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Welcome to the lecture 5, let me do a brief recap of what we did yesterday, that was 

essentially you know illustration of the technique of line sweep for the problem of 

finding pair wise intersection of given line segments, right. 
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So, given a set of lines segments, we want to find all the pair wise intersection all the 

intersection pairs and we would like to do it in time that is prepositional to the actual 

number of intersection the order n square. Algorithm is rather trivial in straight forward, 

but you know it is it is kind of over kill for the situation where you have very few 

intersection right. So, for that we developed this technique where, we do the line sweep 

and the line sweep method is… just going back to the yesterday’s example.  
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So, this this red vertical line is a line that we are hypothetically sweeping across this 

serial set of line segments like this and at the any point of time, you know the snap shot 

is essentially the intersection of the line segment to this vertical line and we also 

maintained what is called the sorted intersections, of sorted from top to bottom of the 

line segments with the the sweep lines. So, for instance, at this juncture, you know the 

sorted order is 4, 2, 3 and after the intersection it actually they comes 2, 4, 3 and so on, 

so forth. And in this process, as we sweep past all the intersection points and we we can 

record this events correctly and then essentially we have done our job. 

Yes.. Conversation between student and professor (Refer Slide Time: 02:22) – Not clear 

No no, so I had also made this assumption, let us assume that there is no vertical line and 

how we can make through this assumption, you can just do a random rotation, I can get 

get over this. You just take any given set of lines segments, not that we cannot handle it, 

but you know these are very special cases for which I am saying that, easy fix is that you 

just rotate the coordinate axis you by some random amount theta and that we will fix 

everything. 

(( )) we may have to rotate the line many times (( )) 

No no, there only n line segments, right and you have infinite choices of slopes. So, most 

for most of the slopes there would not be any vertical lines, that is where we exploiting 



the fact that we are dealing with it with the real plane. So, the questions like this will 

come of once in a valley, you know that, so you know remember this technique of you 

the random rotation, but there are other we can also directly deal it deal with it in 

algorithm, except that I do not want to deal get into these special cases. 

So, this this is now how do we record this events, you we observe that so we observe that 

there are three kinds of event points, one is when a line segment begins, second when a 

line segment ends and when we encounter the intersection point. 
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So, at all these events the the L’s of x, which is the slotted set of the line segments 

intersecting the sweep line, you know they that under goes some change. So our events 

are exactly those points where the sorted set under goes a change, of course the actual 

intersection points will change continuously.  
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Because as we move the as we move the vertical line, the actual intersection points going 

to change, so as we move from this from x, so from this line to this, sorry not even that, 

just a infinite similar change, obviously the actual intersection point are changing. So, 

from here these are becoming this intersection points, but we are actually only bothered 

about or we only record where the the sorted order is this changing, the combinatorial 

information is what is important to us, it is not exact point of the intersection. So, 

therefore, we only record are though events are only meaning full to us where there is a 

Change in this combinatorial information, not the actual value of the intersection points, 

this must be understood, alright. 

So, then we know the that then therefore there is only three kind of an end points, new 

segments, you know when a segment ends and when there is an intersection point, now 

these two event points are known to us, at the time input is given to us, all the end points 

are known to us, left end point and right end points.  
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It is the interception point that we have to determinate and we must determinate them 

before we actually sweep pass the intersection point, so we must determine before, as we 

do that sweep, we must detect them before we actually hit the intersection point. And 

how do we do that and then we made this observation that before the intersection points 

of two lines segments they must necessarily become adjacent. So, this you know you can 

think about it just before you you cross the interception points, just the infinitesimal 

before that and just after you crossing interception points, these two intersecting pairs 

must be adjacent, there cannot be anything in between them alright. 

And this is also again there are some confusion about what happens if there is a situation 

where there are concurrent line segment, so something like this going through a point, 

what do I really mean by that? So, once again easy assumptions, simple assumptions is to 

avoid these cases, that we assume that this does not happens, but even if this prior to 

happen, we can pretend that these are actually three intersection points, the two pairs, let 

us say 1, 2 and 3, so I can treat them as 1, 2, 2, 3 and 1, 3, alright and I can order them in 

any fashion that I want. 

So, we can handle it either by assuming that we do not they do not exists or even if they 

exists we can actually hypothetically order them and deal with the in in some order, 

again this is this is not going to be any bottleneck in the algorithm. So, so then at any 

event point we will check, so what happens to event point? the the I said the definition of 



the event point is such that it is exactly those places where the the ordering can change. 

So, to detect this interception between s i and s j, we know that this information must, I 

mean if there were not adjacent before they must have became adjacent after some event 

points. So, if from you know if you just you know that they just an inductive prove, if 

you are sweeping from the left to the right, starting from a base scale, either left end 

point is recorded correctly and suppose we have recorded all the event points up to this, 

up to a certain junction correctly, then you you know all the orderings must be correctly 

maintained at any point of time and therefore, when you hit the n plus first n plus first 

event point, which could be an intersection point, you know our the the two line 

segments that must intersect must have became adjacent because of some prior event 

points, which by induction we have recorded correctly, that is the proof of correctness of 

the whole thing. So, how many event points to encounter?  
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So, we encounter total number of event points, ok, where the ordering L s of x change 

and there is a 2 n end points plus let us call this let us call this capital I number of 

intersecting pairs, alright. So, these are the total number of event points that we 

encounter and I just argued that we identify all the event points correctly. So, now to 

analyze running time of the algorithm, we need to only analyze how much work, how 

much time we spent for dealing with each event point. So, let us say number of 

operations required to record the changes at each event point, so if we get a bound on 

this, then we multiply this by the total number of event points and we are done. 



So, here is where again, even again we we we can if we make this simplifying 

assumption, but I I also mention that it is not necessary, there is no concurrent three 

segments at a given point, the total number of changes that can happen at any event point 

with this assumption is constant, right, either you know some segments, one segment 

will be insert it so you know two adjacent will be effected or one segment could be 

deleted, again you know just two adjacent will be replaced by one adjacency and if there 

is an intersection then exactly one adjacent is effected, that is well not quite. So, let let us 

let us do this either, so these are three cases, I would say case 1, case 2, case 3, this is 

new segment, segment ends, segment intersect.  

So, when a new segment comes then so the situation could have been you know 

something like this, you know some this was the situation at the at the previous event 

point, a new segment comes in, maybe it is inserted somewhere here. So, then what 

happens is that precisely there is one adjacent separated between the top rate and so; the 

blue segment and the one, on top of it and the blue segment in the red segment below, it 

right. So, these are the two new adjacent that is created, it if a segment ends, then you 

have a situation like this, let us say this segment ends. 

So, if this segments ends then wants this drops out, you know these two becomes 

adjacent basically. So, there is only some local information or this is local changes are 

happening, alright and if a segment intersect, two segments intersect, clearly this is just 

swap, if if the ordering here and the ordering here they are just you know, for these two 

segments they have changed. And if when they change, then of course you know 

something that was below it and above it, so there is this change has to be recorded you 

know because now instead of these two being adjacent, now sorry these two will become 

an adjacent, ok. 

(( )) 

You know again the assumption is that there will be there would not be any two 

interception points are in the same vertical line 

(( )). 

Yeah, yeah again if there is one, you just rotate the axis, there would not be anything. So, 

exactly. So, that for that for simplifying that analysis we are making all this assumption, 



otherwise even that is not required, right. So, so only some constant number of adjacent 

information is changed at any event point right, so since there is constant number of 

adjacent is changing there is not a whole lot of work we need to do to update this 

information, but whatever it is, we have to do some update, What are the updates that are 

happening? 
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So, the update is happening to essentially update at an event point, so the updates that an 

event point, one is there is some change to this L’s of x right, L’s of x changes by some 

constant, relative constants, no L’s of x and L prime of x. You know there will be some 

constant number of changes in the adjacencies and of course, if we detect the movement 

something become adjacent, we we have to record, so the potential intersection point, 

right. So, for new adjacency fears we compute the potential intersections and we must 

record this in the there is a q that we are maintaining for the q of event points, right and 

update. 

So, L’s of x and this event q both are what? Both are some sorted sets, L’s of x is sorted 

according in the in the y direction and the event q is sorted in the x direction, right, 

because event q is telling us which is the next event in increasing x and L’s of x is telling 

us you know what is the ordering of the segments when they intersect the vertical line, so 

that ordering in the y axis. So, you see we are dealing with the two dimensional problem, 

so we have we are actually maintaining some kind information both dimensions, one in 



the x axis for the order of the events and one on the y axis in the ordered segments 

intersects the sweep line. 

So, what is the standard way of? So, when we have to update this information at any 

event point, we have to update these you know we need to update this sorted sets, in 

other words, we need to update some kind of data structures. So, what is the standard 

data structure for marinating the sorted sets? So, you just maintain some kind of 

dictionary you know whether it is it is (( )) or it is a (( )) whatever. So, you you have, you 

basically need a data structure right, so the data structure required.  

(Refer Slide Time: 16:55) 

 

So, use any use any efficient data structure for it is a dynamic set, right, dynamic red 

black trees A V l trees or even something skip lists, which is essentially implies that 

order log n per update, implies order log n operations per event point and implies order n 

plus number of intersections times log n, any doubts. So, we have succeed in designing 

and algorithm which is not a particularly complicated thing, but you know one would, 

one if one did know about these lines sweep methods, you know one you know one 

could not just come up with it just like that, but after you know this basic idea, it is not 

that difficult to come up with this. And this is also very straight forward and what you 

have got there is something that is certainly the running time in is is is sensitive to the 

number of intersections. 



So, it is you can write this whole thing also as order n log n plus I log n, just to if I open 

out this terms and it turns out that for finding even one intersection, if I ask you this 

question, tell me if two lines out of the given line, n line segments is there. Even one 

intersecting period, this is a decision problem, it is also saying you know if I give you n 

numbers and ask you is there either two number that have the same value, so this is a is a 

very basic fundamental equation, so among n elements are all of them unique, it is for 

the element uniqueness problem. 

So, this element uniqueness problem is a very basic problems and it is particularly useful 

for you know devising or you know for for arguing about lower bounds particularly. So, 

this this line segment intersection problem is the special case of the element uniqueness 

problem that given n line segments is there even one intersection. So, this problem 

known to have a lower bound of something like omega n log n, to find out if there is a 

duplicate, you essentially need to sort, that it is basic idea and so, therefore, the first term 

in our line segment algorithm is unavailable, the n log n part. 
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The second term, clearly I is the unavailable, because it must be at least propositional to 

the total number of intersections, so it is only this one term slide (( )) here, basically if 

we did not have this term, then this was an optimal algorithm, but it turns out that 

actually this improves this algorithm. Of course that improvement to this optimal bound 

that n log n plus I makes it about ten times more complicate and practically impossible to 



imply implement, it just becomes that much complicated. So, if you are willing to live 

with that extra log n with I, then you have a very practical and elegant algorithm (( )). 

 No, no no I am not saying that, you have to sort for element uniqueness. see 

We are getting the (( )) 

No, n log n mode is not, it it it is not that you get it from sorting, you know there are 

technique by from which you get directly this n log n bound, what I am saying is that if 

the natural thing that would come to your mind to find out if in all elements is unique, is 

by sorting and and there is a lower bound, you know it is not by reducing sorting to this, 

but but essentially there is a independent lower bound with a different kind of an 

augment, which says there is a n log n lower bound. So, all I am saying is that, so it 

essential means that you know is that you have to sort (( )). 

Yeah, I I will go through the argument when I discuses about models of computations 

ok. It will it requires what is called, you know it is called, in the least we have to 

consider what is called a linear decision free model, in the least we will have to deal with 

this. See, in sorting we are considering ourselves to a very special kind of linear decision 

that if x i or less then x j, but yeah just comparison comparison is a special case of a 

linear decision entry model, you we cannot restrict the since we are in the in the domain 

of geometry we should not restrict ourselves too just that. So, we we will. 

But what you know, why would you restrict your yourself to comparison, I I we will 

actually domain. You know you can prove the lower bound with a you know more in a in 

a more power full model, not only in a linear decision entry model, we will be able to 

actually prove it in what is called the algebraic decision tree model, where you know 

things can take quadratic. You know you can deal with quadratic equation, but I do not 

want to address it right now, just try it to wait may be to the middle of the semester, you 

know I will take it up. 

So, so in that linear decision tree model, you know you can prove directly a lower bound 

of n log n, what I am saying is that so then it amounts to saying that you you need to sort. 

If it is n log n then why not sort? See lower bounds are extremely sensitive to the model 

of computation that I I often mention that even this n log n bound for sorting is a miss 

leading lower bound, it only holds for comparison model, the movement you allow 



things like arithmetic operations, particularly divisions and multiplications and indirect 

address, that n log n lower bound does not hold and your programming language actually 

supports all these instructions to the n log n lower bound, is a completely miss leading 

lower bound. 

There are actually algorithms that do better than n log n and though though though 

actually use the power of divisions and in directed result. So, this was the, so here this 

this basically concludes our discussion on how do you find pair wise intersections in a 

set of given set of lines segments. Someone could have asked me why know, you know 

what is what are the applications of this problem, right, so there are many applications, 

as we as we go in the courses there is basic many fundamental applications.  
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But one you know sort of very natural application is that if have let us say two planer 

maps, which means that you know I have a map like this, something or some states, 

some countries, whatever you know some information you know that appears in a map 

and I have let us say another map, it is looks like this. And for some reason I need to 

overlay it, so it mean that you know I will I will be doing something like this. So, the 

movement you need to compute any kind of over lays of this kind of maps that will 

amount to compute in these intersection points, so this can be solved using what we 

discussed first, right. 



So, if I need to over lay them essentially, I am redefining my faces, the planer map 

whatever I am have to the smaller ones you know, so these these becomes my faces, 

right so and these, the intersection points actually contributes to the vertices, this is of 

course a special case where there are some what similar, yeah somewhat similar 

algorithms, because we are actually dealing with two different sets of non-intersecting 

lines segment. So, even this can be exploited to get something similar, but then I do not 

want to do, that is this one of the basic applications that if if I can do line segment 

intersection I can solve this over lay point. 

Yeah, so that is a good question, so what if only I am only interested in finding the 

number of intersections, rather than the intersecting pairs and this problem of course 

does not have the lower bound that we are discussing n log n plus I, because the total 

number of intersection is only a number between 0 to n square. So, we can no longer 

claim that we done this algorithm and then after you get the intersection pairs we just 

count them, but then we have already then spent time prepositional to the total number of 

interesting pairs which is not necessary, so the counting version of this that is a good 

question, right.  
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So, clearly omega I bound does not apply, so I will give I I will give a very special case 

and that will also demonstrate that you know how one can actually solve this problem 

much faster, ok. (( )) 



Yeah, so if if you are only looking that problem of detecting, there is if there is any 

intersection solving the counter counting version of ICs. Something (( )) Could be but 

then. No, so it it appears, that counting is harder, but it turn out that, you know you can 

you can actually also count very quickly, so you do not have to, so you know that just to 

detect is there an intersection, I I told you that any element uniqueness lower bound 

applies that is an n log n. And for the counting version let me go through that and then 

we will see you know what I am saying. So, suppose I have is a very special case of 

counting, where I have, I I want to do the following, I have a vertical slab and I have line 

segments. 

Now, it is all clotted up, you know so sometimes actually geometry the structure is called 

a hammock structure, it looks like a hammock. So, the line segments do not end or begin 

within this slab, all line segments completely go through this slab, alright. And now I am 

interested in this particular problem of counting version, I want to know how many 

intersections occur within this vertical slab, number of lines in this slab. 

So, one you know one way to solve this problem would be to apply our line segment 

intersection problem algorithm, do the line sweep, report the intersecting pairs and of 

course, if I know the intersecting pairs, I know the number of intersections also, right. 

But this one can be solved much faster, I do not need to actually report all intersections 

and why should I report all the intersection pairs, I am not interested in that. So, what did 

we actually want, what was the basically observation that we used to develop the 

previous algorithm, that when there is an intersection, there is a swap in the ordering. 

So, can you generalize the observation to this, right, so I I know let us say ordering, if I 

know the ordering of line segments here, let us call this 1, 2, 3, 4, 5, 6, 7, then I can 

figure out what is the ordering on the other end, so this is 3, this is 4, this is seven, this 2, 

there is some ordering. So, I know the, I if I know the ordering of the segments on the 

both sides, it is and how quickly you can find that? Yes, I am saying that all segments go 

across this vertical slab, there is no no segments starting or ending in the vertical slab. 

So, how do you find this ordering? Just just sort, right, I find the intersection intersection 

points with the left boundary, I find the intersection points with the right boundary and 

sort the intersection points in the y direction and I have a ordering? So, I know this 

ordering on both sides, so how can I use that to find the number of intersections. (( )) 

Inversion is happen, right. 
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So, so do you know how to find inversions? It is just a problem that, you know I I could 

have, suppose I have four elements that I want to sort and it is given to us in this fashion 

3, 1, 4, 2, how many inversions are there, pair wise inversions? Yeah, so the the actually 

sorted set is 1 2 3 4, so this is what is given to you and I am asking you how many 

inversions? How can I find it? How can and how quickly can I find it? Can be more than 

three and what is the maximum number of inversions? 

And choose to right the reveres sorted set every pair is inverted, right, so are you 

confused that the number of inversions will give you the number of intersection points. 

So, no if two lines are inverted, I mean for any two segments are inverted they must have 

an intersection in that slab, right, so that is obvious, but how how do you find this 

number of inversions. 

(( )) Good, so I think this is an exercise for you, find number of inversions, forget about 

you know line segments, forget about intersections in a just give a set of elements, any 

set of elements and you know which can be can be ordered. Find the number of 

inversions and we should be able to device an n log n algorithm for that, which means 

that we can actually solve this problem in a log n time, which is much faster than 

actually reporting the intersection. Of course, this is does not solve the general problem, 

this is only for a vertical slab; because now we have we have this situation that you know 

segments could intersect, sorry end or begin within the slab, right. So, we have a more 



general situation, but this should give you an idea that that problem can also be solved 

much faster and in fact, that the general problem itself can be solved an n log n. 

Well, it is it is not straight forward, let me say that it is not straight forward were it could 

be done so any more interesting variations of intersection problems that you can think 

off? More dimension; higher dimensions, great, so what happens in higher dimension? 

So, in higher dimensions is this problem, will a relevant problem, first of all lets think 

about it. If I give lines in three dimensional spaces, why would you be interested in, a 

how likely is it that they are going to be intersect (( )). 

Yeah, in in yeah if you ask you know a probability theorist then, I have given some lines 

of space, in three dimensional space, the probability of intersection is 0, because the 

measure of the lines in the three dimensional is 0 actually, right. So, so that of course you 

know that we are not looking at average cases something like that. 
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So, there are, So, it it yeah those solving the problem for what are called, these are called 

patches. So, it is not planes again, planes will have, you know have n planes in a two 

dimensional planes, in three dimension, of course, every pair is going to be intersect in 

lines. So, we will talk about these kinds of things when we discussed something called 

arrangements. So, this is a again a very you know sort of what we say very basic basic 

problem in in geometry, that if I give you you know some what, this it could be anything, 



it could be all kinds of any kind of algebraic verities, you know and I want find out how 

they interact between themselves that whole structure you know. 

So, segments are on on on plane, so they partition the plane into some phases you know 

it is like a planer graph, so that basically the structure, if you go to higher dimension you 

talk about two dimensional planes in 3 D. You can go to even higher dimensions, any d 

dimensional space and talk about basically you know zero dimensional thinks which are 

points, you know one dimensional things that are lines, two dimensional things that are 

planes. So, in d dimensional, we will be dealing with about d minus one verity and they 

can also make may be linear, may not be linear, so in general this problem is a very 

messy and difficult problem and you do not want to actually handle it. 

But at least for the the linear verities, that as you know planes or higher planes or higher 

dimensional, people have looked at this problem and we will also do some discussion 

about it, because it turns out the many problems can be tackled by studying 

arrangements. The (( )) structure of arrangements it carries lots of interesting 

information, because they are geometrically constrained, you know I cannot just make 

two hyper planes intersect in more than one place, you know because they are linear 

structures and so this actually imposes the basic geometric constrains and that can be 

used to solve you know many interesting problems right, but again I will postponed this 

discussion and we will talk about arrangements, it is a point of course. 

However, I still go back to the original problem, how about intersecting lines in three 

dimensions, why do you think you should be interested in that problem? I claimed that it 

is a very interesting important problem, although I you know said something to the 

country, it is actually very important problem, you know think about any practical 

applications for that. 

Intersection of rays, you know why would you interest in intersection of rays? I mean 

there is intersect, fine let them intersect, have you done a courses in graphics, that is why 

I think you are talking about rays intersection, ray tracing also. Even if two rays 

intersect, it does not make any difference to at least the way the you know people solve 

the graphics problem of visualization, exactly very good. 

So, these days you you hear about these these collision paths, right, so you know 

aircrafts taking off from air ports it is it is one of the most important thing is to you know 



sort of the the the ATC control, their traffic control is to figure out, if there is any pass 

potential collision of the of the landing path and the reason is that they have to be very 

care full all that it could happen. So, it is not arbitrary lines in space you know you are 

actually flying out of air port or landing into air port. 

So, everything is converging into the air port, so the chances of the intersection is very 

high and more over the coeditor of the intersection is no longer just that zero dimensional 

line, but it is actually you know it is it is considered to be, I think if you come with even 

with a 10 kilo meters, another air craft or something that there is some definition that is 

called a potential collision. 

So, you are actually talking about you know something not really zero dimensional thing, 

but you know corridors like this, which is essential the landing path or the take off path 

of the air ports and they have to actually figure out, that is the one of the problem people 

actually solved. I mean how well they solve it I do not know because there have been 

this kind of collisions, but this one practical application that you know if I if I know that 

where these aircrafts landing and taking off you the big air craft, air ports in world they 

have you know a few hundred aircrafts, you know landing in about you know within an 

hour or less then hours time. So, there are this scheduling has to be done very carefully 

and at a time, some time more than one air strip, so you have to figure this out very 

carefully. 

Yeah, so I am saying that it is proximity in some sense, it is it is not zero dimensional, it 

is kind of any corridor, it has it is like a tube, but then it is a similar kind of a problem 

where I I have to find out whether there is an intersection also. It is not just intersection 

just like that, if they are staggered in time there is no intersection, so there is another 

dimension that is coming into the picture. 

Not just three dimensions, but also the dimension of time is important, right, so it is 

actually four dimensional problems in some sense. So, collision detection needs another 

extra dimension, so even in two dimension it is actually a three dimensional problem, 

because you know I even if this one path and this is another path, you know there two 

cars are going or two trains are going, they will intersect or they will collide only if this 

happens at the same point in space and time, right. So, let me introduce another problem 

for which lines is is very truth fully used, let me switch to this one and that is the 



problem of, so let me just introduce the problem first. So, especially people who are 

interested in real s i layouts do the circuit design. So, what are they doing? Your 

transistors are nothing but you know orthogonal rectangular.  
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So, you have you know this is something, this is what is basically fabricated, something 

of this kind, so this meant to orthogonal, right. So, whenever these two rectangles 

intersect actually there is some kind of connection etcetera, so really it is a very 

complicated huge circuit, millions of transistors, millions of rectangles, right.  

So, one very difficult problem and for which you know there is no real solution people 

use, (( )) people that you want to design, you want pack as in many rectangles are 

possible, but of course in a under certain constantans you cannot bend them closer than 

something etcetera etcetera. So, that is a problem that we are not going to, I mean we are 

not discussing right now, but a more basic problem, I mean more simpler looking 

problem is that if I if I give you this some lay out, suppose someone has designed this lay 

out, one of the parameters of this layout is to actually measure the area of the union of 

this rectangles. Union of rectangles you know will be a measure, the area of the union of 

the rectangles, union of the rectangles you know it would be a measure of something like 

you know how much current the circuit is, observe something like that. 



So, area of the union of rectangles, so how would you give you know a set of n 

rectangles, given a set of n rectangles possibly intersecting, if they do not intersect 

trivial, alright.  
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If all my rectangles, now let me switch over to this on, now if my rectangles are like this 

disjoint, easy case some just compute the area of the individual rectangles at demand (( 

)). What are we given as an input? We are given as input the description of the each 

rectangle, which means that. (( )) 

Yeah yeah absolutely, so once I know the I know the coordinates of the rectangles I can 

conclude the area and I just sum them up and I am done, alright, but then that is not what 

we are interested in, we are looking at things like this, interception any way, you know 

any number of rectangles can intersect any where. How would you even attempt to solve 

the problem? 

(( )) (( )) 

Oh my goodness that is an inherently exponential thing, you know principal of inclusion 

and exclusion is inherently exponential, that right (( )). No, so geometry also geometric 

objects also have intersections, but if you if you rely on inclusion exclusion principal for 

any problem, any algorithmic problem, any computational problem, may you have 

already sort of you know we are aiming for something that is this this not not efficient. 



(( )) 

No, the movement you do this exclusion inclusion and… 

(( )) 

Ok 

(( )) 

No, so I have suppose these… So here these rectangles intersects, suppose this is R 1, 

this is R 2, this is the part that intersects, so what is that you are suggesting? 

(( )) 

Yeah, I find the area. 

(( )) adding R 1 plus R 2, that is precisely inclusion exclusion, you know sometimes you 

know, so especially when you have three rectangles interesting, you must you know do 

that alternating sum right that is the problem, so that that that expansion is of terms, is in 

it exponential. 

(( )) 

ok very good very good. 

(( )) 

Very nice, so it is not the area, there is something, so what do you have is right area. So, 

the idea here is that, I thought that maybe we will go through another iteration of you 

know development, but this is a solution is is been already proposed. So, it is based on 

line sweep, which I said you know that was the purpose of this this example and it is 

what is being said. 
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 As we sweep you know we will have to somehow keep track of the area that we sweep, 

that that is what is being said, right I though you would actually said that you know using 

line sweep I can I can actually compute all the interceptions and actually reduce this case 

to a situation of disjoint rectangles, that can be done, right. Suppose I actually end up 

computing all the intersection points, then I can actually, yeah, I can get you know this 

whole thing could look like this this you know. So, each small thing you know could be 

split up and these could I can I can make it to disjoint rectangles, then of course I can I 

can sum it up. 

But if I do that, this is (( )) certainly, if I do that then I have this again this problem, that 

my solution, final salutation will actually be proportional to the number of intersections, 

whereas area is just one number, some you know so many square meters, for that is why 

should we need to compute all the intersection points. 

We can compute all the intersection points, reduce this to a case of disjoint rectangles 

and sum them up, alright, but in doing so you could have ended up computing all 

intersection points, then you know there could be a situation where there are just too 

many intersection points, no I can have this kind of thing, the cross bar situation, you 

know every. So, there are about n square, you know n n about two rectangles this way; 

you know what two rectangle this way and there will be n square intersections here. 



So, then if we compute those intersections our solution will be at least n square, right, I 

would like to get a better faster solution. And what is being proposed that is just 

proposed, in the lines sweep somehow we need keep track of that. So, let we elaborate on 

that or at least what I what I thought was been proposed, so we we we do a line sweep 

again, we take this thing and and kind of you know sweep from left to right, what are the 

event points here? 

The event points would be you know essentially begging of a rectangle or end of a 

rectangle here, by the way you are dealing with the vertical lines, so also. So, here 

vertical lines are not a problem, because everything is orthogonal, either the the side of 

the rectangle is parallel to the x-axis or the y-axis. So, there is no issue about that, so as 

we sweep across, suppose my line is somewhere here, suppose they move it by some 

infinite symbol delta x, alright, if I move by delta x, suppose we are here, so the question 

is that when I go move it by delta x, how much area have I swept? Delta x times, No (( 

)). 

Not maximum, see there are gaps here, so this line may have lots of gaps, not just one 

gap, many gaps, but if I know, you know it is it is let me again amplify this, so 

essentially the gaps could be like you know let us let us look at the intersection of this 

line with the rectangles, it could look like this, this, this, this, this, right.  
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So, some areas being swept by delta x amount this plus this plus this plus this plus this, 

alright, only if by the way there is nothing that begins or ends here, alright. So, if we 

know the total measure of what is being swept across, suppose that is y, then the areas 

swept when we move by delta x is y times delta x. 

And then the area is nothing but summation of this whole thing, but I mean suppose (( )) 

is delta x (( )) not whole thing. (( )) No, no, then we cannot apply, so this delta x, I am 

saying this in this delta x only if there is no change in these, in the intercepts yeah, only 

there is no change then then it is delta x time y and I have to sum it over that delta x 

where there is no change. So, there will be some pieces that I have to sum up, so no 

change of total intercepts with the delta x, then this will works. So, let us stop here today 

and we will think about it you know how we can do it, this actually requires also solving 

another interesting problem. 
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