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Welcome to lecture eleven of computational geometry. So, we will start only new 

problem which is actually related to the problem of convex 
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 hull and I will establish that relation in the course of lecture, but let me first state the 

problem 

Ah. So, we are what we are given. So, we can talking about a this problem is intersection 

of half-planes. So, we are given a set of half-planes what is a half-plane look like is 

basically bounded by a line bounded by a line and you know 1 side to the line is the half-

plane that we have we know will be pertaining too. So, you know I will just shared this 

indicating that you know this is the side of the half-plane that I am interested in. 

That’s half-plane I am talking about the line divides the plane into 2 half-planes. So, the 

shaded side is the one that I am pertaining to. So, this is 1 half-plane you know that is 



another half-plane lets called this H 1 H 2 you know and have more half-planes H 3 H 4 

something H 5 and. So, on. So, forth 

. So, given these half-planes by the way half-plane is a a very simple example of a 

convex set right half-plane is convex and you can prove it by definition convex the entire 

segment of the 2. lying inside the half-plane will also be inside the half-plane. 

Right. So, half-planes is a convex set and what I am interested in is given a set of let us 

say n half- planes set S of n half–planes compute the intersection. So, H I 1 to n which 

basically means the region common to all half-planes. 

 now in the example that have given here I mean just the infection what does it look I 

mean should be common this this region should be common to all half-planes. So, for 

instance a a is this point common to all half-planes. 

Now, because this point certainly does not satisfy h 5 right is this point common to all 

half-planes. 

Now, because it certainly does not satisfy h 4 right h 4 is h 4 is this this thing and the 

point is to the other side of h 4. 

Does this satisfy all constrain all all half-planes there is region common to all half-

planes. 

Yes ok. So, if finds this 1 is common. So, what we are interested in is not just 1 or 2 

points, but they entire region that is common to all the half-planes and because half-

planes are convex by definition the intersection of half-planes will also necessarily be 

half-plane. 

And what is the intersection of all half-planes and what kind of region is that it is a 

convex region and it may be a convex it basically a convex polygon right. 

It is a region which is convex and is bounded by straight lines which are essentially the 

lines bounding the half-planes. So, intersection of half-planes is a convex polygon 

provided. 

(( )). 



Well I am not even talk about n 1 n 1 is 1 situation yeah sure it is not a strictly speaking 

if the convex polygon yeah the polygon is essentially bounded this may not be bounded 

that is one one problem. 

What is the other problem. 

(( )). 

Intersection can be null exactly the intersection may be empty right. So, so the common 

region is convex polygon in most cases, but caveats is may be unbounded and other 

problem is may be empty 

Fine how do we deal with a unbounded is a a simple way of dealing with unbounded. So, 

you do not have to construct a consider this as a special case when we are trying to 

design a algorithm. 

(( )). 

Yeah we are saying that I put a kind of a window. 

Right and the window should be a rectangular window let us say we should be large 

enough to contain. 

(( )). 

Right see good. So, that is I was say. 
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So, since it is unbounded of course, the the rectangle region I am to be. So, the 

rectangular region suppose is some rectangular region what I what want is that want 

make make sure that even if it is unbounded. 

 Also this is not unbounded . So, this region looks like unbounded right. So, these 2  

edges do not into converge what you know basically they they going to go. So, I can clip 

it using this rectangular window and I will be happy to set of and and it kind of it 

contains all the vertices of the of the of the intersection region right. So, this misses out 

of (( )) on the unbounded thing, but a as long it it has it has adequate description of this 

this intersection region because it it captures all the vertices and all the vertices corner 

points essentially going to be corner points of the they they will be described by 2 or 

more let us say lines bounding the half-spaces  

And therefore, you know you can actually in some sense compute somehow these 

smallest a if you compute the smallest and the largest ah intersection points you know 

both in x and y deduction that could be one that could find this rectangle because there 

we no vertices falling outside the rectangles. 

So, that is one way to sort of deal with this this kind of situation where it is unbounded 

we now the question of poses how do you compute this smallest and largest you know let 

me not get into that part what just just. So, that you know we we can a we can we do not 

have to deal with unbounded regions is what I am saying. So, some way we can simplify 



the whole thing without having to talk about unbounded regions essentially all I am 

saying is that we have some extra kind of half-planes defined by these lines. So, along 

with the given half-planes I am also looking at essentially these 4 half-planes 

And then that will bound the entire intersection. So, the entire intersection is become 

bound, but emptiness is something that we cannot push it away why. In fact, emptiness is 

a very important problem. So, so 1 motivating problem for this finding in intersection is 

a can you tell me give me 1 example of why are you interested in intersection of half-

planes exactly. So, a basically the constraints a linear constraints are basically half-

planes right. So, ah 1 of an and it is an known that the problem of finding weather there 

is a feasible solution and the problem of actually solving the linear program they not be 

very different in in complexity. 

So the problem of finding intersection is almost equivalent to finding actually the 

optimum point  

So, So, just to find out if a given set of half-planes has a non non-prevail intersection that 

is the it is not empty that itself is is is a is a basic fundamental problem and you cannot 

push it away. 

So, given a set of half-planes just the problem tell us whether I mean to to determine 

whether or not it defines a feasible there is non-feasible region is a basic problem. So, I 

cannot push that away right. 

So, whenever. So, in to solve this problem find in the intersection half-spaces I have to 

deal with this 1 possibility that the intersection can be empty and we would not know in 

advance intersection is empty that will discover over the course of the algorithm 

algorithm should be able to tell us whether or not it is a intersection. So, you can see 

actually this problem you know simply stated in 2 dimensions you know as you move to 

higher dimensions and it could become quite complicated. In fact, the (( )) linear 

programming is nothing, but the the constraints in a linear constraints in arbitrary 

direction arbitrary dimensions  

So, you have these half-planes which are constraints in d dimensions and then there is 

some kind update functions and that is you know. So, fiinding the finding 1 point if the 

feasible region that we finding the optimal point in the feasible region and I am saying I 



am claiming right now is the not very different in complexities if you can find 1 you can 

find the another, but you know this problem that we discuss in today I will be discussing 

independent of polymer linear programming, but they this certainly you know some 

relevance to linear programming except that in linear programming we do not have to 

find the entire region. 

So, actually linear program into some ex10d you can you you may think about perhaps it 

is simpler than this problem because I will be happy to find only 1 feasible solution 

which is optimal solution I do not necessarily have to find the description of the entire 

feasible region  

which is which could be a convex polygon in 2 dimensions or a convex poly tope in high 

dimensions although the we have not discuss this issue before this, but let me just a 

mention that the convex all in higher dimension which is that intersection of n half-

spaces in in dimension d what is the kind of descriptive complexity it may have I mean 

that that that structure you know how complicate that we in 2 dimension it is a convex 

polygon. So, that description that structure is defined by let us say n corner points or the 

n adjacent. So, forth in 3 dimensions may have already brought it of once right. So, that 

that the description is very similar to a. 

In 3 dimensions if I take the intersect of n half-planes in 3 dimensions and suppose that 

intersection is non empty that region is a convex 3 dimensional convex poly tope and 

what is the how did you describe in 3 dimension convex polygon. 

How many phases how many corners and how many edges (( )) yeah, but what is the 

total you know description and what what is the complexity of that that structure (( )) no 

no what is 4, but vertices for 4 triangles (( )) no no no no you are talking about tetra 

hydrons am not talking about tetra hydrons (( )) intersection of 4 half half half spaces in 

3 dimensions I am I am I am mentioning a given n half-spaces in that is in 3 dimensions. 

 the intersection is suppose is non-empty it is a convex 3 dimensional convex poly tope 

what is the how do describe the what is the complexity of the structure in how many 

phases how many edges how many corners. 

 (( )) n c 2 n c 2 will be already n square kind of complexity (( )) right exactly. So, 

essentially the 3 dimensional convex poly tope you know is is nothing, but the plane a 



graph which for. So, that is you know you can euler’s formula follows that you know 

that you know a a a 3 dimensional structure  

Ah a plane. So, because this all convex need not only the whole thing is convex the 

whole intersection is convex if I if I limit if you limit yourself a plane look at 1 of the 

planes and look at the projection just look at the intersection of the remaining half-planes 

with this planes. 

Suppose I take the intersection I restrict myself to 2 dimensional plane 1 of the phases 

right. So, this is the 3 dimensional structure  

Let let us say I take 1 phase and I only look at the the the structure of 1 phase that is that 

is a 2 dimensional structure. So, that itself again will be a will be convex right so. So, 

now, from here it kind of follows that you are not going to have you know a the plane 

can only describe at most 1 phase you cannot have the same plane describe to 2 

disconnected phases because that would not be convex  

So, therefore, it follows that the number of phases of this intersection is bounded by the 

number of number of planes yeah n right. So, so there no more than n phases in the of the 

3 dimensional structure and in the n phases by euler’s formula and a plane a planarity for 

the what were the plane and graph formula it follows the number of phases and number 

of vertices and a number of edges in a graph there are kind of linearly related ok. 

So, the entire structure this 3 dimensional convex poly tope described by the intersection 

of n half-planes still has a linear structure it is it is it is not n choose to vertices I can say 

that right. 

So, So  so in 3 dimensions as a 2 dimensions you still have a linear structure in 2 

dimensions very simple it is exactly an in 3 dimensions it is a planer graph kind of 

structures. So, it is a order of an, but there after you know things become moiety. 

So, you a when you wants to go to 4 dimensions you cannot visualize the first you have 

to resolve other ways of you know figuring out what the what the complexity is and 

without getting into too much details let me say that the complexity grows roughly has n 

to the power of d over 2. 



So, it is like in. So, higher dimensional convex poly tope defined by intersection of n 

half-spaces that grows as roughly n to the power d over 2. In fact, there is a kind of flow 

on that right. 

And this is known to be theta. So, there are actually convex poly topes which can have 

that many number of its it is not the phases its its everything its dimension 0 is vertices is 

dimension 1 that edges. So, all the facets of dimension 0 to dimension d minus 1. 

So, that can grow exponentially essentially. So right. 

So, if d is 2 or 3 you can see this is essentially order n then moment d becomes 4 it 

becomes n square and there after it really it really becomes the you know quit heavy. 

And therefore, we actually solve linear programming you are not going to compute this 

entire feasible region because of feasible can be can have an exponential size and no way 

you can actually if you if you want to do it in polynomial time you cannot the 4 to 

compute this  

So, I am just trying to draw a line between that the fact that I am we are not really trying 

to attack the linear programming by constructing the intersection although intersection 

contains a all the information about linear programming, but you know we cannot 

construct it 

But of course, in lower dimension like we are dealing within 2 dimensions 3 dimensions 

we can we are just looking up on as it as a problem which is interesting you know other 

applications also. 

And this has and the and the size is at most order n (( )) intersection. So, one thing let me 

do again ah like we did for this a convex hulls. So, this seems to be at least intuitively 

some sort of connection between convex hulls and an computing the intersection of half-

spaces in the sense that both of them eventually give us some kind of convex polygons 

right. 

But what is real relation of why should you know something that is discribed by points 

related to something will displayed in a half-way in when we we cannot we cannot 

appreciate that right now, but we did one thing when we try to compute the convex hull 

you know at least in in terms of conceptual simplicity we were able to dealing the upper 



hull over n 10 we we growly describe the algorithm in terms of upper hull or lower hull 

right. 

So, here I will take a similar root where I do the poly I will distinguish 
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 between half-planes that are downward pointing I will just say what I mean by 

downward pointing and (( )) upward pointing of course, I miss not something something 

which can either downward or not nor upward any way first let us say what were 

downward point is if this half-plane we have a half-plane say essentially now it is this 

what I am saying downward pointing and this is a half-plane that I am saying is a upward 

pointing 

One quick test for this is the (( )) half-plane is going to be describe some kind of 

inequality a linear inequality a quick test could be does this contain a the point you know 

y is equal to minus infinity a something. 

This is essentially contains y equal to plus infinity. So, just see that whether or not this 

satisfies the inequality. So, I am I am just dividing the set of given half-planes into these 

2 of course, there this kind of thing which is neither upwards or downwards since I 

cannot handle this you know we will say that these do not happen. 

And why can why cannot this happen will just do a know random notation good. So, you 

are; obviously, the same language you know. So, these kind of bad things do not 



happened to us (( )) right right. So, now, now I am just coming to that I am just coming 

to that. So, now, once I have I have I have separated them out these 2 kinds of things. 
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Then we talk about essentially a the intersection of downward half-planes and 

intersection of upward half-planes right. So, we compute them separately which means 

that the downward the first case you know you can imagine that all contain minus 

infinity y equal to minus infinity. So, it will looks like something like this and clearly if 

there is there are any of these downward half-planes the intersection is non empty 

portion. 

Because all them will contain that minus infinity point. So, in somewhere we have also 

done away with this emptyness problem by separating half-planes and the upward ones 

we look like you know something like you know again this will be non empty and after 

we have computed them what do you do because we have to find out the intersection a 

yeah you know you know it is not pasting it is not pasting let me point out this is not 

going to be pasting into simple pasting . 

It it could be more complicated than that, but eventually for the final answer will have to 

compute you know this intersection point and whatever is the intersection point and by 

the way this could actually be more complicated like this this could go on like this this 

and. So, on so, but finally, you know this is the region that we are interested in. 



after you compute the intersection the downward half-planes after we compute the half-

planes will again have to deal with finding the intersection of these 2 objects, but then 

you can see after all these objects has nice structure you know these are both kind of 

chains these are you know one one as you know this this kind of a structure is usually 

called convex chain right 

The red one is a convex chain red block one is a kind of convex chain there also 

monotone ok. 

So, we are too nice you know monotone chains and therefore, claim that intersecting 

these will be fairly easy and this is also a problem for in one of the these one of the 

assignment problem where a in generally your asked to find out the intersection of 2 

convex polygons. 

So, this can be dealt with in that frame work also this is this kind of viewed as the 

problem of finding intersection of 2 convex polygons and whatever time it takes the 

suppose you know it takes order n time its order n times it is a log n time it is log n time 

So, finally, let us let we let we just say that it can certainly in order n time that is for you 

figure out how to do it exactly and. So, will not bother about this final step of you know 

how do you find intersection of the convex and the concave chains or the regions regions 

actually 

Ah chains sorry upward region and the downward region. So, will now focus on just one 

of them let us say intersection of downward half-planes now I could try to not describe 

or define or develop an algorithm from scratch which at this point you know I would not 

attempt to do not now I will to just find out or explore does this have any kind of relation 

with what we have done just before this that is that the convex hull computationok 

Now; obviously, these are too looks like very 2 different 2 very different problems you 

know in 1 case dealing with points when we are talking about convex hulls . 
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So, convex hulls has point input and intersection problem has half-plane input which can 

also we thought of thought with the sort with the half-planes are actually described by 

lines let us say 

It is 1 side of the boundary line right in 1 case it is a point input that other case kind of a 

line input. So, somehow we need to be able to do some kind of correspondence between 

lines and points to be able to to to able to find out if there is any relation between these 2 

structures at all. 

All right. So, for that we will will resort to what is called some kind of duality relation 

some duality function let us say a duality map into more precise. 

So this duality mapping let me define as d of a. So, what this duality mapping will do for 

us it will map points 2 lines and vice versa what is a point a point is a usually defined by 

a coordinates right. So, point. So, we are this we are dealing with 2 spaces right the space 

of points as space of lines. So, to be able to define a kind of mapping. So, what do you 

mean by point to point is a order pair of coordinates a b whats a line a line has basically a 

parameter equation right. 

So, a x plus b y plus c is an one possibility, but then a there is because I want to let it to 

the points. So, actually the line is a 2 dimensional structures again you should have only 

2 parameters. So, if you think about the y is equal to m x plus c this is basically 



parameterized by the slope on the intersection my space of points of course, is a obvious 

choice of pair order pair of coordinates and for the lines we again choose the. So, now, 

we are choose the m comma c representation. 

So, that we are dealing with 2 dimensional phases. So, in both phases. So, it is a mapping 

from 2 dimensional phases to 2 dimensional phases right. 

So, this is what this duality mapping will do for us now in literature there are lots of ah 

you know different kinds of duality mapping and they have different kinds of properties . 

So, I will first try to describe what are the preferred properties for the kind for the duality 

function that we used and then later instantiate one’s specific function that achieves all 

these properties . 

So, let me first try to elaborate an what kind of properties you know this mapping should 

satisfy what that if if you satisfies then we are in good share . 
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So, one thing that will do first is is say that itself inverse. So, desirable properties I will 

say. So, d of d’s of x equal to x x is either a point or line they want it to be self inverse 

ah. 

So, if I apply the dual transform if x is a point apply the dual transform get a line and if I 

apply the dual transform for this line we get the point vice versa. 



If I x is a line apply a dual transform line I get a point and again apply the dual transform 

I get back the same line . 

So, this is 1 property would like to have another property is that you know is a is let us 

say 1 is to 1 most good mappings would have this properties I mean useful mappings 

have this properties. So, I want to trying to list the desirable properties I have not even 

said what function actually will actually satisfies the properties ok. 

Now, here is a very important thing till now you know these all fine incidence. So, 

incidence properties is a following consider a point p and a line l incidence property says 

that if p is incident on l then d is of l which is a point is incident on d’s of p is a line. So, 

its incidence preserving the mapping that we are in interested in we will be incidence 

preserving if a point happens to be an a line and I take the dual transform of the point 

then it is a line a dual transform is a point and again that point should be incident of a 

line. So, whatever function you interested in should satisfy this property. 

This kind of implies a following if l 1. So, l’s will be like line l 1 and l 2 intersect in p. 

So, p is a points l’s of lines in p is a points ok 

If 2 lines l 1 and l 2 intersect in p right l 1 l 2 p then d’s of p which is the line can you 

completed (( )) yeah should pass through d’s of l 1 and d’s of l 2. So, does is follow from 

3 follows some 3 because the incident property if it incidence a is preserved then this 

point should lie on both lines and therefore, this line should pass through both these 

points. So, it is a consequent of 3 it is not a separate property, but just to highlight 

something that you know will be able to use make use of this property. 

When we talk about this connection between l’s n intersection of half-spaces right. So, so 

one more thing. So, we are talking about incidence of what is the point does not lie on 

the line . 

So, it is either below or above. So, we need to say something about again the orientation. 

So, above sorry (( )) above or below property. 

. So, say that if p lies above l now the above I thing the same way that we talking 

previously that you know plus. So So, here is a line. So, it is a line l and p basically is 

above l just what do you mean by p above right. So, p lies above l then d’s of l which is a 



point l ok is (( )) exactly on what kind of function finally, choose so, but I will just prefer 

this 1. So, above below. So, if a point is a above l d l d’s d’s of l will be below d’s of p 

You just interchanging the orientation (( )), but its consis10t suppose all points and lines 

this will represent. So, again let me not even get into what function we satisfy all these 

properties I just use the properties to establish suppose such a function exist such a 

duality mapping exists then will try to use this to show the connection between hulls and 

intersections. 

So, again we have limiting our hulls to when we talk about intersection we only talking 

about this you know downward planes or upward planes. So, here is basically what we 

are try to establish.  
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So, given set of downward half-planes let I of h denote intersection now consider the 

duals of the lines describing the half-planes h and denote it by S right. So, we have given 

a set of h downward half –planes the half-planes are described essentially by s 

Bounding line and which side of the line it is we know that it is a downward side that 

will obtain now we consider the duals of the bounding lines that describe the half-planes 

that duality is defined right where this a line to point duality that those points I am 

calling it S let c h of S is denote the convex hull of S. 



So, just to draw the distinction we have this is my downward intersection of downward 

half-planes right now I am talking about convex hulls of points which are the duals of 

those lines described in the half–planes and here is my convex hull or the duals of the of 

those lines the points of the duals of the lines 

So, what relation thus these blue structure have this structure will does not look like 

mind that blue structure looks about half that of the rate structure. 

In fact, is half that of the rate structure. So, what will establish is that you look at the 

chain which is that the the lower hull consider only the lower hull. So, lower hull is this 

structure if this again some kind of convex chain upward convex chain 

So, blue one is downward convex chain the black one is the upward convex chain which 

is the lower hull of this set of points right and now the claim is that at this is 1 to 1 

correspondence between this lower hull and that blue structure. 

Right namely that the half-planes that describe the boundary the half-plans that describe 

the boundary or in 1 to 1 correspondence with the points that describe the lower hull. So, 

this is the (( ))  
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The yeah (( )) Exactly. So, the downward convex chain describing the intersection of 

half-planes is in 1 to 1 correspondence with the points which are duals of the lines 

describing h this is the lower hull  



Namely suppose I am just saying suppose this is half-plane half-plane 3 and half-plane 2 

and half-plane 10 and half-plane 20 and half-plane you know 50 and somewhere that 

these points would correspond to the dual. So, this point will be dual of the half-plane the 

line describing the plane 3. 

So, like dual of 3 this is dual of 2 and dual of 10 and. So, on. So, forth dual of 50 suppose 

this is true before even a we have approved it suppose this is true then how will you 

construct the intersection of half-planes you just take the then you will go the dual space 

basically you know even half-planes 

Look at the lines described in the half-planes look at the duals of those lines which are 

points use your favorite convex hull algorithm to construct the convex hull of these in the 

dual space which is which is the set of points and then the lower hull of that is in 1 to 1 

correspondence with the intersection. So, once I know this is you know these are the 

these are the 3 d’s of 3 d’s of 2 are the points then I immediately get the I can from there 

I can simply get this structure that this convex chain is the intersection has first it first 

start with 3 then then then the boundary is defined whether the half-plane 2 with the 

boundary is defined with the half-plane 10 and. So,on. So, forth 

So, we recover the structure right away from there if this this claim is true why is this 

came true. 

 let me switch to the we will; obviously, try to use the the properties that we claim you 

know some there is some mapping that will have this properties and and that is the kind 

of dual duality transform that we have using. 
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So, these are all downward this is my intersections this particular half-planes maybe I 

should actually draw them in red. So, this half-plane is even not even part of that 

boundary this. So, the the intersection the the description of this intersection you know is 

essentially the the chain the chain of the half-planes that describe the boundary of the 

intersection if that is what we that is what we are interested in. So, the red some like this 

these half-planes do not even figure in the intersection. So, the description of the 

intersection does not even contain these half-planes. 

So, those are basically I am saying like you know some points are going to be on the 

hulls some points are not on the hull this is equivalent of the corner vertices 

We now we have a what is the property of this boundary this boundary. So, why do thing 

that you know this half-plane in is part of the boundary where as you know the red is not 

you know some something something that is here. 

Is not (( )) no no lets talk to the dual we are just trying to characterize this only in terms 

(( )) right in other wards you can think about it like this you know if you looking at you 

know suppose I am trying to draw plot a function which is let us say at any point x what 

is the minimum what is the minimum y that we are looking at. So, suppose these are 

functions these these these these half-planes like are functions you know these are linear 

functions any point of time I am looking at the min of the the the lines I mean which is ar 

the lowest. So, if you draw a lines these are the intersections. So, this is the lowest. So, 



that is why it is part of the intersection a a half-plane. So, of course, this this this you 

know you move this x to here and it still you know this function is the lowest, but some 

point a next intersection points it changes next this function becomes a lowest. So, it is it 

something what is called a lower profile. 

It may not does not even to be linear functions you can describe you you can define in 

terms of any kind of function. 

I can have any any arbitrary function ok and I can look cause the and define the lower 

profile in the same way that any point point wise minimum among all the functions is the 

overall lower profile is what we calling 

So, this is one way to characterize that you know something will become a part of the 

intersection something some half-plane will not be a part of intersection. 

so now we are going to now now let us go to the dual space I mean are are you happy 

with this characterization then only basically. So, some half–plane will be a part of the 

output only when it becomes a minimum for some x. 

. So, now, when you go to the dual space where you know this line becomes a point all 

all all lines bascally some points. 

 When is a point a. So, so given a convex a set of points. So, a point is a part of the a you 

know a you know a final description of the convex hull or a corner point if we can draw 

a half-plane or a line through this point a tangent namely say this is size is point you can 

draw tangent through the point such that all other points are above this line right. 

 Can you do now can you see the correspondence between the a dual transfer preserve 

well preserved means is that just switches the upper and the lower thing ok. 

So, I am able to draw a line through the point now use the the incidence property the dual 

transform of these point this point. 

Is one of these lines that that is how I got these points from right this line is some 

arbitrary line that passes through the point. So, a dual of this line dual of this line will be 

some point will be some point on this line right. So, this one will become some point in 

the line may be it is a d of t. So, there is a point basically where all other points lie above 



this above this tangent and at the same d’s d’s of t point they satisfies it satisfies all the 

half-planes it is below of the half-planes that is all that is the proof 

(( )) no I its above below right. So, these points are above and this point is below all the 

all the lines its we are switch the upper and a above the line and below the this things if 

the if the point is above the line the dual of the line will be below the points. So, just 

switched that is why we are looking the lower hull and the and the downward chain. So, I 

will stop here today. 

You know is need meditate a little about it this, but tomorrow hopefully and you know in 

the next class will be continue about this. 

 

 

 


