idea that what the elliptical-shaped opening will 

look like. Then this is the rectangular shape tunnel.  

So, till now, what we saw was related to the circular tunnel. We saw how we can determine the 

stress distribution along with the displacement along the tunnel periphery. So, today we will 

see how we can handle such regular shapes.  
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So, basically, the shape of the cross-section of the tunnel is governed by hydraulic 

consideration and also the stress concentration. On the other hand, the stress concentration they 

are governed by the geometry of the opening. So, non-circular openings analysis in elastic 

ground conditions were given by Greenspan in 1944, where they considered the non-circular 

hole in an infinite plate, which is acted upon by the in-plane stresses. And these were acting 

theoretically at a distance of infinity from the opening.  

It is exactly the same as we did in the case of the circular tunnels, where we considered that the 

applied stresses are acting at a large distance or maybe at an infinite distance for all practical 

purposes.  
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So, the exact solution for the stress distribution in such a uniformly loaded plate, which contains 

a small hole whose boundary, can be expressed in the parametric form by these two 

expressions, which are given as:  

𝑥 = 𝑝𝑐𝑜𝑠𝛽 + 𝑟𝑐𝑜𝑠3𝛽 

𝑦 = 𝑞𝑠𝑖𝑛𝛽 − 𝑟𝑠𝑖𝑛3𝛽 

Where this p, q, and r are the parameters, and for a particular shape, these are constants, and β 

is the angle which is measured from the x-axis.  

So basically, this is how the axis is taken, so this is what is your x-axis, and this is the y-axis, 

and this β angle will be measured from the x-axis. So, if we use various values of β and the 

particular parameter for a shape p, q and r, then we can get corresponding to each value of β. 

We can get a set of coordinate systems, which is x, y, and therefore we will be able to generate 

that shape of the opening.  
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So, the shape which is given by equations 1a and 1b, we basically represent the closed curve 

which has symmetry about both the x and y-axis. So, for example, let us say if you have this 

as the x-axis and y-axis and say if we have the square type of the opening. So basically, the 

coordinate system is considered in such a manner that the shape is symmetrical about the x-

axis as well as about the y-axis. So, for certain values of these parameters p, q, and r, the curve 

that will be generated by these two equations is simple and does not cross itself.  

So, it is a close curve. Now, if we adjust the values of these parameters p, q, and r, we can 

generate a variety of simple closed curves, and these include saying circles, ellipses, 

approximate ovaloid, and approximate rectangles with rounded corners. Now, here you see, 

one has to take a note of this term that is rounded the corner. We do not provide this type of 

the corners, which are sharp, but we go for this kind of rounded corners, which you will learn 

in a short while.  
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So here, I take the notation where Wo and Ho are the dimensions of the opening in x and y 

direction, respectively, or we are calling Wo as the width of the opening and Ho as the height 

of the opening. So, in other words, we can say that Wo is the difference in the value of x when 

the β is equal to 0 degrees and 180 degrees, and Ho is the difference in the values of y when the 

β is equal to 90 degrees and 270 degrees. See how so; this is x, and here it is y. This is 

considered to be the origin, and as I mentioned that it is going to be the symmetry. 

So, let us say this is the shape, so β is measured from the x direction. So, here it is 0 degrees, 

here it is 90, this is 180 degrees, and here it is 270 degrees. So basically, Wo is this dimension, 

and Ho is this dimension. So, you see that if you just subtract or take the difference of the value 

here at β = 0 and the value here at 180 degrees, β = 180 degrees. Then you will get this Wo that 

geometrically also you can see from this figure. So basically, Wo will be equal to: 

𝑊0 = (𝑝 + 𝑟) − (−𝑝 − 𝑟) = 2(𝑝 + 𝑟) 

So, this we are getting by substituting the respective value of β in our equations 1a and 1b. So, 

Wo you will get here as twice (p + r). Similarly, this Ho is the difference in the value of y when 

the β is 90 degrees and the β is 270 degrees. So, I will get Ho as: 

𝐻0 = (𝑞 + 𝑟) − (−𝑞 − 𝑟) = 2(𝑞 + 𝑟) 

So, having known the values of these parameters corresponding to a particular shape, this is 

how we can find out the width and height of that shape of the opening.  

Now, the question comes here what will be the value of these parameters p, q, and r? So, as I 

mentioned that for a particular shape, it will have one set of values.  
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So, the table here gives you the idea that for different types of opening, what are going to be 

the parameters p, q, and r? So, the first one deal with the elliptical shape of the opening. Now 

in the case of the elliptical shape, you know that you have the major axis and the minor axis of 

the ellipse. So, if the width-to-height ratio of this ellipse is 2:1, in that case, p takes the value 

as 2, q is 1, and r becomes equal to 0.  

However, in case if width to height ratio is 4 to 1, the corresponding value of p, q, and r become 

4, 1, and 0, respectively. In case you have the ovaloidal shape, then again, for 2 different ratios 

of width to height, you have the values which are given by these two rows. In case you have 

the square shape opening with rounded corners. So, in that case, the height and width ratio is 

going to be equal to 1, and the value of p will be 1, q will be 1, and r will be -0.14. 

Now, here the condition is that side should be parallel to the coordinate axis. This means that 

if this is the coordinate axis, the sides should be parallel. This should be parallel to the x-axis, 

and this side should be parallel to the y-axis. You can have another combination, which can be 

something like this, so this is x, and this is y, where you have the diagonals parallel to this axis. 

So here, you have these two diagonals which are parallel to or maybe coinciding with the x and 

y-axis.  

So, these are the constants for this condition. That is why we are writing a side parallel to the 

coordinate axis.  
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Then, the generalized expression for the tangential stress, irrespective of the shape of the 

opening, was derived by these research workers, and it was seen that this is the function of 

these parameters p, q, r, angle β, and the stresses Sx, Sy, and Txy. So, Sx and Sy are the normal 

stresses in x and y directions, respectively. So, this is again a complicated and long-expression 

in terms of these quantities, and we are making this equation as equation 2.  

Please note that you do not need to remember this expression. Because usually, you know that 

the various parameters like p, q, r are given to us, and then to be specific, we do not talk in 

terms of the most general state of stress. So, we consider some particular state of stress, and 

for that situation, you get a very simple expression for the tangential stress. So, you do not need 

to bother about remembering this long-expression. This is only for your information that such 

things exist.  
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Now, this equation 2, as I mentioned that for any shape of the opening, which is represented 

by equation 1. We can use equation 2 to calculate the tangential stress for any applied stress 

field. However, it is more instructive to consider basically three simple applied stress fields; 

what are those? Let us take a look so. First, we define case 1 here, you have Sx not equal to 0, 

but Sy and Txy are equal to 0.  

So, in this case, if you substitute these values in the previous expression which was given by 

equation 2. What you are going to get is σt upon Sx will be equal: 

𝜎𝑡

𝑆𝑥
=

𝐷𝑠𝑖𝑛2𝛽 + 𝐸

𝐴𝑠𝑖𝑛2𝛽 + 𝐵𝑐𝑜𝑠22𝛽 + 𝐶
 

So, this is equation number 3.  
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Similarly, we have the other 2 cases, such as case 2, where you have Sy not equal to 0 and Sx 

and Txy they are equal to 0. So, what we get here is σt upon Sy as: 

𝜎𝑡

 𝑆𝑦
=

𝐹𝑠𝑖𝑛2𝛽 + 𝐺

𝐴𝑠𝑖𝑛2𝛽 + 𝐵𝑐𝑜𝑠22𝛽 + 𝐶
 

So, this is what is going to be the resulting expression, in case you have this type of state of 

stress, and then finally the third case, which I represent case 3, in this case, Txy is not equal to 

0. But, Sx and Sy both are equal to 0. So accordingly, what we have is σt upon Txy, this is equal 

to: 

𝜎𝑡

𝑇𝑥𝑦
=

𝐻𝑠𝑖𝑛2𝛽

𝐴𝑠𝑖𝑛2𝛽 + 𝐵𝑐𝑜𝑠22𝛽 + 𝐶
 

(3) 

(4) 

(5) 



This is equation number 5. So, these constants A, B, and so on up to H. These are the functions 

of p, q, and r. So, let us take a look that how these are expressed in terms of p, q, and r.  
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So, here we have: 

𝐴 = (𝑝 − 𝑞)(𝑝 + 𝑞 − 6𝑟) 

𝐵 = −6𝑟(𝑝 + 𝑞) 

𝐶 = 𝑞2 + 6𝑟𝑝 + 9𝑟2 

𝐷 = (𝑝 + 𝑞) [(𝑝 − 𝑞) +
2𝑞(𝑝 + 𝑞 − 6𝑟)

𝑝 + 𝑞 − 2𝑟
] 

𝐸 = (𝑞 − 3𝑟) [(𝑞 + 3𝑟) −
2𝑞(𝑝 + 𝑞)

𝑝 + 𝑞 − 2𝑟
] 
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𝐹 = (𝑝 + 𝑞) [(𝑝 − 𝑞) −
2𝑝(𝑝 + 𝑞 − 6𝑟)

𝑝 + 𝑞 − 2𝑟
] 

𝐺 = (𝑞 − 3𝑟) [(𝑞 + 3𝑟) −
2𝑝(𝑝 + 𝑞)

𝑝 + 𝑞 − 2𝑟
] 

𝐻 = (𝑝 + 𝑞)2 [
𝑝 + 𝑞 + 6𝑟

𝑝 + 𝑞 + 2𝑟
] 

So, this is how all these constants or parameters A to H are obtained. So basically, here the 

stress concentration factor is the function of geometric parameters only, and it is not the 

function of material properties.  

See, it was all the functions of A, B, C, D to H, and you can see that these are all the functions 

of p, q, and r only, which depends only on the geometric parameters and not on the material 

properties.  
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So, what happens, in case you have the elastic stress distribution? In case of such a situation, 

the superposition principle holds good. So, in case if you have the biaxial state of stress, then 

in that case stress concentration factors can be obtained directly by adding to the uniaxial state 

of stress situation. Like previously, we saw that in case 1, case 2, and case 3, all the 3 were in 

a uniaxial state of stress. Now, in the case of the situation, Sx and Sy both are present, and Txy 

= 0. 

Then you can apply the principle of superposition and can obtain these stress concentration 

factor. So, let us take a look that if we consider the biaxial state of stress. So accordingly, we 

define the fourth case here, where you have Sx not equal to 0, Sy not equal to 0, but Txy = 0. 

That means that the stresses are applied in the x as well as in the y-direction. So, in that case, 



you sum the expression for σt in the case of when it was the uniaxial state of stress with Sx = 0 

and when it was for Sy = 0.  

So ultimately, what you get here as: 

𝜎𝑡 =
(𝐷𝑆𝑥 + 𝐹𝑆𝑦)𝑠𝑖𝑛2𝛽 + 𝐸𝑆𝑥 + 𝐺𝑆𝑦

𝐴𝑠𝑖𝑛2𝛽 + 𝐵𝑐𝑜𝑠22𝛽 + 𝐶
 

So, this is nothing different than what we did in case of the uniaxial state of stress with reference 

to case 1, 2, or 3. So, when you have the presence of Sx as well as Sy, simply you have to do is 

find out σt as if it is only Sx which is presently found out σt as if only Sy is present. 

Then sum these two, and you will be able to get the tangential stress in case of the biaxial state 

of stress. But please note that this superposition principle holds good when we have this elastic 

stress distribution. If it is not so, then we will not be able to do such a simple superposition.  
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Now, the constants which are there for a calculation of the boundary stress by this Greenspan 

method for various types of opening. So, here you see that for the 2 is to 1 ellipse. So, when I 

say 2 are to 1 ellipse means Wo upon Ho equal to 2 is to 1 and the shape is elliptical. So, in that 

case, what we have as p as 2, q 1, r = 0, and the constants A to H, are given in respective 

columns. For example, for the first case that is 2 is to 1 ellipse; A is 3, B is 0, C is 1, D is 9, E 

is – 1, F is– 9, G is 5, and H is 9. 

So, likewise, if you have different shapes such as ovaloid again with 2 ratios of Wo upon Ho, 

then the square shape, of course, you need to have here the rounded corners, and these 2 

situations can be there as I already explained you in the first situation. The sides are parallel to 



the coordinate axis, and in another situation, the diagonals are parallel to the coordinate axis. 

So, you see that in both the cases, although it is the square opening in both the cases, but then 

the constants are different.  

Although p, q, and r parameters are the same, you see here the value of C is different D, E, F, 

G, and H. They are all different for these two situations.  
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Now, based upon this for various cases as we considered and I explained to you, that the case 

1 corresponds to when you have the uniaxial state of stress with the stress in the x-direction 

only, and there is no stress in the y-direction and Txy = 0. So, in that case, the stress 

concentration factor is given by σt upon Sx. If you have the second case, then in that case, Sy is 

non-zero, and the remaining two stresses are equal to 0, and the stress concentration factor is 

defined by σt upon Sy.  

And in case, you have the third situation there, Txy is non-zero, and Sx and Sy both are 0, and 

therefore, the stress concentration factor is defined by σt upon Txy. So, these three curves are 

there in each of the figures for different shapes of the opening, where these cases are defined. 

For example, here we are dealing with the elliptical opening, so the stress distribution around 

the periphery of this ellipse. 

So, that is from here, it starts with 0 degrees and then it goes up to here as 90 degrees. So, this 

curve corresponds to this first condition. This is for the second condition, and this is for the 

third condition. So, likewise a similar way, we are going to discuss the boundary stress for 

different types of openings. So here, the first figure deals with the ratio Wo by Ho to be equal 

to 2, and then you can see that at the boundary here at β = 0.  



How this stress concentration is – 1, and at β = 90, it is 2. For example, in the case of the second 

case, is this one when you have the stress applied in the direction of the y-axis? Then, in that 

case, at β equal to 0, you will have the stress concentration factor as 5, and for β equal to 90, 

you have the stress concentration factor as - 1. Similarly, for the third case also, the variation 

can be seen in this manner for various values of β all along the boundary of the opening. 

So, similar is the situation here, but then you can see that there is a difference in the magnitude 

of the stress concentration factor. For example, just take the same stress state, that is let us say, 

state 1 case 1 I consider. So, β is equal to 0. It is -1 here. But, see β equal to 90, it somewhat 

approximately says 1.5 here, and here it is 2. So, when Wo upon Ho is increased from 2 to 4.  

You see that the stress concentration factor at β is equal to 90. It reduces from 2 to 1.5, and 

similar type of comparison you can make for all the respective cases. For example, let us take 

case 2 here, see β equal to 0 and stress concentration factor you get as high as 9. While it was 

5 in this case, although at β equal to 90, you have the same stress concentration factor that is -

1. So, this was about the elliptical opening.  
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Now, in case if you have the ovaloidal shape of the opening so, we write here as approximate 

ovaloid. Because of the fact that those equations 1a and 1b, if you just substitute the particular 

values of p, q, and r, you can only generate the approximate ovaloid. So, that is why we are 

calling here an approximate ovaloid. But it is as good as ovaloid for all practical purposes. So, 

a similar type of comparison and the distribution can be seen in these two figures, which 

typically represent the stress distribution all along the boundary of the ovaloidal shape of the 

opening for two situations, for width-to-height ratio as 2 and 4.  



So again, in this case here, all the 3 cases have been shown again, the 3 cases correspond to 

these states of stress. So, if you just compare these 2, probably let us take case 3. So, you see, 

the maximum stress concentration factor is somewhat here, which is maybe larger than 6. 

However, in this case, you see it is a little larger than 5. So, the pattern may be the same, but 

the magnitude is not. It depends upon the size of the opening. 

(Refer Slide Time: 32:27) 

 

Similar observations are made here, with reference to the square opening with rounded corners 

and since it is the square opening. So, you have Wo upon Ho to be equal to 1 so, be careful here 

that this is what is for situation 1. This is for the state of stress designated as case 2, and this 

one is for case 3. Similar is the situation here so the difference between the 2 situations is in 

this case, the sides are parallel to the axis you see here, but in this case, diagonals are parallel 

to the axis. 

 

So, this is the diagonal, which is maybe merging here with the y-axis, and this is another half 

diagonal, which is merging with the x-axis. So, based on how the shape is placed accordingly, 

you will have different stress distributions. Please note that here we are only talking about the 

boundary stress distribution. Now, if you just take a look, the magnitude of these stresses or 

the stress concentration factor is larger here in this case as compared to when you have these 

sides which are parallel to the axis.  
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So here, as I have been mentioning that we do not have sharp corners, for example, let us say 

I have here this type of situation very sharp corner. So, this situation is avoided the reason is 

that the stress concentration factor at such sharp corners becomes infinite, and it is impossible 

that any material can withstand that kind of infinite stress or huge stresses. That is why to do 

away with such type of situation, the corners of the opening are made a little rounded like this.  

This is what is needed, not this is not correct. This type of sharp corner they are not used not 

adopted. So, if we take a look at these figures close look corresponds to any particular shape 

but different aspect ratios or if you compare 2 different shapes with the same aspect ratio. For 

example, if you compare 2 to 1 ellipse with 2 is to 1 one ovaloid. 

Then by studying this distribution for the boundary stresses for different shapes of the openings, 

then we can come out with the same general guideline for the design of these openings. So, this 

we will discuss in detail in the next class. So, what we discussed today was that what is the 

Greenspan method. How it helps us in obtaining the stress distribution around the non-circular 

openings such as elliptical, square, or rectangular openings?  

And how for different shapes you can get the boundary stress distribution, and how they 

compare with each other? So, we will deduce the general guideline for the design of such 

underground excavations in the next class. Thank you very much. 


