
Computational Geometry 
Prof. Sandeep Sen 

Department of Computer Science and Engineering 
Indian Institute of Technology, Delhi 

Module No. # 11 
Range searching 
Lecture No. # 02 

Orthogonal Range Searching 

 (Refer Slide Time: 00:26) 

 

Recap; I think we left off where we are just about getting down to the analysis of the 

rectangular orthogonal orthogonal rectangular range searching in two dimensions, right. 

So, where did we leave off? We left off at a point. 

(No audio from 00:44 to 00:57) 

Right, right. So, I think I just proposed the result or just advertise the result; I did not 

really prove it, right. So, reporting range query for orthogonal rectangles, 

(No audio from 01:27 to 01:48) where the 2D tree in two dimensions, right. 

(No audio from 01:51 to 02:04)  

So, any question about the basic scheme before we do the analysis? The Query tree; 

yeah, it is very simple. So, just we recap. 



(Refer Slide Time: 02:16) 

 

You know what did we do alternately is sort of sliced the plane using a median on the x 

co-ordinates and then median on the y co-ordinates and we obtained, you know smaller 

and smaller rectangles and then, when we query design when the query rectangle came 

along, we only found out… So, the tree was defined by these partitions; so, this, the root 

of the tree defines the entire plane or basically a bounded box which contains all the 

points. And the two children correspond to the left and the right half, then the children of 

that basically correspond to the up and down and then from this point onwards, 

recursively we build the data structure for the 4 quadrants, whatever the 4 partitions that 

we have obtained so far. 

And then, when the query rectangle comes along, it starts from the root and then it take 

care… First, query the simple cases; does it complete completely contain the region 

defined by the by the node? If so, then you stop and repot all the points; you know, does 

it have does it basically have no overlap with the region? Then again, you just again end 

your range search, saying that…; No, sorry there are no points to before report it; the 

only case, where you actually continue down is when there is some kind of partial 

overlap with the regions, right. 

So, that is how this range query proceeds. And, so, how do we do the analysis? You can 

actually, because the search tree is itself defined recursively; you can try to write a 

recurrence for the query time, right. 



(Refer Slide Time: 03:48) 

 

 So, suppose, Q of n is the worst case query time. So, query time in this case, query time 

basically means the number of nodes that we visit along the way till the search 

terminates completely, right; number of nodes visited because every time we visit a node, 

we basically doing some constant kind of operations to find out whether it is a partial 

overlap, no overlap or complete overlap, right; and we basically want to write Q’s of n as 

something, right. So, the rectangle comes along. So, what we will do is, to simplify the 

analysis, we will actually look at in the following way: 

(Refer Slide Time: 04:53) 

 



You look at the four boundaries of the rectangle; the two vertical boundaries and the two 

horizontal boundaries. 

I will actually compute the number of intersections with a vertical line, analogously, 

horizontal line with the number of regions in the tree. See, this partitioning basically, I 

did not continue further, but essentially within each of these, you again have regions, 

right. So, you are basically subdividing into finer and finer rectangular regions. 

So, I am going to compute the number of times, let us say, this edge; not number of 

times, but the number of regions that this edge intersects with. And then, analogously, 

this will not this will also intersect with the maximum number of that many regions. So, 

if I multiply the number of intersecting regions of this vertical boundary, I will multiply 

that by 4 and that will be give me the maximum number of nodes visited. Do you agree 

that? Let us try again.  

So, I am trying to find out how many... So, as we proceed along this search tree, it could 

actually from a node, actually visit both its children; it is possible, right. So, in the end, 

you know we are going to basically look at what is the total number of… If I look at the 

tree, just the abstract tree. 

(Refer Slide Time: 06:29) 

 

This is my query tree; this is green tree, not a red tree. So, in the end, you know these are 

the leaf nodes. As we move down, it is possible that the rectangle could actually intersect 



both these and both of these, but what we are trying to analyze is that, eventually it is not 

going to visit all the leaf nodes, but you know it will visit only maximum of some subset 

of these leaf nodes, right. Because, some search path will end here, some search path will 

end here and so on and so forth, right.  

And, to find out how many nodes we visit, I will try to analyze that using… Not looking 

at the entire rectangle, but looking at an edge of the rectangle. So, the maximum and 

each of these correspond to rectangular region; some rectangular region that corresponds 

to this, some rectangular region. Each node is a rectangular region. So, maximum 

number of rectangular regions intersected by an, let us say, this edge by the left 

boundary; do not confuse between the range and these rectangular regions; this is the 

edge left boundary of the range, the rectangular region. 

So, I will find out how many of these rectangular regions or in other words, how many of 

these nodes, this left edge can visit? And then, I multiply by that 4; that will be the 

maximum number of nodes this rectangle can visit in the course of the search process. 

You are trying to find out, how many of these rectangular regions, this range can overlap 

with? It means that at least one of the edges should be overlapping with that. 

So, now, I am trying to find out for an each edge, what is the maximum number of 

rectangular regions that this edge can intersect? And in the end, if I multiply that by 4, 

that will certainly be an upper bound and the number of nodes, this range can actually 

visit; at least, from the edges must be intersecting the rectangular region; otherwise, there 

is no overlap. We are counting the number of partial overlap; so, I am counting the 

number of partial overlaps by first looking at a single edge and I multiply that like 

before. 



(Refer Slide Time: 09:30) 

 

So, when I am writing this query this recurrence, this recurrence actually will correspond 

to the number of rectangular regions an edge intersects, where the rectangular region 

contains n points. So, that is what Q’s of n denotes. 

So, the actual number of nodes that we can visit during the course of the range query is 

this Q’s of n; Maybe, I should call it Q prime, to distinguish it from this Q’s of n; this is 

for the rectangle, this is for an edge of the rectangle. And so, the claim is that Q’s of n 

will be no more than four times Q prime of n, right. So, I will focus on writing a 

recurrence for the Q prime of n and I Claim that this is this can be bounded by two times 

Q prime of n over 4 plus 2. Can we justify this? Let me put down the figure again. 



(Refer Slide Time: 11:12) 

 

So, let us say we are talking about this particular edge, right. Now, it will you know, this 

recurrence depends on how this tree is defined, whether the first node bisects the x co-

ordinates or bisects the y co-ordinates. Let us assume that this one, the root node, bisects 

the… Well! In this case, it bisects the x co-ordinates; so, fine. Now, it bisects the x co-

ordinates; I am talking about this edge and there is some overall boundary of this region 

that contains n points. 

So, as we proceed down the tree, when we get to this level, that is we skip this level and 

go to the next level, we are back again to the same situation that these nodes are bisectors 

of x; this is bisector of x, this is bisector of x; these nodes are bisectors of y. 

So, when we proceed down to this level, again they correspond to rectangular regions we 

shall at most how many points?  

n over ? 4, right? 

Because, we split twice; we split along y and then back to x, right. So, split it once; these 

are n over two, n over two and then again these are split again into two halves. So, these 

correspond to n over four nodes, each. So, these rectangular region correspond to n over 

four nodes, n over four points.  

So, how many of these regions can this intersect? The left edge. You see that? So, it is 

going to be added to the left or the right of this vertical line. So, it is going to intersect at 



most two of these regions, which are n over four points; and plus of course, I have 

already two intersections because it intersects this rectangular region and this rectangular 

region; that is why I have added 2. So, I have added two because this edge intersects 

region four and region three plus recursively whatever it intersects within this region, 

that is two times Q prime of n over 4. 

And so, what is the solution of this? Are you convinced about (( )). So, now, I just solve 

this; solve it later may be. So I claim this is basically is what defined. The additive 

constant is not going to make much more difference and you have to write the basic 

difference also. So, that is how you get squared of n. 

(No audio from 14:12 to 14:32) 

Fine. So, that is basically your 2D trees and in general, may be you want to guess again. 

What do you think will be result if you talk about k dimensions? 

(Refer Slide Time: 14:43) 

 

So, the k-d tree is for k dimensional range search. So, query time in, let us say k 

dimension for n points, what do you think it should be? For two, we know the answer to 

be square root of n. Well! An exercise for you again. Sorry, k not t . So, you may just 

want to just test your understanding by writing the recurrence and solving it. And so, but, 

then if you observe this bound, you know, as k gets bigger, this actually becomes closer 

and closer to n, right. k becomes bigger; basically it becomes close to n. How much is 



the space? let us say, space for two dimensional k-d trees. So, in the way we are 

answering the query, what is implicit? How do you actually answer the query? depends 

on that the space will depend on that. 

So, are we going to store all the points in each of the internal nodes? Yes or No? You do 

not need to, right. The moment we discover that, you know, suppose this entire node is 

contained within this region, we immediately we can maintain pointers, where to all the 

leaf nodes of the tree routed at this node; you simply list them out, that is all. 

So, I do not need to store explicitly with each node, the points associated with that 

rectangular region. The moment I know that this rectangle contains this region, then I am 

going to list out all the points that are with the leaf nodes of the tree routed here. So, each 

point is stored exactly once, actually; it is very a powerful property. So, the query tree 

has a property that a point is stored exactly once; it is not even order of once, it is exactly 

once.  

So, but there are some pointers; of course, the tree has a pointer structure because the 

primary tree has a structure and then for each of these nodes, we maintain certain 

pointers, but as far as points are concerned, they are stored exactly once. So, I will just 

write order n for two dimensional and what do you think about k dimensional?  

What changes? k by 2? No. How can this space be sub-linear? The space has to be at 

least the number of points, right. Even k times n…  

(No audio from 17:54 to 18:05) 

What I will let you do is figure out how actually you are going to design this k-d tree and 

also, may be there is some kind of recursion that you need to understand before you can 

actually guess what this is. But yes, it is not going to be more than linear, whether it is k 

times n or order n, that is something I want to figure out. Is it k n or order n?  

So, the question is that is a points… So, here a point is stored exactly once.  

(No audio from 18:33 to 18:41) 

Do you need to point store a point, more than once? I mean, the basic methodology that 

we have developed; Why should we store a point more than once? I mean, if you follow 



the same static that a… Let us say, in three dimensional, Q may be completely contained 

within and I am just simply going to list out something, but then there is a catch that, you 

know, we are dealing with higher dimensions, so, maybe there will be some kind of 

nested structure within each of these nodes. So, there is this something for you to 

consider.  

It is not immediately obvious or maybe not, right. Maybe, just a simple structure; same 

thing; if there a partial overlap, we go and search this entire structure and if there is no 

overlap, you do not search that sub tree; if it is complete overlap, we list out all the nodes 

in the sub tree all the all the points in the sub tree. 

So, just give it some thought whether it should be exactly once or it is something more 

complicated. No no, I am not ignoring with that way; I am just saying that the points are 

stored exactly once and certainly, the number of point has do not exceed overhead 

because the tree has size, you know, at most n leafs and each node is going to have a 

couple of pointers. 

See, the points are something that could occupy a lot of storage depending on what you 

store with the points. 

(Audio not clear from 20:10 to 20:19) 

No, but each node will have only constant number of pointers, right and if there are order 

n number of nodes, will be order n number of pointers. 

(Audio not clear from 20:28 to 20:39) 

So, I do it does not matter, in which order I list out the points; I know that if this node is 

completely contained in the rectangle, all the nodes in the sub tree have to be listed; it 

does not matter in which order we list them; there is no obligation or to list them out in 

certain order . 

(Audio not clear from 20:57 to 21:08) 

Every leaf node has size k. Why do you think every leaf node has size k? It is k 

dimensional; the points have k co-ordinates, that is all. See, the points here… So, here is 



where, basically, now what we assume that we do not care about the number of bits 

etcetera whatever. So, it point to the point, real number; that is all. 

So, it is not… it is just a models. Certainly, you know does not take care of bits and 

things like that. We are looking at basically a real number as a real number, that is all. So, 

this is a deficiency of this entire model, but then we have live with it and we are going to 

sort of (()). We are not going to divert from this point. 

So, the question is, each point is data point, is stored exactly once, that is all. How much 

space each point occupies? That, we do not know; what kind of storage we are assigning 

to a real number. So, and it is only under this assumptions; so, yesterday I stated a result 

and I was not where is I am not very precise about it. So, I said that this square root of n 

bound is a best possible for order n space; actually, this is not order n space. The square 

root of n bound is a best possible, if you store a point exactly once. 

If you. So, order n space, you can actually get better bounds. So, I will leave that as an 

exercise or I will properly formulate that when you should be able to… As we go on, we 

will cover more materials; will see how you can improve that. Keeping the space big of 

n, but there is no guarantee that a point to be stored exactly once; a point may be stored 

more than once, maybe three times, four times, ten times.  

So, the pointers are only associated with the data structure. The points are the input data 

points. So, there is a distinction between the nodes, the pointers and the data points; the 

data points are real numbers and these are, you know, whatever your words or, you know, 

nodes, pointers.  

So, the obvious question here is that can we improve…So, the space is the order n, let us 

say, even if a point is stored more than once or some constant number of times, it is still 

order of n, o of n. So, we cannot do much better than in terms of space. In fact, in the 

case of k-d trees, we have stored a point exactly once; we cannot do anything better than 

that, but can we improve on the query time, basically. So, the square root of n plus, right, 

so, it is square root of n. So, square root of n is the number of nodes visited; let me go 

back again, square root of n is the number of nodes visited and of course, we also have to 

report all the points.  



So, I may not proceed further along a node because this node is completely contained 

inside, but I have to still list out all the points. And so, and the points are being listed 

exactly once. So, therefore, the overall reporting time, the overall report time is square 

root of n plus k where k… I should not use k, because I am using it somewhere else. So, 

let us say, m, where m is the output size. So, also a point is reported exactly once because 

the nodes are actually disjoint, the regions are completely disjoint. So, I am reporting a 

point exactly once, only when we conclude that here this entire region is contained 

within the range. 

So, square root of n is the number of nodes listed of the query tree and each point is 

reported exactly once. So, the total running time query time is square root of n plus n. 

The second part, you do not you cannot do anything about because that is the output size.  

So, the question is can we improve on this? The square root of n does appear to be quite 

large. Exactly once, this is the lower bound, yes, but, you know, I may be able to use, 

you know, some big O of n space. Why should I be restricted to using storing a point 

exactly once? Maybe, I want to store it twice or thrice or four times or ten times. So, this 

bound does not apply when it is stored more than once. So, can we improve on the 

square root of n? 

(Refer Slide Time: 25:39) 

 

It is also possible that to improve on the square root of n bound, there may be some kind 

of a tradeoff in space, perhaps space has to increase. So, in general, intuitively, you can 



now, you can we have actually seen some examples in this course itself that if you want 

to speed up your queries, you may actually have a rather wasteful data structure. Think 

about, you know, you remember, we did this ray shooting, you know, where we had the 

segments, you know, we chopped them into trapezoids and we drew this vertical slabs 

and we notice that, you know, we can do this kind of ray shooting or point location using 

just two binary searches; once along find out which slab contains this and within the 

slab, where it is contained. 

So, that was exactly like 2 log n, right, 2 binary searches. Problem was the storage, the 

storage was being growing up to some like quadratic because we had other mechanisms 

to improve the storage. So, but, intuitively it should be clear that, you know, if we allow 

more storage, you know, it may be possible to actually improve the query time. So, there 

is an inherent…  

Now, sometimes, there is an inherent space time tradeoff, but these are very difficult to 

establish because we are talking here about lower bounds, right. It only make sense to 

say that… So, there may be some kind of inherent space time tradeoff, but the space time 

tradeoff must be some kind of a lower bound; must be lower bounds. Only then, you can 

claim that if I use less than, you know, five times n space, I have to use at least so much 

of query; I need atleast query time will be at least so much. 

So, so, again these are rather hard, but then there are actually, you know, some some, 

really very deep and very beautiful results, which we are not going to get into, but I will 

(()) mention it on the way what kind of bounds are known.  

So, right now, let me let me look at the slide variation of this two dimensional range 

query problem; I will relax the problem and develop a slightly different method. 



(Refer Slide Time: 28:23) 

 

So, instead of rectangles, let us look at some kind of slabs. So, here are points and my 

queries are are vertical slabs; vertical slabs essentially means that the ranges are of the 

form; so, the family of ranges is x 1 x 2 Cartesian product with minus infinity plus 

infinity. 

So, in the y direction, you know, I am willing to come to look at the entire slab. Of 

course, this minus infinity plus infinity is actually bounded because the points are 

enclosed within a box. So, minus infinity plus infinity only means that the extent of the 

the the y the y coordinates. 

So, if I pose this kind of a range query problem, how would you solve it? So, it becomes 

a one dimensional problem; basically, what we you saying is that. Well! this problem is 

effectively one dimensional problem. Because I can project all the points in the x 

direction and simply I will use my earlier solution, optimal solution, login query time or 

n space n log n. 

So, let me then change the make the problem little bit more difficult. So, how about a 

three sided kind of a query, right. So, it is bounded on three sides, but not on the fourth 

side. 

(No audio from 30:20 to 30:33) 



You can have two trees and then how do you find the intersection? The moment you 

have 2 trees; so, that I will I will tell you. So, in general, the problem with that kind of 

approach is that you have you are going to... So, I am going to solve the problem in x 

direction, I am going to solve the problem in y direction and somehow, combine the 

results. But then, what could happen is that I may over count; I may I may just over 

spend a lot of time figuring out, let us say, in the y direction, you know, this was bounded 

here, I will still in the x direction, I will report all these points and then I have to find the 

intersection, but in the mean time I have already done the work of identifying all those 

points, where I am reporting those points.  

So, doing this, solving the problem somewhat in uncorrelated manner, will not get us the 

optimal results; we will use that. So, we cannot afford to ignore one axis and solve it 

independently on the two axes; that is what we are going to work, but there should be 

some way of combining the two surfaces; that is that is about (( )). 

So, even before I take up this problem, let me discuss another thing. So, for the moment I 

will actually ignore that I have this boundary. And so, we are back to the minus infinity 

plus infinity and we are back to the one dimensional problem, but I will actually now 

view the one dimensional problem slightly differently.  

So, if you recall, I mean I started by saying or at least introducing the range searching 

mechanism as partitioning points in a certain way  

(Refer Slide Time: 32:18) 

 



and then, if you find out, you know, and we build a tree on these partitions and then this 

range, with this range we find out, you know, which of these partitions will intersect 

partially; in which case, recursively search; if it does not intersect, we do not search; if it 

completely contains inside, we report the points. But, when we did the one dimensional 

solution we were not really using this this structure, right; we did not have this structure 

in mind, you know, that was a natural solution; you knew about binary search, find the 

left end points, keep walking till you head the right point and be done with it. 

So, we certainly did not think in terms many kind of partitioning of the points and in 

many contexts, these partitionings, you know, they are some special partitioning like like 

we did in the case of k-d trees; we defined a special kind of partitioning based on the 

median and (( )), right. 

So, we actually came up with a family of something like order n rectangular regions, so, 

think about it. The first time we partitioned, we got two rectangles, then n plus four. So, 

you know, over… So, so as we as we go down move down the tree, you know, it is a it is 

a, you know, it is a geometric series, two plus four plus eight, you know, eventually you 

cannot have more than n rectangles. 

So, you actually, from a set of n points, we define a set of about order n partitions and 

these are often referred to as, you know, when there is a special kind of partitioning, they 

are called canonical partitions. So, when this when we devise the solution, these 

partitions are not some arbitrary partitions or arbitrary trusting; surely, you know it must 

have something to do with the efficiency that we expect out of it, you know, how how 

efficient this the query time should be? you know, how efficient the search should be and 

so on and sorry, the space should be and so on and so forth. 

So, they are not arbitrary partitions. So, they are some special kind of partitions that are 

cleverly designed. Like in the case of k-d trees, we designed is rectangular partitions. So, 

now, let us go back to the one dimensional problem; we did not solve the problem using 

any kind of this partitioning technique. 



(Refer Slide Time: 34:30) 

 

So, let us revisit that problem. So, what what kind of partitioning you think would be 

appropriate for this? If you want to solve it like a general range query problem; ranges 

are intervals. So, fine! That is very natural one. Good! Right. 

So, may be at the first level, you partition like this. So, we have a node that corresponds 

to the entire set of points and then we have these two nodes that corresponds to the left 

half and this to the right half, right. And then, you continue like that; you again find the 

median of this; you just continue that, right; and you have about depth of log n. Each 

node again is associated with a partition, right.  

So, this at level one, there are two partitions. So, left and right and then again, maybe call 

it l l and l r and r l and r r, something, right. So, then you have these l l l r r l r r . So, you 

can have label each of these points and say again if this one is associated with this left set 

of n over 2 points n over 2 points. So, this becomes your is very becomes basically a 

one-d tree. So, k-d tree, we started with a two-d tree actually, without even bothering 

about the one-d tree. But this essentially is the one-d tree of the k-d tree.  

So, you are going to again look upon this search process as you know, given any 

arbitrary interval given any arbitrary interval, what you do? You find out, you know, is 

this interval basically intersect a has a non empty intersection with this half and this half? 

In that case, if you see the along both like here and so on and so forth. So, can you 

quickly analyze how many nodes will end up (()) this one-d tree? 



So, I am I have modified my one dimensional search, right. I have built a one-d tree 

which is the one dimensional k-d tree, right and I am searching using the same principle; 

I given any arbitrary interval; I will see whether it has non empty intersection, they I am 

sorry. It is completely overlaps, then of course, you know, I do not have to search for 

that, I can report all the points; if it has no intersection, I do not go down that branch; if it 

has partial intersection, I have to go down both branches. 

That is a great improvement, right. From square root of n, you are 2 log n. Why could 

you guess that? Why could you conclude that so quickly?  

Because it has some similarity to that segment tree is that we did before, right. So, you 

can argue that at the forking node, after that you have some very ordered sequence of 

nodes that you are going to visit and at each level you are not going to have more than 

two nodes, basically that you are going to visit, right.  

So, your overall numbers in a search time is actually just log n and of course, the 

reporting time is whatever the number of output points are there. So, this gives 

immediately, this leads to a query time of order log n plus output size, right. So, the one- 

d tree is actually quite efficient.  

So, why are we doing all these? Well! Let us not go to k dimensional; we are going to 

look at only two dimensions. So, remember this picture. So, finally, what is happening? 

One one thing that we are getting out of all these is that any interval, any arbitrary 

interval, basically can be expressed as a union of, that is basically what what we have 

done here. So, this interval, you know, any arbitrary, so, any arbitrary interval, maybe I 

should write it down.  



(Refer Slide Time: 39:12) 

 

So, build a one dimensional k-d tree and observation is that any arbitrary interval, x 1 x 2 

can be written as a union of, I will leave that blank, disjoint, where these are canonical 

intervals, right. So, I just mention this as canonical intervals. So, what is this figure? 2 

log n.  

So, let us go back to this picture.  

(Refer Slide Time: 40:35) 

 

Well! This is a one dimensional problem, but now we are viewing it as something like 

this particular interval x 1 x 2 can be expressed as union of some disjoint intervals, at 



most 2 log n intervals, right. So, maybe it is one interval is like this and other interval is 

like this, some disjoint intervals and these are a maximum of 2 log n, 2 log n canonical 

intervals. Fine! Now, what I do is I again go back, y 1 y 2.  

How can we now, answer a query, a two dimensional query? Sort all the points in each 

interval and? Right. So, this two-d interval, now it is y 1 y 2. So, I have defined some y 1 

y 2. So, let us say, this is y 1 and this is y 2. Again this entire region, can be expressed as 

union of this plus this plus this plus this disjoint intervals. Each of these intervals, the 

entire vertical slab contains many points that may not be inside the y 1 y 2 range, but 

then what I can do is within each of these intervals, I can build a data structure for one 

dimensional search along y direction. 

(()) 

No no no. So, yeah. So, we are not doing it. So, what we have done is that we have done 

it very cleverly, right. We have actually not done it for all the points; we have done it for 

this canonical intervals. Yes. So, we have done it only for the canonical intervals.  

Yeah! We will see we will see that. Sure. I mean that is a good point, but we will quickly 

come to that. Even before that, I hope that you are following how the query is going to 

look like? 

So, I do the one dimensional query, I mean, it is like a one dimensional query, where you 

are finding out which canonical intervals which canonical intervals are spanned by the x 

1 x 2? And that is the set of at most 2 log n disjoint intervals. Now, once we find out that 

these are the intervals, within each interval, I do a one dimensional search and each one 

dimensional search will cost me, log n plus the number of points reported, log n plus 

number of points reported.  

So, within this interval within this interval, now it is just a y 1 y 2 interval, whatever 

points are there, suppose there are k 1 points here, the k 2 points here and k 3 points here, 

this will cost me log n plus k k 1, this will cost me log n plus k 2; eventually, when you 

sum it up, what you get? You get basically log n, at most log n times plus basically, k I 

which is k. So, you get it? order log squared n plus k query bound.  



So, query time, you immediately get an improvement from square root of n to log square 

of n, all the way you know; it is an exponential improvement actually, square root of n to 

log square of n. Of course, it is log square n, not log n; log n would have been even 

better. 

So, we will struggle little bit more to get that. What is the space bound? Someone 

brought out a very good point. What is the space bound? 

(()) Yes yes. So, yes yes, sure. So, let me put down, put up this picture again.  

(Refer Slide Time: 45:19) 

 

So, this tree, the primary tree, there is a primary tree and a data structure actually within 

each node; let let little bit more details. So, the primary tree is on the x points, it is the 

projection of the points on the x axis. But then, within each node, so, this node basically 

represents all these points; these points also have a x coordinate, which I have 

completely ignored here. So, within this, I am going to store the one dimensional data 

structure on y coordinates. That is linear time, right; the space will be linear space.  

So, for all these n over two points… So, n over two points will be stored here, n over two 

points will be stored here, where there is a data structure. So, within each node, there is a 

secondary data structure for the searching in the y direction.  



Similarly, for each of these nodes, there is a data structure on n over four points on the y 

direction. Now, when you add it up, you see that every level has basically a size n. So, it 

is blowing up. So, space is n log n. So, we are grown up the space.  

Does not look very serious; I mean a logarithmic factor at the and what you are getting 

benefited by is from square root of n, you have come down to log square of n, right.  

So, it does not appear serious for theoreticians, but you know, the real world people they 

will really scream; no way, you know, I am storing giga bytes. I am not going to store, 

you know, another, whatever thirty times this; that is what comes down, right; log of n 

giga bytes.  

So, for them, 30 n; for anyone, you know, even a factor of two or three is something that 

is sometimes not sustainable because, you know, your databases are really large and why 

should I use so much? Because space is there; the space, we have to live with the space, 

you know, we cannot is not pre processing time that we encounter once and forget. 

So, it face certainly an issue. So, we will see what to do about that? Maybe, I will just 

give you some more thoughts. So, this was about and the... So, this data structure, where 

I have a primary data structure on the x coordinates and I have a nested data structure in 

this. So, this is basically the range tree. So, this is a range tree. So, I will just write it 

here. So, range tree, say two dimensional range tree, let us say 

(Refer Slide Time: 48:07) 

 



where the primary tree is built on x coordinates and within each node we have and here 

we just observed that query time is order log square n plus k space n log n. 

What happens, you know, if you go to higher dimensions? Can you extend this scheme.? 

So, suppose I got 3 dimensions. Now, I have a box; I build a primary data structure, let 

us say on. So, what is this? You know, so, y x z or something like that right. So, I build 

something on the z, the primary data structure. Again, there are only 2 log n canonical 

intervals. Now each of these canonical intervals is what? Is a is a two dimensional data 

structure.  

So, inside the node, there will be a two dimensional data structure, right and so, this 

extends to any dimension; of course, you have to analyze what kind of query time will be 

there? and what kind of space requirement will be there? But in principle, this is a simple 

extension. But, you are going to certainly pay in terms of something in space and 

something in query time; it is not going to be log square n; it will be higher.  

Yeah! That is a good case, I guess in k dimensional (( )) close to about log to the power k 

and query and about maybe a log to the power k n extra in space, but one has to 

rigorously prove that, right. So, this is about range trees and high dimensional range 

trees.  

Coming back to this problem again. So, I have scratching it lots of time. 

(Refer Slide Time: 51:06) 

 



So, my final thing is again y 1 comma infinity, three sided. So, once I, sorry, just a two 

dimensional one dimensional range query was log n time, two dimensional range query, 

at least in the way that we have described it today, it is log square n. Will life be a 

simpler with a three sided query? This is called a three sided query. So, this is something 

that we will take up in the next class. 

 


