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So, I will continue with the half plane range counting. In the last class we talked about 

half plane range reporting, and then I we discussed if we allow quadratic space how one 

can answer half plane range counting in logarithmic time. Today, I want to give you 

somewhat different solution which also extends to higher dimensions and also the 

technique that I will use here will be useful for the other extreme when we have only 

linear space and you want to answer queries efficiently. So, half planes is called half 

space in high dimensions, the notion that I want to introduce today is called cuttings. 
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So, I will describe it in 2 d and then you can think about it higher dimensions as well as 

the same concept. So, suppose you are given a set of lines. 
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So, L is a triangulation of plane is a planer sub division. So, so triangulation is a planer 

sub division in the plane if I talk about 2 D triangulation. Now, there is one technicality 

that we are talking about the entire plane. So, some of the triangles will be unbounded 

because plane is infinite. So, we define the triangle as an intersection of 3 half space half 

planes. So, this way basically that is what I was trying to draw that, but that is what you 

think about triangulation. 
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So, 1 over arc cutting we have a triangulation. A triangulation is called off 1 over r 

cutting of L if every triangle intersects at most n over r lines of L. So, it means that what 

you want to do is have a triangulation, something like this red lines, this vertices of the 

triangulation have nothing to do with arrangement, they can lie anywhere. What you 

need is that property that you should take any triangle and you count the number of lines 

that intersect the triangle that are at most n over r. So, every triangle intersects a few 

lines. Now, there is one technicality that I should point out and that is of following. 
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So, suppose you have situation that all lines pass through a single point. If that is a case 

then what the select of triangulation you use then this point will lie in some triangle and 

that triangle if the this point and the n line passes through this point (( )) we cannot have 

such a condition because this will there is no way that you have a cutting 1 over arc 

cutting because all L lines passes through a single point. So, if that is the case we need to 

come up with the more technical definition. So, what happens is when you go back to 

triangulation then what is called a complex some special complex. 
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If you remember that a vertex is a 0 degree simplex and an edge is a 1 dimensional 

simplex and triangle is a 2 dimensional simplex. So, what you sort of say is that the you 

define the cutting that you have a triangulation such that if you take any simplex and 

now when I talk about the triangle or any simplex these are opened because I think about 

this triangle two-dimensional triangle you do not count its boundary. You just take the 

interior. Similarly, when you talk about this edge you look at only the interior of this 

edge you do not count its end point, end points are counted only at the vertices. So, you 

say then you say sort of say is triangulation is a cutting if every interior, if every triangle 

or every simplex crosses n over at most n over r lines. So, every simplex crosses what 

this means is a you say a line crosses a simplex if line intersects the simplex, but line 

does not contain the simplex.  

So, for example, if you have lot of this lines passing through a single vertex you do not 

care about those lines that is. So, do not count because for vertex crossing does not make 

sense. Now, in the case of edges you look at the things that only passes through the 

interior that crosses is a you do not consider the line that contains this edge. So, that is 

the technicality which becomes even more important in high dimensions, but I will be 

sloppy and I will use the definition that I wrote on the on the slide you sorry. 
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So, this I should write it, Maybe I should use s that is all. So, so question is what is a size 

of 1 over r cutting. If you want to have this condition, if you want like to have this 

condition then how many triangles do you need and here is a theorem given L and r a 1 

over r cutting can you read it or it is not good color. 

Let me try this 1 from to. So, that is a theorem. What it says is there is a cutting of a size 

order of r square. So, one thing is that first thing observe is the size of cutting depends on 

r, but not on n its independent on n. So, does not matter how many lines you have that 

always you are cutting of size r square and it can be constructed in time order of an r. 

Now, first I should tell you that this is a right answer because we cannot hope to do 

better than r square. 
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So, here is a simple argument. Now, if you let take L lines, you take n lines how many 

vertices are there in the arrangement and choose 2 all right, where n square I will ignore 

the constant then n square vertices. If a triangle contains only n over r lines how many 

vertices it can contain?  

(( )) 

Well, because I am not sure where (( )) shows up. 

Even say n by r choose 2 or. So, where this. Did you mean n denominator r choose to or 

you n by r in the. So, you mean that such you mean. So, this is the. So, this is saying n 

square over r square, alright. Its n over r lets say quadratic it is such what you should 

think about is the have k lines then you have a k square vertices. If you only n over r 

lines intersecting, it will not have more than n square r square vertices there. So, if a 

triangle can contain only n square over r square vertices and this is triangulation of the 

all plane each vertex are lying 1 of the triangles. 

 So, you need at least r square triangles to cover all the vertices. So, that says that r 

square is the best you can hope for. So, this is synthetically the best one can do. Now, I 

will not give you the proof and I will defer it to my extreme colleague Sandeep, he will 

do it which is next Friday or next week and it is a very fundamental resulting geometry 

and It is used to develop many geometry data structure that you will see here, but also for 



many divided conquer algorithms it is a. So, that is a theorem. Now, in it is also too in 

high dimensions. In high dimensions triangle becomes simplistic and you have hyper 

planes. So, instead of lines your hyper planes in three dimensions and triangles become 

simplices. 
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And then what you know is the following. The size becomes r to power d and this 

becomes r d minus 1. So, you pay factor of r for each dimension that is what that is what 

you should think about. So, now, why is this result interesting in the context of half plane 

range counting? For that I need one more concept and that I will call cutting tree data 

structure. We think about. So, cutting tree is a computing the cuttings recursively. So, 

choose a constant r 0 and what you going to do is you are going to compute cuttings 

recursively. So, in the beginning you have all lines. Lets given a sort of L lines. 
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So, you have set of lines. What you do is choose the constant r 0 you compute 1 over r 0 

cutting. So, at the root you compute a 1 over r 0 cutting. So, it will have r 0s and ignore 

the constant you to have r 0 square triangles for each triangles intersect fully n over r 0 

lines and you do the cutting for those lines again. So, you get each triangle, each channel 

corresponds to 1 of triangles of the cutting. So, I will write it more formally on the slide, 

but this one is to give you the idea. So, compute the cutting, take a triangle for the 

cutting, look at the lines that intersected, you compute the cutting again for those lines 

and do it again.  

Now, you get another set of triangles. For each triangle now, you look at the which lines 

get intersects and do the cutting again and you keep on doing it until you are left with the 

few lines. 
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Now, let me write it formally. Let me. Since, I am defining a recursive procedure, that 

means do the following. The recursively lat say instead of H is the current set of lines 

and delta is a triangle that these lines intersect. Initially delta is a dark plate because at 

the root. So, let us call this one as tau 1 tau. So, we complete the cutting of these lines. 

That H i be the set of lines intersecting tau i. Make each tau i a child of delta and then 

you can say compute the cutting tree recursively on the H i and tau i that is all. 
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So, what happens is that if you think about initially you have a set of lines. I compute a 

cutting something like this. Now, I pick up a triangle in this cutting. Look at the lines 

that it intersected and I compute a another cutting here. Something, like this. Now, you 

have another triangle recursively look at the here is the only 2 lines may be you will stop 

it because r 0 is x more than 2 otherwise you recursively compute, keep on do it again. 

So, this is all.  

So, this way you get a tree because look at the unravel all the recursion what you are 

getting a tree and the fan out of tree is large its r 0 square because the size of the cutting 

is r 0 square or some constant times r 0 square. Does this makes sense or should I repeat 

this cutting tree? Good question. You will see why they are important because. 

So, what you think about is that you are cutting getting a tree, am I right. Each node of 

the tree is associated with the triangle before which you constructed. Now final stuff that 

you have is corresponds to a leaf. 
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So, let us suppose you build a tree. So, the leaves the nodes the leave nodes you have 

here you have a triangles, they are the finest triangles and then the nodes here interior 

nodes they will cause possible a bigger triangle that you constructed and you will see that 

these triangles will help us to guide us a search because otherwise if you land up here 

then it will be a problem. You will see and refer when I talk about that. 



Now, the question is why I talked about cutting tree? What I want to show you is that 

you can use a cutting tree to answer half plane, half plane range counting query and this 

works in higher dimensions also. So, driven by that what is a half plane range counting 

in the dual, you are have a set of lines and when I give you a query point tell me how 

many lines lie above this point right. That (( )) the problem. 

Now, in 2 D we will lucky we could complete the arrangement and we could compute 

this. We had that just readymade data structure, point location data structure. You all 

know Sandeep. Now, you can. There is a point location in 3 D as well the running time is 

query time is not log on its longer square r, but in high dimension it is not clear now you 

do point location in generally sub divisions. 

So, this technique does not extend to higher dimensions and the cutting tree you will see 

works in higher dimensions as well. So, for now if I use a how do I use cutting tree using 

how do you use a cutting tree to solve this problem, can someone think about it. So, just 

to remind you that each node here has a triangle associated with it and let us say sort of 

lines 3 H delta, which are lines intersecting there and then you compute a cutting and 

then you got a refinement of this triangle. What I should do here. So, if you look at this 

data structure, look at the structure how you will answer you sort of additional 

information at each node, but then how will you answer half plane range counting. 
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So, if you look at a cutting, Not all lines will intersect a triangle. So, some. So, if you 

think about it. So, let us say let me draw of some more lines. Now, I focus on this 

triangle 2 lines or 3 lines they are intersecting this triangle. So, if I know that as what he 

said suppose if I know the query point lies here suppose it lies here. Now, the lines that 

intersected this triangle I have no clue whether they lie above or below, but lines that do 

not lie intersect this triangle, I know, that any point beside this triangle the answer will 

be the same.  

So, if a line lies below the triangle that does not matter where the query point lies inside 

this triangle, this line will lie below this point. In if a line intersects line at the triangle, 

does not matter that the query point lies inside the triangle I know that this line will lie 

above this point. So, what I can do is since I care about the lines flying above the point 

for this triangle I will what I do for each triangle I stored the number of lines that lie 

above this triangle. 
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So, what you do is you modify this construction for each tau (( )) the number of lines 

that. So, I stored this. Now, I do it at every node. So, now, what I know is when I once I 

know query point lies at this red triangle I know that these 2 lines lie above it, I have 

counted them, this I do not care. Now, I have to worry about the lines that intersect this 

point. Now, there is a second level cutting, green cutting for these lines. Now, again I 

know that lies inside here well in this picture there is no other like suppose 
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If you have you also have like this line. Now, I know that if I know that the point I just 

trying at this line lies above. So, I can now I can adjust this point. Now, I need to figure 

out only about these 2 point. If I go back this go down to this point. No, because they 

have already counted them. So, you only worry about the lines that intersect the red 

triangle because the lines that do not intersect the red triangle. 

So, I only need to worry about the next scale I do not need to worry about the lines that 

intersects this triangle. So, I count them. 
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So, the query procedures becomes the following. Let us call this quantity as n tau i. . So, 

query lets set a note w. If delta is a leaf within the number of lines of H delta lying (( )). 

So, if you think about the tree what is happening the recursively you are at a node, some 

delta on this tree and you have a set of if it is a leaf then there is nothing there, see just 

count because there are only r 0 lines. If you remember that the condition for the cut for 

the a node is a leaf is only if there are r 0 lines there and r 0 is a constant. So, just look at 

the constant of lines (( )). 

Let tau be the triangle of cutting scope there that contains P. Otherwise, you find the 

triangle for example, in this case you found a triangle in the red triangle that contains a 

query point and then what we do is we return the value and tau. 

So, how many triangle lie above this rectangle plus recursively count the things here plus 

query. So, that is all. So, what it sort of says is at let us say look at this node if it is a leaf 

just count the number of lines explicitly that lie above it because the only constant for the 

size. Otherwise, find the triangle that contains query point. You have already scored, 

how many lines lie above this triangle. You have that quantity take that quantity and that 

recursively among the lines that intersect the triangle and count the number of lines that 

lie above the query point recursively and add that quantity. That is it 

So, what is a query time? So, what is a query time? So, you are following a path. Say it 

again. So, that is a good question, but I will answer your question a little later because 

that will be more of the size of the data structure because in terms of query, what is a 

query will be (( )) pardon. So, it then r 0 is a constant, log of n right because it will log 

into the base r 0 because what happens in n line because then you get n over r 0 fraction 

that decreases the size of that fraction. So, is log n ignore the constant r 0 for now and 

you spend constant time at each nodes in this query procedure. So, query time is log n. 

Now, let us ask answer this question. How many leaves are there because since it is a 

tree the total size of tree will be proportional to the number of leaves. 
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So, let us say S n is a size of data structure say let say selection number of leaves in the 

cutting tree built on n lines So, maximum number of leaves in the cutting tree built on n 

lines. So, what is a size if. So, if n is less than r 0 then it is a this 1 it is a leaf. So, it is 

only 1. So, it is a there is only 1 leaf. So, interesting cases n is bigger than r 0 then what 

happens how many leave then what happens. So, what is the recursive formulae you will 

have. 

So, think about that is n is your counting number place in this root is sub tree here. So, 

what will be the recursive formula you will write. So, because if the number of leaves is 

the number of leaves in each of these sub trees 2 tree at each of the children, there are r 0 

square the number of things here, number of children and each of them has only at most 

n over r 0 lines. Now, you have to be little careful because this order of r 0 square that 

will give us some headache because this is not precisely r 0 square this is a constant so. 

What let us write it is C times r 0 squares square and S 0 that is the number of leaves. So, 

let us look at this sequence. What happens to this (( )). So, if you start expanding it what 

will happen is if you expand it i times what will you get ? You will get C times r 0 square 

power i times S because every time you size becomes 2(( )), if you want to go little 

slowly. 
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So, S n I wrote as C time’s r 0 square s. So, next time when you do it because you lose 

another r 0 factor, which is C r 0. So, when you do it third time you will get. So, that is 

what you get the recourse. Now, when a references stop then n does becomes r 0. So, this 

is. So, when n over r 0 i becomes r 0 or if you want to sort of say it may be 1 becomes 

like that. So, so let say i becomes roughly log to base r 0 n. 

So, now, you if you look like it here and then when it becomes you wish here then you 

get S of r 0 its basically 1. 
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So, so this size is C r 0 square log of r 0 n. Now, this looks little nasty. So, let us say 

handle it carefully. So, this is C log r 0 n times r 0 square. Let us talk about this 1, what 

is this term and this n square. But you have this. This also you can write in a different 

form. So, this you can write if I will not you do manipulations a log. 

So, this is saying its n log r 0 C. So, the size of data could have been n square except this 

nasty little (( )). Now r 0 is a constant that I choose and C is the constant that is coming 

from the size of the cutting. So, I can choose r 0 as large as I want and by making r 0 

larger I can reduce this term S as small as I want to edit sort of constant, but what I pay is 

I did some cheating here in the log n is actually the log n here is r 0 times square log n 

because there is a tree here. At each (( )) of the tree contains the query point. So, you 

have to spend r 0 square time here. So, he spends r 0.  

So, what happens is that you can make that r if you make r 0 large what is happening on 

increasing of fans, fan out tree is becoming shrinking, depth is shrinking, but fan out is 

increasing spend more time at each node. So, you that sort of says you cannot make it 

arbitrary small too. So, normally what you write it is basically I give you some parameter 

epsilon say and then you can say the running time is at most n to power epsilon and then 

given a epsilon you can choose r 0 to be sufficiently large constant, that will refer 

epsilon. Any questions about this? 
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Now, let me move to linear size data structure. Now, remember that the points and 

contact position when you talk about the range reporting what I said was the if the points 

in conjoint position then I knew that the query line into a sects lets polygon at only 2 

points. So, you can think about that if you raise 1 edge of the polygon and here is the set 

of points you can think about the remaining polygon chain. This is what is called a 

spanning path like spanning tree, because a spanning tree is a tree that whose vertices are 

the precisely vertices the input the point. So, graph and this is a path. So, it is a spanning 

path because it contains its each vertex is one of the input point, it recovers all the input 

points. 

So, if the points are in conjoint position. We have a (( )) property that if you take any 

line, it intersects the point the path at only 2 points. Now, if the points are not in conjoint 

position then what happens. So, suppose then you cannot be so lucky. That is because if 

you look at the spanning path it is going to intersect the line more than 2 points. 

So, question you ask is the following. If you are given a set of points, construct this 

spanning path such that every line. Let us call it Pi of S as few edges of Pi as possible. 

What I want to do is give you a set of points to be let me. Now, I want to construct a path 

with the percept every line should intersect this path at only you should intersect few 

edges of the path. Now, before you say what we can do let me tell you why this why we 

want this. Now, suppose if I have a line, this is line I have, look at the intersection part. 

Suppose, it intersects here only this 2 end points then what you know is in between these 

2 intersection points which was of same property here that either all of the points lie 

above the line or all of them lie below the line.  

So, if I can if I tell you that this line intersects this spanning path at only few places and I 

can also find those intersection points quickly, then I can answer the query because then 

what I need to know is that how many points lie below it and since this path is in linear 

order if I know the index of the vertices of the intersection points I can subtract and I can 

tell you that how many points lie there. 
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So, suppose you have a path and here is a line. Well this is too good to be true, but let us 

it is a. Then suppose I can find each intersection point quickly. Let us not worry about 

finding the intersection points, then what I do is let us say this is the I store the index 1, 

2, 3, 5, 6 when I if I tell you that this is edge and you know this index then you know that 

how many points lie here then you can find similarly well rest of the lie below, but 

suppose if the path went something like this up again you can do this and the time you 

will spend, the number of things that you have to add will be proportional to the number 

of words intersection points. So, if I can tell you that there are very few intersection 

points then that is good and you can find them. Now, for the convex case you are very 

lucky because there are only 2 intersection points, but you would not be so lucky for non 

convex case. So, this motivates this problem what it is called finding the spanning path 

with the small crossing number. 
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So, this is called spanning path. Question, go ahead. Well I have not told you yet that sort 

of tell you the answer and I have not told you, but the answer you should expect that may 

some deception you are just 1 step ahead of me if you. So, the lets ask the following let 

us just answer his question, what he question he raised, that is what I was going to say do 

it. So, let us introduce some notation. So, let us.  

So, for a path pie and a line L lets say the number of crossing points, number of crossing 

points is the number of this edges it crosses. This is a for a fix line for a fix path you say 

look at this then I define the quantity that is a crossing number for pi is a maximum over 

all lines and that a for a given path you look at the what is a maximum for what is a what 

is this can have. 

Now, what you want to do is for a given set of points you want to construct a path that 

minimizes quantity, so the maximum number as you do it. So, question you ask is how 

large the sky of x of x will be. 
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So, question you want to ask is what the value of x s. So, does anyone to make a guess. 

So, I was going to come to that line basically. So, for what is of worst case bound. So, if 

you like Sandeep, what Sandeep said maybe I should introduce another thing is a if you 

will take a set of n points what is a worst you will get there. 

So, the question is what is the value of k i of n what does your intuition say. So, what 

about the points on a grade. Suppose, you take a grade points you take a root n by root n 

grade. What do you think the answer will be for that? Pardon sorry say it again. 
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Why do not you order n because you are taking root n by root n grade. 2 times am I right 

it because if you take if you will let us say just take, let us say this is this is just a 

spanning path. Now, if you take any line it will intersect each column only once each 

vertical line only once, am I right. So, it will intersect root and edges. So, for grade you 

can do root n and you can also convince which is this will (( )) some more work that you 

cannot do better than root n for the grade, which does not matter this is 1 you have 

constructed, does not matter how you construct a spanning path for this grade points you 

will stuck with root n. So, root n is a lower bound for k i n. 

So, this is you know that it is a root n is a lower bound. The question is I know that for 

grade points I can do square root of n, but when I say square root of n I mean order of 

square root of n and, but can I do it for any points site and in terms of this is it leads the 

case, this is it cannot do it and what I will do is I will give you very quick. 
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So, can I afford to go a little overtime? So, it might not be recording, but you can hear 

me the tape might not be this. So, let me first describe the construction and then I will do 

analysis. The reason I want to do this analysis is very cute and it has it is the similar idea 

used I many other different places too. 

So, now and the proof is constructive. So, I will give you an algorithm how I construct 

the path. So, remember that. So, what we have this here, we have a set of n points. You 

have a set of points and I want to construct a path. So, that every line intersects at most 



again I will forget the constant, exclude of n edges what I will do is I will it is like a 

algorithm you have seen for computing minimum spanning tree. So, I will add 1 edge at 

a time.  

So, the algorithm you will work in n minus 1 phases, in each phase I will add 1 edge to 

it. So, what will happen is that I will be maintaining a collection of paths at any given 

time. So, in the after in the r i th phase after I finish i phases I would add it i edges and 

you will have a collection of those path basically. So, you will have something like this, 

something like this you will have. So, let me describe you what I do it, how I choose a 

new edge at each phase and that is a construction. 
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So, now, let me do the following. Now, other thing you observe is the following. 

Although the number of lines are infinite, but if you have set of points you only have to 

worry about the lines that pass through pair of points because if suppose if you have 2 

lines. So, that the same set of points lie above it and same subset of points lie below it 

then there will these 2 lines will intersect the same set of edges for spanning path. So, I 

do not need to worry about I can think of these 2 lines as the same. So, what I can do is I 

can just choose lines which through passes the pair of points and that can be sort of set of 

representative lines with respect to which I need to construct the path. 



So, what you have is your set of points and you have a set of representative lines and in 

the worst case you choose n square lines, but actually what it turns out that you have to 

choose a very small set of line, but I will not go into that. 
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So, you have a set S set of n points and you have a set L the set of m lines. Now, what I 

will do is lines will become weighted. So, there will be a weight function. Initially the 

weight of each line will be 1, but weights will increase because what will happen is when 

I find then I find them an edge and if I find the line intersects this edge the line will 

increase its weight because the hey this line has already intersected some edges. So, be 

careful with the future they do not add the edges that this lines intersect the analyze it. 

So, that is intuition. So, in the (( )) step I do the following.  

So, you have some paths. You. So, set S i is the following. For each of them you pick 1 

of the n points. In the beginning you have S i will the same as S (( )). So, S i is the n 

point 1 n point, each connected component. What will be the size S i will be?  

This after i stuff this is because you have added i minus 1 edges. Because in the after i 

steps I have done the (( )) because you have finish up to the i th step. So, I finish the i 

minus 1 step. So, I added i minus 1 edges. So, the number of points you will be choosing 

will be n minus i plus 1 because in the first 1 you will have all the stuff and then you 

added 1 edge and 1 point disappears and so on. And let us call this as n i. Just to make 

the my notation little simpler.  



Now, I should say 1 more thing. When I introduce a cutting, this cutting was introduced 

for the unweighted set of lines. Now, you have weight weighted set of lines. 
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So, here you think about this is special case when the weight of each line is 1 and that set 

total weight was n. Now, if you have weighted lines then you say that you do not care 

about n what you want to say is that that now if every triangle. So, this statement will 

change to following. The weight of lines intersecting any triangle is at most total weight 

over r. So, that was the generalization because n was the total weight of lines when the 

weight of each line is 1. If you look at the total weighted lines look the total weight you 

want to say that each none of the triangle is too heavy, the weight of lines intersecting 

triangles utmost total weight over r and this theorem it still holds. 
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(( )) what I do is, choose a constant alpha which I will tell you in a minute and compute 

a. So, r is this is the value, this is 1 over r. r basically is. 
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So, if you want to think about it then r I have chosen is this is the value of. So, you think 

about this 1 over r i cutting I have computing. Now, the size of the cutting. So, computed 

cutting lets called it k i. So, size of k i is order of r i square is order of n i sorry which is n 

i square over alpha. If I choose alpha to be sufficiently large this is I can make this point 

it to be n i minus 1 because or not by choosing parameter because you have constants if I 



choose alpha to be a bigger than the constant C in the cutting then this will become less 

than 1. 

Does this make sense or I lost you? So, size of the 1 over i cutting is (( )) of r i square, r i 

was root n i over alpha. So, you get sorry n i over alpha square. So, you get by choosing 

if you choose alpha 2 sufficiently large this point it will be enormous. Now, what I know 

is number of points is n I, number of triangles is at most n i minus 1 of the cutting. 
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So, here is a cutting. Suppose and then suppose you have an unbounded triangles. Now, 

number of triangles is utmost n i minus at most n i 1 and number of points is n i. It means 

that there is a 1 triangle that contains at least 2 points. So, it means you have a situation 

that you have a triangle that contains 2 points. By generating the whole principle because 

n i points are lying inside n i minus 1 triangles then there is to be at least 1 triangle that 

contains at least 2 points.  

So, you can add this edge to your. So, it means there exists a triangle that contains 2 

points. Let us call them p q sorry add p q to k i. So, that is a construction. Not yet, one 

more step and then for each line in L that intersects p q set double its weight. 
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So, this is a point p q and suppose this was a line L that intersects this edge that you just 

add it, you double its weight because you want to paralyze it because you know now you 

know this line intersects this edge. So, you want to be careful because you do not want to 

choose another edge that intersects this line or you want to choose, but you want to 

decrease the probability of choosing that edge, that is a intuition. Any questions about 

algorithm. 

No, there is no query. This is construction the path pardon. So, these are the set of lines 

you had. So, if the construction I had you start with set of points and set of lines. I said 

the lines that all the take the what I argue that it is enough to look at the lines that pass 

through pair of points. Because this is that I have said. 
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That I said that if you have 2 lines, so that is all same sub set of points lie above it and 

below it then it will intersect same set of edges of the spanning, n is spanning path. So, 

what you can do is for each of the such thing choose 1 line and there will be n choose to 

such lines. 

So, those are lines and initially I said that the weight of each line to be 1 and then I cap 

and then double it. So, this is a construction. Now, I need to argue that this construction 

guarantees that no line intersects, no line intersects more than square root of n edges. 

Yes, I have not ensured that I will, but I have not meanwhile, but I will, but I will, but I 

am not saying, but I will show you that this quantity is true, this part I want to prove. 

Now, I have not done that yet. So, this is a algorithm.  

Now, I have to do analysis that path I constructed, the crossing number is square root of 

n and I need 5 more minutes for this. Now, it is a double counting argument.  
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So, let us look at the say w i is a total weight of lines after i th equation. So, what is a w 

0. So, w 0 was initially the lines you know it is m because the m lines, m is n choose 2, 

but let us not worry about it. So, it is n. So, weight of each line is 1. So, total weight of 

lines is m. So, that is one thing.  

Now, everything you notice is another important relation is what is if I know w I, you 

need to write w i in terms of w i plus in terms of w i. So, now, one thing you notice is 

when does a weight increase? The weight only increases here. So, this only place where 

(( )) increase the weight. Now, and here is the fact I will use this is the cutting because 

what notice is edge lies inside this triangle. 
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So, if you look at the weight of this lines since I doubled it, weight of these lines, the 

lines that intersect this edge p q also intersects that triangle. (Refer Slide Time: 59:14) 

  

 

So, here is a triangle p q sorry here is a edge p q. So, any line that intersects this edge 

also intersects this triangle. Now what I know is that since this is the cutting the total 

weight of these lines is what? It is w i over r i.  
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So, what I know is that this is that most r i and so this is and r i was this quantity. So, this 

is alpha n, n i was let me write it was n i was this quantity n minus i plus 1. So, what you 

get is. So, now, if you expand it what you get is w n after you finish the whole thing or w 

n minus 1 because the n minus 1 phases will be w 0 and 0 2 n minus. I might be messing 

the, 1 plus alpha plus 1 and this you can rewrite as just reverse in the reverse order 

because it is easier to write. So, I just writing the series in reverse order that is all I did.  

Now, this quantity you can write as, alright 1 plus x (( )). So, then product becomes sum 

here and so this becomes w, w 0 is m, I should m times. 
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So, when. So, so pi j is equal to 1 to n into power alpha root j. This becomes e 2 power 

this product becomes sum in to exponent some think it as an integral and this basically 

becomes roughly alpha times square root of n. So, because this becomes e to power 

sigma alpha over root j, j is equal to 1 to n and if you integrate 1 over square root of j i 

up to n you get square root of n. So, that is what happens. 
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So, this is becomes a alpha times. So, this is 1 thing you get. So, this the final product. 

Now, on the other hand suppose if a line intersects k edges, if a line intersects k edges 



what will be its weight? 2 to the power k.. So, if a line intersects k edges it weight will 

become every times it intersects an edge you double its weight. So, if you double it k 

times it will 2 to the power k. So, it means if you have a crossing line at least k times the 

total weight of lines will be at least 2 to the power k.  

So, this is on the other hand 2 to power k. So, what you know is the 2 to power k is m 

times exponent n. Now, if you take the log on both sides you are going to get I will k to 

be square root of n. 


