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So, we continue with what we started in the last lecture that is we started on orthogonal range 

searching, for which we defined two kind of data structures k d trees, k it is actually you know 

very universal and very general. And then we describe something called orthogonal range 

searching trees, which have a somewhat faster, not somewhat substantially faster query time, but 

at the expense of a little bit of blow up with the space. And I mention that you know, we despite 

all that you know in practice, you still prefer having something that is linear space, because space 

is and overhead that you have to carry all the time. 
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And then I pose this problem of searching, so given a set of points, if my query is not in axis line 

rectangle, but something there is, that is infinite in one side. So, it is a rectangle, it is say which 

(No audio from 01:38 to 01:48), which is where the top side is opened essentially, this is infinity 

essentially unbounded in this direction. So, when we have this kind of queries, it is also called as 

three sided query (No audio from 02:00 to 02:07) and we can certainly use our orthogonal range 

searching data structure to support this query. So, there is no problem, I can I can always put a 

bound on the upper side, which is way above this set of points, and I can answer that query using 

the orthogonal range searching data structures range query range trees.  

But the question here is at since this object is somewhat simpler, not too much simpler. So, it is 

not as simple as you know, so you remember when I try to explain it is exposed idea of the of the 

range searching tree, we talked about in infinite slab in both directions; that turned out to be kind 

of a one dimensional problem, but I did not want to use the one-dimensional solution, I actually 

use the k d tree solution to to illustrate the use of this, you know how do you how do you how do 

you look upon this as the union of the canonical intervals. So, this kind of query was handled 

using you know, (( )) range search tree, which is nothing but essentially you know look at these 

set of canonical intervals and some of the queries that you come that that that you get from each 

of these individual disjoint slabs. So, the range search data structure should be viewed upon as 

we where we take the x axis. And we can we can take any interval in the x axis and express it as 

a union of the intervals express by some of the nodes. And those are the once at a time, I calling 

canonical intervals and it can any interval can be express as a union of about two log n canonical 

intervals. This each each of those interval is represented by some kind of a node in the in the in 

the range search tree, but here now I am actually not talking about the about the unbounded slab, 

but I am actually bounding the slab in one direction. 

And now, I I want to ask the question that can we do better than rectangular range in terms of 

both space and query time. (No audio from 04:43 to 04:49) So this is nothing but if the query is x 

1, x 2 Cartesian products with y 1 infinity sorry y 1 gamma, so more specifically can we reduce 

the space linear and can we have the the query time to something like order log n plus that is a 

question I am posing. (No audio from 05:24 to 05:30) If you had some of you (( )) some of you (( 

)) some of you in the weekend geometry school and in one of the talks, I think Pankaj did make 



an illusion to something called this what is the the way of searching, where you can search in 

more than one sorted list by using a data structure technique called fractional cascading.  

So, if you use fractional cascading so, in fact fractional cascading historically you know it it it 

was discovered in the context of answering rectangular range query, where the query time. So, 

what we discuss last time given this, we just quickly recap. 
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So, this is basically what we had proved the range search trees gave us a log square n plus k 

query time and n log n space. So, it is possible to improve this one this write on this. It is 

possible to improve this log square n to log n using fractional cascading. If just, you know data 

structure we come within more combustion. You have to build another layer of data structuring 

on that reduce from log square n to log n again is possible; however, the space remains the same. 

So, when when use fractional cascading so, maybe I should mention about a fractional cascading 

again. (No audio from 07:03 to 07:13) 
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So, if you so the overall scheme or the overall technique of fractional cascading is quit general. 

Actually so the way we require it here is that we have is sequence of list. So, if we look at the 

range search tree. (No audio from 07:30 to 07:37) The range could take some particular path in 

the tree. And then we will do binary search in y direction because here, we are expressing some 

kind of interval using the the primary range search tree, but with each node you keep the y 

coordinate sorted. So, within each node, if I blow up this node you keep the data in one 

dimensional data structure, where the points are sorted in a y direction. So, that you do a binary 

search or something similar to binary search, where you can answer each query in time 

proportional to log n plus a number of points inside.  

So, with the each node we have this kind of data structure. So, this and and we are looking at 

about two log n nodes one for the right path, one for the left path. So, you end up doing this 

query on order log n nodes and therefore, you get that log square n plus three numbers of points 

to be reported. Now, all this sorted list you know, that I maintain here I have another sorted list 

here I have another sorted list here. So, if I can somehow combine the binary searches of this this 

all the list that occur in this path then and I and (( )) spend then, what happens that see to locate 

the initial point to take log n time. After that we basically walk through and report the points. So, 

the initial binary search that is important. So, if I can if I am searching in k lists suppose, we are 



searching in one lists, one sorted lists. So, if we can do this in time order log n plus l. I claim that 

you cannot hope to do anything better than this. 

So, I I just paying for one binary search, I have to do once search. I cannot avoid that and some 

of based on that information. I am able to locate my initial point in each of the list. So, here also I 

am able to locate, where I start from here also move at start from and paying only constant 

among additional time for each sorted list. So, then and for in this particular context we one is 

basically two log n. So, then your search time becomes order log n plus of course, the number of 

points reported number of points reported only once, because we have ensured that the list over 

the different levels are disjoint. So, no point is reported more than once, even if it were reported. 

It can be reported twice or thrice, you still have been go of that so, this is the way fractional 

cascading technique is used to combine binary search over you know over a (( )). So, not just one 

list, but you know multiple list. And in general, since I brought up this topic. 

(Refer Slide Time: 11:02) 

 

It is even more general, actually what one can do is you can have an underlines. So, there we are 

talking about a tree data structures, primary data structure was tree. And the lists were basically 

the nodes of the tree. Now, you can think about this tree has special kind of a graph, but the 

graph is a tree. Now, what happens, if I have a graph structure just underline graph structure, I 

have an underline graph structure you know, which can be anything, which could not even 



necessarily a cyclic graph. I could have any kind of structure. And I have not not planar not 

acyclic (( )) some some underlining graph structure and then with each node know. So, let us call 

the let us called the vertices, you know V 1, V 2, V 3, V 4 etcetera. So, V i has an associated 

node sorted list call it as L i.  

So, in this structure, and if you want to do want to search in multiple lists. Now, the multiple list 

let us call them you know L prime 1, L prime 2 some L prime k. Now, we the only restriction 

here is that L prime, L prime, L prime 1, L prime 2 all that L prime k they are not arbitrary 

nodes, but they actually they form a connected sub graph well connected sub graph essentially 

means a connected tree. Because you know y should we have a sub graph, because if I search 

once in each node that is that is sufficient essentially the only restriction with this form is sub 

tree sub tree of so, if I call this underline graph G it form a sub tree of G. So if I have this 

restriction that the set of nodes that we are going to search for is the sub tree of the original 

graphical structure then you knows, we can apply this technique of fractional cascading build 

some data structure on these and you can get this kind of performance of log n plus k over all 

search time, what we are doing, we have a common key to search, if you want to search for a 

common key alpha. The keys are common; it is a same key that we searching. So, when we 

search in multiple lists, of course we are not searching for different keys, which are same key 

that we are searching for and we do not have to do independent binary searches.  

You know we can build a data structure on this underline underline graph these are also 

sometimes called catalogs. So, these lists are also called catalogs. So, we can we can search 

through this whole set of catalogs. The k catalog we can search in log n plus k. And this version 

of the fractional cascading much more complicated than what happens in the trees, because in 

trees more or less the technique is that you merge these. You know the list of the… You know of 

the lower most level with the… you take a fraction of those keys. You know it is like you know 

taking every other key and and and pushing it up. So, that you know the gaps are not too much 

you merge them basically, but at the same time you maintain the… So, one one of course, 

requirement here is that total size of data structure should not be super linear. So, it should be 

order you know the sum of the size of the individual list. 



So, fractional cascading achieves this logarithmic bound the out blowing of the space too much. 

In the case of the… You know where whether the graph is a tree. It rather simple because we just 

we just take the lists of the lower most level merge. It take take every alternate key merge it, then 

of that take every alternative merge it. So, it is like a you know it is like a geometric series 

overall the space remains linear. The challenge in more general situation is that you know it is it 

is because there actually going to be actually cycles. So, the just that selecting every other key it 

is not going to work. So, it becomes you know very very complex, but there are some simple 

solutions also (( )) randomization. So, I do not want to discuss it too much here, but someone 

interested follow it up will be happy to do will be pointers. 

So, the only reason, I mention this fractional cascading without getting the details many of these 

algorithms in you know for for range searching. And even for segmentries kind of data 

structures, whenever we slab this log square n in many cases. We can actually pose it has a 

fractional cascading problem and reduce the log square in to log n. And the the advantage is not 

so, much in practice you know log square n log n you know who (( )), but the real advantage. 

The real value of this is the theoretically, you are able to match the optimal bounds that is what is 

the real value of it. So, fractional cascading is hardly used in practice because it is it is really 

complicated, but this is simpler than main construction for this. 

Let us get back again to this problem of quality search trees, where were somewhat restricted 

version of the rectangular query. We have a rectangle that is infinite in one direction so, it is 

called this three sided query and question. We are asking is can we do something better than, 

what we achieved using the straight forward range search trees that is from log square n, we I 

want to bring it down to log n and from the n log n space we want to get it down to alternate. 

So, what you (( )) feeling because because brought it up surely something is possible. So, even 

before I get in to this let me make a very elementary observation about something some of you 

may be aware of, but I am not sure it it it it is it is a something simple that often gets (( )) or you 

know we do not pay enough attention to that. 
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So, I will pose a related, but simple problem; and that is some given a set of points. (No audio 

from 17:51 to 17:58) And I I want to pose the one dimension problem, and I have a my queries 

are let us say again semi intervals, let say infinity to sorry x infinity x, which I which, by which 

basically you can I could get queries like this. So, this is my query. So, when I get this query 

suppose these points are P 1, P 2, P 3, P 4, P 5, P 6 etcetera. So, for a query like this, the answer 

is P 1, P 2, P 3, P 4. It is it is a very simple one-dimensional problem. There are so many 

methods of doing it essentially again base and binary search. But there is another way of solving 

it, and may be you can just think about it for a moment. So, I claim that heaps can be used 

effectively, and why would be prefer heaps over. So, what you could just basically sort the 

sequence, and do the binary search and be done with it. And I want to again achieve a query time 

of order log n plus k that is my goal linear space or the log n plus k. So, why would we prefer 

why would we even bring up this heap?  

(( ))  

No, I am talking about static data structures. 

 (( ))  



But you know my first we already giving me the solution. So, solution probably is also obvious, 

once I mention the heap, but why would I look for a heap? Why would I look for a heap base 

solution? What is their advantage of heap?  

(( ))  

Something more fundamental.  

Yeah yeah yeah exactly right. So, I do not have to sort, I can build a heap in linear times. So, 

always remember this this important distinction that within search trees and heap. In terms of 

construction time in heap, you do not have to sort it can be built in heapified in linear time. So, 

wherever trying to really safe time in the pre process you can use heaps and how would you use 

heaps here, what kind of heap would you like to use. Some of you may be know the solution but 

so, let me just. So, when you build a heap again it is a it is a (( )) like a complete binary tree. So, 

what kind of heap would you build on these points max min whatever what so, should I turn 

around the problem actually because the way I pose the two dimensional problem was the upper 

one was sorry this is this is actually minus. I am sorry we should turn it around because this 

weight is increasing.  

So, then I should actually say x comma infinity sorry. So, my my semi intervals are like this so, 

that way then we are saying main, but here if we (( )) use a max seek. So, the one with the 

highest coordinate it should be should be here and and so on so forth. And what is advantage you 

know if this point so, what what what we are going to do a how how how you are going to search 

the search the search the seek repeat again.  

 (( )) 

Well delete means (( )) what we are not deleting we are searching. So, we have built a heap on 

this set of points. Now, we get this query this semi interval query, how you are going to answer 

the query? 

(( ))  

So, first we compare whether this x is a less than or sorry greater than this the this element. We 

build a heap on only on the x coordinates so, if x is greater than the the root value then there is 



nothing to do will right. I mean mean that the no point can be within the set problem, because 

this is the highest thirty is the highest value. And if my x exceeds that my interval is somewhere 

here I (( )); obviously, not report any points. So, only if x is less than this point then we will 

report this point will report the point and explore if they more points to be reported. And now, 

here we are not going to walk along a single path, but we may have to branch for this, because it 

is a heap (( )) it is the heap.  

So, the next two points are something that again I am going to compare with the x same strategy 

again if if the values here are smaller than x. Then this entire sub tree will have values smaller 

than x. So, I did not go down in the sub tree at all, but now it could be larger than x. In which 

case I again go down, when I go down, I have to traverse, I have to try both paths. So overall 

what is the search time do I require for, which is the strategy like this say again order k so, why it 

is order k. 

(( )) 

So, when we stop at a node, it basically means the value of the node is less than x. So; obviously, 

the sub tree did not be looked in to all those points will be smaller than x. I did not look in to it, 

but even this value may not be reported. So, we may have visited this node, but not reported any 

thing. See we are you know the overall way this range searching works is that you know, when 

we visited node it is like it is a charge you know I I encounter some charge, because I am paying 

the (( )). Then if I report some point then you know that cost is (( )) reporting the point, because I 

am I am I am reporting a point. So, it is meaning full or you know it is we are made a successful 

visit that we are reported a point.  

And we are pay some constant cost for that, but here it may happened that we we visit this node. 

And we do not report any point, but then how many such nodes can be there, where we do not 

report any point. Total off in in well there are so, see this is the overall heap. Let us say, we you 

now you can actually kind of argue that you may you may stop your search at some nodes, when 

the when the depth will be you know some you know some kind of you know may be it is you go 

down little bit more, because it is a heap you know may be you go down, note down this path 

then this path. So, you have stopped at all these vertices of the of the heap and before this level 

you certainly report it something.  



Otherwise you would not have gone down to the level. So, what is the extra number of nodes that 

you visited, where you know you did not report anything at most twice the number the previous 

level. So, we are not going to visit more than have in the number of nodes that you do not report 

any thing is no more than two times the number of points reported. So, that can be subsume so, 

therefore, it is order k and the good thing about this is, that we do not even have an additive log n 

term do you realize that. You did not even require that addition order log n term (no audio from 

26:41 to 26:49) when you do a binary search you encounter that log n and then of course, you 

walk and report the points. Here, I have actually been able to not only build the heap much 

faster.  

I am done it, in linear time my reporting is also only proportional to the number of points. And 

this is actually you know is fairly something that we surprise we may not expected this. So, 

heaps turn out to be a more effective data structure for one dimensional range searching. So, now 

you want to exploit this observations and all what do we have probably might have is (no audio 

from 27:39 to 27:47) 
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So, we have this set of points (no audio from 27:49 to 27:58) and we have a query like this. 

Some query is my three sided query x 1, x 2, y1 infinity. So, I could, but if this is the are two 



dimension problems well at least more than a one dimension problem. If we use the range search 

tree, I mean use the technique of the range search tree again. We should thinking about splitting 

of this x 1, x 2 and two some union of canonical intervals put it through that tree and will get 

union of canonical intervals, but we need to do something more clever to be able to achieve. So, 

at every level, we are doing a binary search on the y and therefore, we encounter that log n plus 

sorry log n plus a number of points reported and multiplied by the number of levels. We got that 

log square n can we somehow now combine the ideal the heap and the and the range search tree.  

(( ))  

A heap at every node again sees, we do not even want to have a blow up this space. So, we do 

not want have a heap at every node, see one of the reasons that space blow up was there is a 

primary data structure. And this is the node there is another data structure and somehow this 

summation of everything was not linear. So, will will have have to combine will combine that 

heap and and this thing, but you know we have to do it. 

(( ))  

So, we need the heap coming from the way I drawn this picture. We should think about a heap in 

the y direction, because in the y direction, we have this semi interval heap in the y direction. And 

some kind of idea about this, you know range tree in the x direction, this range tree in the x 

direction may be better thought of as may be the one dimensional k d tree actually may be that is 

a better. We are thinking about if a k tree is a one that gives you also this I mean that the 

canonical intervals. So, whatever either you think about may be (( )) let us let us not confuse too 

much range tree in the x direction and heap in the y direction. And we should store the points in 

a ways such that a node should not contain more than constant number of points only then we 

can achieve the linear space. 

So, how do you do it so, we are we have this this infinite (( )). It is like a it is like a well 

structured you know so, if the point in this data base are such that the highest of the y coordinate 

is lower than the bottom then we do not need to search the data structure at all. We do not need 

to go any further, if you find out that the value of y 1 is greater than the y max the y max let us 

say is the y largest y coordinates among all the points. 



(( ))  

Will do that will effectively will do that yes now, but when we do the heap on the y, how (( )) to 

combine the the the crucial question is, how are you going to combine the x and the y. See that 

vary fact that we are talking about the range tree in x direction means that will have them in 

sorted in the x direction no doubt about that. 

(( ))  

Exactly so, that precise what I am developing now. So, that what I am claiming is a root of the 

tree or this data structure should contain the y max the the point having the the corresponds to the 

maximum y coordinate. So, you know, if the if the set of points may be this is the point with the 

highest y coordinate. So, it is that whatever you know y prime y max or something. So, this one I 

propose we should make it is a root of the tree so, this one should be the root of the tree. Now, 

what is what mean just articulated was if first first first thing we do, while we do the range search 

is compare y 1 with the y coordinate of this point. So, this point is that y prime sorry x prime, y 

max, we stored that point here. 

 So, I compare the y 1 with y max, if y 1 is greater than y max; obviously, anything because all 

the points whatever they are they are all greater smaller than y 1. So, the the the output of the 

range search is an empty set. So, we do not need to go any further and look for points we are 

done. Just with the basis of why we are done, because the base itself is higher than the reset to 

the points. We we may not be that lucky, but a in some cases we did not go further, but this 

condition will hold for will try to mean this condition hold for any node basically. Once we find 

that the base is as a larger x coordinate. So, for any sub tree suppose this (( )) data structure that 

any sub tree, we should have the largest y point with a largest y coordinates (( )) root.  

So, that we can always judge, we can always decide whether or not, we should be searching that 

sub tree. So, this kind of invariant will maintain all the time. After we have we have we have 

define the root of the tree now, we do the division on the x side. So we would like to actually 

achieve the kind of the balance tree. So, look at the medium of the y y coordinates and define so, 

this is half. Let us say the left half call it L left half based on y coordinates sorry x coordinates 

and this is the right half again based on the y coordinate. So, this is the set of points now, do not 



compare the x coordinates with the x coordinates of this now x prime and this left half may not 

have any relation. 

This x prime y max you know could be you know one one side of it, you know so, this one I am 

seeing this is already it is to the right may be it is also the right most point who knows. So, this 

point may not divide this x coordinate may not divide the points equally in to two half’s, but I 

have stored in the root that point is gone I do not need to so, this point is not going to be consider 

for the further data structure. So, will eliminate this point now, for the remaining points, I look at 

the median of the x coordinates and put and recursively will construct the data structure. So, I 

have got the left half of points here and the right half of points here. And this does not include 

this point, but what will do in addition in the root, we have this point will also store the 

information about the median.  

So, what is the value, may be this is the median value, this point may have the median value x m 

or somewhere that. So, we will also store an addition to this some value x n. So, that we know 

that, if x 1 is to the right of x m, we did not go and search this point set of or if that x 2 is to the 

left of x m, we did not go and search the set of points, but in some cases we may end up this x 1, 

x 2 may actually span the whole thing. So, x 1, x 2 may force us to take both the paths that would 

also happen. So, the interval could actually get split either adjacent node or then recursively will 

the data structure for this set of point and this set of points is using exactly the same observation.  

So, I will I will choose as a root of the left sub tree, the point with the highest y coordinate 

among all the points in the left tree. The root of the right sub tree again will be the point that has 

the highest y coordinate among all the points in R and that is how basically this tree will be is 

going to be get bit. And simultaneously, you see that when I search like you range searching this 

interval may get splitted at the root or it may get (( )) one side at some point. It may get split and 

it something may be the forking node. So, it is like range searching, you know it is going to 

move down on the basis of the (( )) x coordinates, but simultaneously we are not going to explore 

any sub tree, where we already know the the node has the lower y coordinate than y 1.  

The moment we find that y 1 has a larger value than the y coordinate. Here it means that all the 

other y coordinates are also lower therefore, we do not explore that that is (( )). So, can you now 

tell me, when we do the query. So, is that clear the construction scale, what is the space in the 



construction a point is stored exactly once space is n, point is stored exactly once and implicitly, 

we are sorting it because every time we are (( )) we are we are we are find the median and 

therefore, in the end all the x coordinates or at least we we are ended up running around median 

on all these levels. So, we are kind of sorting the points. So, we have it is it is different, because 

this point is taken how before it is sorted, but almost sorting point (( )) may be we are sorting 

half the number of points are similar. 

So, it is certainly n log n and no more than n log n. So, pre processing time pre processing time is 

n log n space is order n, because not only each point is stored exactly once of course, plus the 

whatever the tree at the tree itself will take some pointers. So, that is why order n now, what is 

the query query time that is important thing, how many nodes are we going to visit first of all, 

how many nodes are going to (( )). 

(( )) 

(Refer slide Time: 39:22) 

  

So, let us let us classify the node that we want to we will get will visit a node. If the many 

situation for visit a node the y coordinate of the parent node v of the parent let say P of v had a 

larger y coordinate than y 1 that is why went down y 1 was smaller than the y coordinate of the 



root. So, we went down to that the two children so, that is one reason why we may end of 

visiting a node. 

(( ))  

So, I am I am just see that and and so, let me treat it separately. Actually that can be treat at once, 

but let me just over count little bit or the median x of the parent well median x of the tree rooted 

at the parent P falls within the interval x 1, x2 the median passes through some where here. So, 

the entire interval is not contain to one side so, this is one thing and there are of course, some of 

these nodes so, for for some nodes for some nodes we will report the point, which are basically 

successful nodes and there is no problem in charging it the problem is for some nodes. So, for 

how many nodes we fail. (No audio from 41:52 to 42:07) you are saying 2 k for the y 

coordinates. So, if there key points to be reported from a analogy of the heap. We can visit 2 k 

that is a nice way of counting. So So, you are you are looking at two kinds of failures failures 

failures in y n x. 
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So, successful of the once we do not need to bother about so, failed nodes are of two kinds one 

for the y and one for the x. So, for the a y what is being said is we can fail at most 



(( ))  

2 k two times number of points reported by the same argument as the heap. The parent reported 

something therefore, we went down, but it is not clear the parent should be reporting, because 

there is also a y x component 

(( ))  

So, the it could happen very good that is that is a good point. So, you have a situation like this, 

where the y max is here, but this point itself may not be inside. So now, it is it is slightly more 

tricky to (( )) your intuition is correct you know. So, how how should we count them?  

(( )) 

So, let us first look at the x (( )) how many how many nodes can be fail on that is why the x is 

concern. (no audio from 43:44 to 43:52) Now, use your your your range search tree (( )) so, we 

are we are no we are visiting no more than two log n nodes in the x direction exactly so, 

analogous to range searching we visit at most two log n nodes. So, even whether we fail or not 

you know it can added at most log n such things order log n such things. And I did not fully 

specify the search. So, this is how I was specifying the search. 

(Refer Slide Time: 45:07) 



So, we should actually you know like another range searching. If you find that you know for a 

sub tree for a sub tree then you know the range I am searching is split already. So, let us say, you 

know this this was whatever searching and and some point it split. And then now, we are only 

looking at not only infinite in the y direction, we have also split this so, we are actually looking 

at situation like this essentially after the fourth node. We are looking at situation like this because 

the other part is gone to the fork node. So, once it is fork, you the (( )) like this and if this entire 

region is contained within the within the sorry the this this this the intervals spanned by this node 

is contained completely within then we did not go down this thing is the is the is the way that 

you know we define the canonical intervals. 

So, the the interval denoted by this x interval denoted by this may be up to the here, which is 

completely contain within this. So, we did not go down any further and in the in the range search 

tree, what did we do, we stop at this node. We did not want to go to the children node, but then 

we had to do a search in the y direction because all the points in the sub tree was also stored in 

this node. All the points are sub tree was stored in this node therefore, we could stop at this node, 

we would refer to stop at this node and do the y searching. And report only those points that are 

contained within the the y interval. Here, we are not storing all the points in this node. (No audio 

from 46:47 to 46:51) So we may be force to go down because not all the points in this sub tree 

are stored here.  

So, how do we know, which points basically should be reported that lie within this region should 

be reported. So, we cannot effort to stop there, we have to go down, but now we know that, when 

we go down we are only looking for a one dimensional range query. And now I use my heap the 

analyze with the heap and only going to go down as long as I basically report points and I am not 

going to sort of visit more than twice the number of points that are actually repeat. So now, this 

whole thing if you if you if you if you if you put the whole argument together. Now, we are 

basically visiting about order k well 2k nodes, but there is also this log n factor why why would 

the log n factor be theirs. 

(( )) 

No no. So, the some should be something in the in the y direction after all we are going to like 

like the range search tree. We we are going to express the y interval in terms of two log n 



canonical intervals. So, those log n I have to count any way. So, those log n will get counted plus 

I am not going to do a binary search in these these in these node that I am going to actually go 

down. And report the points in because they are stored as heap also. So, I am going to visit two 

log n nodes like I do in the in the range search tree in the x direction, but when I report the points 

I am not doing a binary search report the points. I am only going down those sub trees, which 

completely fall within, which basically define the canonical intervals, but within each of them. I 

am only going to visit twice the number of points reported. 

So, overall so, overall then my analysis is so, search times so, let us this kind of argument. You 

know where we decouple them is not is not the right thing to do we cannot look at them 

completely separately. The things are happening actually together. So, over all there are two log 

n canonical intervals corresponding to some nodes nodes and within each of this canonical 

interval. Let us think about the sub tree of these canonical intervals within each of this sub tree. I 

am not going to visit more than twice the number of points. So we will descend from those nodes 

some nodes let us called it some N of v. So, node N of v till we find suitable y coordinates. And 

this is no more than and is no more than twice the number of points reported. So, the overall 

search time becomes order log n plus k. (No audio from 50:03 to 50:15)  

So, we are never doing that sort of binary search in the y direction that is why we are saving. 

And because we are not doing that binary search in the y direction, we are not encounter in that 

log n cost for each of this canonical intervals. The heaps are buying us things, because in heap, 

we can do the semi interval range query, range search, range reporting in order k time that is all. 

And the point is being stored only once so, that is this space is order n. So, we got the ideal 

bound that we looking for. So, any questions or it is it is a very clever data structure. And it is 

actually can be used in practice, because there is no complication as such, I mean this is 

intermediate of the conceptual thing, but in terms of implementation is very clean. So, priority 

search tree is actually quite frequently used many, many situations. So, I will stop here today. 

 


