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Today is the thirteenth lecture; hopefully it will turn out to be lucky. We will continue on 

what we started last time - namely, on deriving some kind of lower bounds on the linear 

decision tree model. 
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We started looking at this problem of element uniqueness and we are trying to 

parameterize…we parameterize a problem as…If you consider an input of the given N 

elements as a point in a high N dimensional space in R to the n and then we want to look 

at this space that is the Euclidean n-dimensional space where you know a point can be 

classified as yes or no depending on whether there is a duplicate element or more than 

one duplicate…we saw there were no duplicates. 

In two dimensions the space partitioning would look like…You have these four 

quadrants and you take at this line with slope 45 degrees and exactly the points on that 

line are those inputs - we are considering only two point inputs; the points in the line will 



be those that are not unique, because x1 is equal to x2; any other point on either side of 

this line we will comprise the yes answers. 

Analogously, if you go to high dimensions you can look at these pair-wise - sorry - the 

hyper planes defined by these x i is equal to x j where i is not equal to j and if the given 

input point lies on any one of these planes - the union of these planes - then the answer is 

no because there is at least one duplicate and if the point lies outside of the union of 

these hyper planes then, the answer is a yes answer. 

What we are actually doing is, we are partitioning the input space into some kind of 

equivalence classes; in the very high dimensional space…May be even going from two 

to three may shed a little bit of light; when we go to three-dimensional space….You have 

these planes let us say you have right hand coordinate system - X Y Z right - you look 

at...This plane that I have just drawn is supposed to be 45 degrees, passing through the 

origin and it is supposed to be - what does it look like? - let us say Y equal to Z or 

something and you have two other planes where X equal to Z and X equal to Y. 
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There, you see these…for your some three such planes and if you think about it, these 

three planes are not completely independent in the sense that they are going to partition 

this r cube into actually six regions - can you say why?  

Sir each of them when you. 



So, yeah 

That is the dividing first plane varying two particularly and one more  

Then it divides into 4 parts, right? But then when I add the third one it is not eight parts; 

see the earth the earth ends - the planes, X Y plane,Y Z plane they also do the same 

thing; the three orthogonal axis they actually divide the space into 8 parts, but these 3 

planes I claimed divide only into 6 parts; the reason is that Y equal to Z and X is equal to 

Z then by transitivity Y must be equal to Z; it is actually going to…two planes intersect 

in a line and the third plane has to pass through the line. 

So, it becomes 6 planes rather than 8 planes and the other explanation is that in each of 

these 6 regions you have one of these 3 inequalities; sdepending on the permutation 

of….Let me use the - well, I am using X Y Z - X Y Z can be permuted in three ways; 

three elements can be permuted in three ways; each region corresponds to the three 

factorial that - sorry - thats equal to 6 orderings of 3 elements. 

This is in 3 dimensions; when we go to n dimension - we are talking about n dimensions 

- the point is…the given input is an n dimensional point;  input of n elements can be 

thought about a point in n dimensions then essentially - analogously - in n dimensions 

there are how many such regions? n factorial, right? The each…n factorial regions 

corresponding to each permutation; each region is a yes or no - the region is a yes 

answer; because, there are no duplicate elements…corresponds to a yes answer; so, we 

have essentially these n factorial regions and each region is kind of equivalent in the 

following way that within a region - within these - regions the answer is a yes. 

Now, what have these regions got to do with an algorithm? This is purely in terms of the 

input and the problem; the problem is element uniqueness problem and whatever is the 

input to that problem; at this point this has got nothing to do with the algorithm; 

somehow we will have to bring in some way that we can relate the way the algorithm 

behaves and how it is able to actually answer this correctly - yes or no. 
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For that I need to use some…One… I will just exploit one basic property of the kind of 

algorithms we are looking at; the kind of algorithms we are looking at again, you recall, 

is in the linear decision tree model; we are not looking at fixed degree algebraic decision, 

tree we are not looking at arithmetic computational tree; as we discuss more you will see 

why I am drawing the distinction; right now my primitives are linear inequalities - linear 

equality is it greater than 0 sorry it does not equal to 0 strictly less than 0. This is 

basically…At any node of this decision tree we are making…We are evaluating this and 

moving left or right depending on whether the answer is yes or a no. 
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Now, these kinds of decision tree models have one important property and that 

is…Linear…An important observation about linear decision trees…And that is…Given 

any point….This point is in n dimension…The point, let us say, P in n dimension; we 

follow some path from the root to some leaf node which corresponds to either a yes or a 

no. In other words, this decision tree itself - whatever it is, some specific decision tree - 

any decision tree also implies a partitioning of the n dimensional space in the following 

way. 

That is, every node - whether it is a leaf node or an internal node - corresponds to some 

subset, let us call it any node…what should we call it? Node…let us call it t; every node 

t corresponds to some subset - call it w t of R of n, namely all points that pass through t.  

Whenever I have….Any decision tree based algorithm where the basic primitive is 

taking a linear inequality and just finding out whether it is greater than or equal to 0 at 

any node; whenever we reach a node, whichever points pass through that node we say 

that this node is associated with that subset of R(s) of n - w of t I am calling it; 

eventually, of course, leaf nodes correspond to all those points in the R to the power n 

that reaches that leaf node. Likewise, for any other internal node any point that reaches 

that node corresponds to that particular node., Which I am calling w(s) t corresponding 

to the node t. 
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Let me draw a picture; here is my decision tree, some point, let us say, p1, there is some 

point p 2, there is some point p 3; when I start the algorithm with input p 1 it traces some 

kind of root through this tree - let us say this is p 1; p 2 may be traces another root to the 

tree - this is p 2; p 3 could be like this - this is p 3; if you look at the path that p 1 and p 2 

took, they shared the same path till this node; but, then they went along different paths. 

The set of points that pass through this node and set of points that pass through this node 

they basically define some kind of partitioning of R to the power n - that is all I am 

saying. 

Every decision tree also corresponds to some kind of partitioning of the R to the n; not 

just for this particular problem, but for any problem this decision tree will correspond to 

exactly those points that pass through those points; now, you have two partitioning - one 

is the partitioning defined by some by a specific decision tree; every decision tree will 

have its own way of partitioning - your algorithm and my algorithm would be different 

so the decision tree corresponding to the two algorithms will be different and they could 

imply different partitioning of the space; so, the portioning is not unique. 
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But, then we want to look at some properties of this partitioning so that we can relate it 

the problem; the problem that we are looking at is element uniqueness; element 

uniqueness has this n factorial equivalent regions that is defined - that is the property of 

the problem. 

This tree also defines some kind of partitioning; now, there has to be some kind of…if 

you are solving the problem of element uniqueness then this decision tree that claims to 

solve the element uniqueness problem should also have some kind of correspondence 

with the portioning problem space; in particular, the leaf nodes that any decision tree has 

- suppose this is a leaf node yes, or may be this is a no, yes, no, whatever; all these yes 

points must fall in one of those n factorial regions; yes must be in one of the n factorial 

regions, because those regions correspond to the yes inputs. 

And these no must fall into one of these unions of the hyper planes - this must lie on 

some hyper plane; the yes should lie in regions - one of the n factorial regions. 

Let us blow up this figure it will be further…What we have now are some kind of 

partitioning of the problem space; problem space partitioning - what I am saying is that 

these are my yes regions - for this particular problem these are my yes regions and the 

one that lies on this line…Of course, this is not the correct representation of that 

particular problem, but it is an abstract diagram and anything that lies on these hyper 

planes they are the no regions. 



There is a partitioning defined by the decision tree and a leaf node must have points 

the....The leaf nodes will have points either that fall on the lines or in these regions; what 

can we say about the regions corresponding to a leaf node; can it have something like 

this? For instance can the partitioning be like this? Can some leaf node basically be 

associated with all these points; this is the… The red partitioning is of the decision tree; 

so, can any single leaf node correspond to this shaded red region? What is the problem? 

See, it is seems to contain yes points and no points, which is completely ambiguous - so, 

clearly not permissible, not possible. 

No single leaf node can span across two such regions; in other words, what we are 

saying is that a leaf node must necessarily be confined to…Well no, not necessarily, this 

single leaf node may correspond to this; all we are saying is that as long…The leaf node 

has to be consistent it cannot have both yes and no points; the leaf nodes, from what we 

have observed till now, is that it has to be completely contained within this region; may 

be, the same leaf node…May be all of them belong to same leaf node or same node, 

whatever; particularly, we are arguing about the leaf node perhaps they all belongs to 

same leaf because all them are yes answers. 

This it is a plausible scenario; actually, we will prove or what we will observe is that 

even this is not possible; that is what we will prove. Why it is so that…. We would like 

to actually somehow argue that even this scenario is not possible, that is, a leaf node 

cannot be union of these regions coming from different… Since the word connected was 

used - I do not want to get in the definition of connected regions - but, you can see what 

is meant by connected regions here; this region is connected because I can go from any 

point in the region to another point in the region by staying completely within the region, 

that is all. 

I am even saying straight-line segments, I am saying that as long as you can travel from 

this point to another point without going outside the region, it is a connected region; the 

question is that, can the leaf nodes comprise of union of subsets that lie in distinct 

connected regions - if not… Let us set that aside. 

Suppose, we manage to prove that a leaf node can have…the region corresponding to a 

leaf node can be in exactly one connected region, what will that imply? Suppose, each 

leaf node - the yes leaf node, the yes one - corresponds to points in utmost one region; 



this implies number of leaf nodes is greater than n factorial - number of 

regions…number of regions, which is equal to n factorial and then we are done, actually; 

you think about it - it is a binary tree and if the number of leaf nodes exceeds n factorial 

then you have the height of the tree to be N log N right log of this quantity, then you are 

done, basically. 

So, why is this true? This is the connecting link. Point on the line when a no line can be 

expressed as a linear combination of two points in the symmetric components and when 

since both these answers are yes the linear combination 

Why? What is the property of the linear decision tree that we are using here? The only 

thing that we are using in the decision tree model is that every decision is linear in 

quality.  
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Either it is this side or that side…Every….The second property…Note…Let me 

highlight it - every node is associated with a convex region - this is operative word; 

because, it is an intersection of linear inequalities which are convex sets, that is it. The 

primary property is the fact that every node and therefore every leaf node is connected - 

is associated - with a convex region; therefore, if there are…A leaf node corresponds to 

two such regions it means that it must also contain any kind of linear combination; 

namely, the entire segment should lie within that leaf node, which means that this point 



also should also lie on the leaf node; which is the contradiction because a leaf node 

cannot… It must be unambiguous - it must be only yes, so this cannot be. 

There cannot be a no point associated with the yes leaf node; just from the convexity 

property follows that a leaf node can be associated with utmost one region and after 

that…over all if you write… We should try to capture this entire result; it basically 

amounts to the following that the number of leaf nodes must exceed the number of… We 

will actually say number of connected components solution space. 
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Solution space has n factorial connected components; the entire space…We are only 

arguing as… greater than or equal to; every region may have more than one leaf node, 

but certainly the number of leaf nodes must be more than number of regions, that is all 

we need.….What the algorithm is  

Including leaf node, right? 

But may be some intermediate node is there. 

Any node corresponds to the intersection of inequality, which is a convex region - any 

node including leaf nodes. 

The number of leaf nodes must exceed the number of connected components of the 

solution space, which means that the running time or the height of this decision tree - 



sorry, linear decision tree - is omega of log of number of connected components of 

solution space there. 

This is the summary of what we just observed; therefore, as a corollary your linear - any 

linear - decision tree based algorithm for element uniqueness has at least n log n n log n 

comparisons or linear inequalities or computes at least that so many linear inequalities. 

So far so fine; someone comes up and tell me, sir we do not need to compute any linear 

inequality I will just solve the problem in the following way - what is this? Equal to 0 if 

and only if answer is no; how many…forget about n square, does it compute any linear 

inequalities at all? Does it fit our model of linear decision tree model? No, so it 

completely falls apart, right? Basically, in that model it is has no lower bound because I 

am not using even a single linear in inequality; n square is number of…Moment I say 

this is a model of computation, I am only counting those operations I am not accounting 

for anything else. 

When you talk about comparisons, when you sort you only count comparisons - n log n 

comparisons - someone comes and say no comparisons you know I just doing hashing, 

then that model completely falls apart; we will have to then somehow design a proper 

lower bound argument for that model; this is one possible algorithm, which does not use 

any linear decisions, so no inequalities; it completely beats that model - zero, essentially; 

there is a moment we decide to use something else, then this falls apart  

Whatever, right exactly. 

This is precisely the reason why proving lower bounds on the linear decision tree model 

may not be adequate; you would like to actually prove lower bounds using more realistic 

operations; that is why last time I mentioned these words - even today I mentioned them 

- what about higher degree polynomials? The moment you go to higher degree 

polynomials there is a complication; I will just mention - give you one example.  
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So, if I have...Suppose I have something like - I will just draw it geometrically - rather 

than writing I think algebraically, but essentially it comes from something like this; do 

you remember these kind of equations? What is it? Ellipse, right; you have some kind of 

an ellipse and this essentially says that this is the region we are talking about; if you say 

greater than something then let me talk about these regions; now, I… This is a degree 

two equation - it is just degree two equation. 

If you take intersection of two degree two equations you could end up…I have taken an 

ellipse like this and taken an ellipse like this;  I take one greater than and one less than; I 

have now…The intersection can be not one connected component; the moment I go 

beyond degree one I cannot say that the intersection of two such inequalities - higher 

degree polynomial inequalities - is one connected region. 

This kind of argument does not hold any more - that whatever corresponds to a leaf node 

must lie within a single region; I could have actually, for the same leaf node things 

spread across; then, I cannot claim the number of leaf nodes must exceed the number of 

the connected regions of the solution space. 

Precisely, that is what I am saying - the linear inequalities were a very special case; it 

went beyond comparisons, but it does not go far enough to deal with higher degrees - the 

non convex sets; you are…And it is true that you can actually go ahead and use higher 



degree equations - inequalities in algorithm; no one is stopping you from doing that - it is 

completely realistic. 

We cannot use that simplistic argument - not as simple as we did now, but people have 

been able to explain these bounds and I would not talk about it today; see the solution 

space partition remains the same - that is completely problem dependent; it is the kind of 

decision trees that correspond to a certain kind of primitive; the moment I increase the 

degree of this primitive, then I cannot use the simple counting thing; but, the what people 

have manage to do is that there is relation between - there is some kind of relation 

between - degree of inequalities and the number of connected components corresponding 

to a node. 

This relation comes from some fairly deep theorems in algebraic topology and the one 

that we could have discussed - but, there is no point in just telling you about particular 

bound, but I will mention it; it follows from - all east historically it follows from what is 

called Milnon-Thom equations; Milnon-Thom bounds will give you some kind of handle 

on the number of connected components relates… Suppose I could say that if the degree 

is two the number of connected components is two then more or less what we said would 

hold; but, it is not that simple - it kind of grows exponentially with dimensions. 

Then one had to sort of refine these arguments and finally, by the way, same kind of 

bounds hold - that for element uniqueness problem the height of the…even higher degree 

algebraic decision tree is roughly about log of the number of connected components of 

solution space; it requires some more careful counting, some more careful arguments and 

use of these things called Milnon-Thom equations. 

If you are interested I can give you reference; in fact, it is there…if you have a copy of (( 

)) it even has that formula, but I do not want to just throw a formula that will not make 

sense; the formula itself is not very complicated; I will just limit my discussion on lower 

bounds to essentially linear decision tree models with some idea that…Essentially it is 

counting of the number of connected components with a leaf node - that is the central 

thing to get the bound and that can be done using some more fairly deep equations. That 

is one part of the lower bound and this the lower bound is for element uniqueness and 

therefore the same lower bound also holds for what other problem? 



We could reduce element uniqueness to sorting; even if you were told that I just posed 

that problem, instead of comparison I am allowing use more powerful primitives like X 1 

minus X 2 plus X 3 something like that - it is greater than equal to 0; even with that 

restriction, sorry, even with that flexibility you will still get a n log n bound and sorting; 

what really kills sorting is the moment you allow things let indirect addressing. 

The next application of this bound will be to this convex hull thing that I have been 

promising; let us look at the convex - reopen convex hulls; the lower bound that I 

derived for convex hulls was connected with - was related to - sorting; that if I want the 

points to be in the convex hull - to be output in sorted order - then sorting can be reduced 

to convex hulls; therefore, lower bound for sorting applies to convex hulls, but it is a 

kind of a weak lower bounds; someone could say that I am not interested in looking at 

the ordered output of the convex hull I will be happy if you can tell me…  
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For convex hulls relaxed version can be the… Just enumerate in any order - I am not 

imposing any kind of sorted order - the corner points; this could be one version; another 

version could be…since we are more comfortable about lower bound for decision 

problems, let us make it a decision problem; given n points, do all points appear on the 

convex hull? Which is certainly a decision question, right? The one that we will actually 

pick up and which will also address this number two is…Where we will also somehow 



incorporate the notion of output, because I have been telling you that this input and 

output together…We have an algorithm that combines over the inputs and outputs. 
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The problem that actually that will take up is the following - version of convex hull that 

takes into account the….That version will be as follows - given a set of n…We talk 

about two dimensional convex hulls - if you can get a lower bound on two dimensional 

convex hulls it automatically implies lower bounds on high dimensional convex hulls. 

When we say h points it is exactly h points; I give this input set and give you some 

number - hundred - tell me whether there are exactly hundred points on the convex hull; 

some number and that number must be less than n because there can be more than n 

points in the convex hull; in fact, it should be between 3 and n because it has to be at 

least 3. 
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For this problem, whatever it divides is a special case of this problem; let us call this 

problem p1 and then we will talk about special case p 2; p 2 looks like this…I have…this 

is a regular h-gon and this is the circumscribing circle of a h-gon; I also have…similarly, 

this is my inscribing circle and this is the center of the circle. 

What I have is a regular h-gon, which means that all these internal angles are the same 

and all these edges are of the same length; I am not going in to arguments where you can 

draw a regular h-gon for any h; then I construct the circumscribing circle and I consider 

the inscribing circle - I did not write very well - there is a touching point basically 

everywhere - exactly one touching point. 

This structure essentially looks like…There are these wedges - this is the shaded region - 

and these shaded regions have no connections between them, that is, if I cannot…Well I 

mean…let me define what I mean by no connection; if you consider that I want to travel 

from, let us say, one shaded region to another shaded region - can we go from one 

shaded wedge to another without traveling out of the…let us call as circumscribing circle 

as C I and inscribing circle as - no, sorry C C and C I. Inscribing circle is called C I and 

the circumscribing circle is called C I; can we go from one shaded wedge and to another 

without traveling outside of C C and inside of C I - that is the question I am asking. 

If I want to travel from this red point here and I want to, let us say, go the joining one - 

my path either I will be well well sorry no no no please please I retract this, just a 



moment; one shaded wedge to another without traveling out of… no, not…just outside 

of C I should actually also bring in to the picture…no, not the boundary points…I 

should…let me not…I will make it even simpler - sorry; can we go from one shaded 

wedge to another wedge using a path that completely stays within the wedge in the 

shaded region. 

The shaded region cannot include these points - the points of contact; essentially, what I 

am saying that is that these are disconnected,  I cannot…but I cannot go from one wedge 

to another, if I try to go there I will have to sort of… whatever I do I have to take this 

path - either I am going to cross into the inscribing circle or I am going to come out here 

outside of this h-gon; or you know, essentially, I am going to go out of the h-gon have to 

go inside the inscribing circle. 

What has all this got to do with lower bounds; the special case p 2 that I am trying to 

pose is the following - that we are actually given the points of the….The p1 was that, 

given a set of n points and some number h are there h points on the convex hull?   
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Now, I am actually fixing this edge points; fix the…p 2 is - fix the h points to be the 

regular h-gon and the remaining n minus h points are chosen arbitrarily; in the region - in 

the annular region - between C inscribing and c circumscribing; this h points are fixed - 1 

2 3 4 5 h - the remaining points have to lie - it cannot lie within this inscribing circle, not 

allowed - it is not allowed - to be outside of circumscribing circle; it has to lie basically 



in this annular region - the small ring between the inscribing and the circumscribing 

circle. 

This is how I am defining my input and then, I ask the same question - are there h points 

on the convex hull? This is my problem - the new problem; claim is p 2 - the second 

version of the problem - is easily reducible to my original problem; why? p 2 only says 

these h points have to be on the h-gon - sorry, the vertices of the h-gon and the remaining 

points should be in that annular region, which means basically I take every point and see 

whether it is inside the - sorry, it is outside the inscribing circle and inside the 

circumscribing circle. 

So, it is just two tests - two inequalities - that I have to test; in linear time I can reduce 

problem p 2 to p1 - if I can solve p1 I can solve p 2 because the only thing have to make 

sure is that every point must lie in the annular region, which is just a linear time test - 

every time, which implies that lower bound of p 2 is a lower bound for p1 because p 2 is 

reducible to p1.  
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How do I get to a lower bound of p 2? Why is it easier to for us to get a lower bound to p 

2? See, the n minus h points…if there has to be exactly h points on the boundary…now I 

am going to count the number of connected components; in the solution space there is a 

certain number of connected components - we know that the height of the decision tree 

must be at least log of the number of connected components.  



h points are fixed, the reaming n minus h points must lie in one of these wedges; 

because, if a point lies outside the wedge there has to be more than h points on the 

convex hull; so, between two yes configurations…essentially a distribution of these n 

minus h points - n minus h points have to be distributed to the h wedges; how many ways 

can you do that? 

h to the power n minus h…Now, I claim that between…any of these two yes instances 

they must be in different connected components of the solution space; now, the solution 

space is in this high dimensional space - high dimensional space here is, we have n 

points and each point has two coordinates - we are talking about the R to the power two 

n - two n dimensional space; in that space I am trying to sort of visualize what are the 

connected components of the yes regions; I claim that the number of connected 

components is h to the power n minus h; why? Because, to go from any yes instance to 

another yes instance, you have to necessarily go through a no instance; there is no path 

that connects to wedge without going outside of the solution - I have to either cross 

inside or I have to go outside. 

There is no way…I cannot draw a path in that region where I travel from this point to 

this point without crossing some kind of - whatever - separating boundary which is a no 

solution - there is no path; therefore, when I…That is basically what this figure… This is 

the two dimensional projection of that actually. I cannot go - because, if I try to go in 

this… if it is not connected in the two dimensional picture, so it cannot be connected in 

that high dimensional picture; log of this, which means that…And log of h to the power 

n minus h is n minus h log h - that is the lower bound. 

Just think about it and you if you have any questions we can take it up later on; otherwise 

this is the end of the story for lower bounds; I mean, I am not going to go any further 

into lower bounds. 

 


