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So, we will continue on the topic that we began yesterday, namely convex hulls; two 

dimension convex hulls specifically. So, if you have any questions from yesterday, you 

can ask me. So, I think I just started on the second algorithm. 
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So, let me recap. So, we decided that we are going to construct the upper hull and the 

lower hull separately, namely; you look you consider the line joining the left most and 

the right most point; and the part of the hull above is called the upper hull, the part of the 

hull below is called the lower hull, right. I just like to add one more definition; so, 

another you know definition for boundary points. So, as I said yesterday, boundary 

points are those points through which you can draw a tangent, right. So, the tangent is 



such that all the points of the given set should be on one side, so that is what the tangent 

is; the entire convex hull should be on one side.  

There is another useful definition of boundary point, which is often used when we design 

algorithms; and that is related to the definition of the convex hull in some sense, that. We 

said something about the entire segment connecting two points should be completely 

inside the set; I call this as the convex linear combination; just recall, let us see here 

right. 
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So, this is the definition that I am referring to, lambda p plus 1 minus lambda q; so, this 

is called a convex linear combination. So, boundary point is the point, which actually 

cannot be expressed as a convex linear combination of two points in the convex hull. So, 

that is another alternate definition. 
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So, boundary point; there is an alternate definition. A point p among the given set of 

points that cannot be expressed as a clc - convex linear combination of two points in the 

convex hull right; so the boundary looks like this; this is the boundary point. None of 

these points essentially, I cannot draw you know, this segment that contains these points. 

So, if I try to draw a segment, one point will be inside and the other point will be outside. 

So, this boundary point cannot be expressed as a clc of two distinct points; it can be 

expressed as a clc of itself, you know you can, it is a trivial kind of combination, that 

point and itself. But it cannot be expressed as clc of any other point.  

Analogously, no point that is a clc of two other points in convex hull of S is a boundary 

point. So, every such point is an interior point; any other point. So, you are right so, 

maybe I should say; no no, so, what is the distinction between corner and the boundary 

point?  

(( )) 

Yeah, yeah. So, this point, right. So, maybe I should; yeah, boundary point right. So, you 

are calling a point on this boundary, but then if you take a point on this boundary, it can 

be expressed as linear combination of two other points, right. So, that is I think what you 

are saying. So, any other point can be expressed except this corner point that is what; 

yeah sure. So, no point that is a boundary point; so, corner point; you want me to be 

more specific, corner point. Thank you. 



So, in other words, the moment we see that some point which can be expressed as clc of 

two points, we know that it cannot be boundary point; it is no longer a candidate for a 

boundary point. So, that is also an another way these algorithms work; that the moment I 

find that some point is a convex linear combination of two points; it means that we can 

discard that from further consideration, right. So, any point in the interior, see you can. 

So, if suppose this is the convex hull; any point, which is in the interior, you can actually 

figure out that it is actually convex linear combination of two points, right. So, I can take 

any corner point; join, draw the line and it is going to intersect the boundary somewhere, 

may be here. So, this point is in the convex hull because it is in the convex linear 

combination of these two corner points, this one and this one. And likewise, this point is 

in the convex linear combination of this point and this point. 

So, certainly any point in the interior, you can argue is a clc. In fact, there is a more 

general definition of convex linear combination which is that; we are only looking at its 

convex linear combination of two points; you can actually extend the definition to a 

convex linear combination of more number of points. In other words, every point in the 

interior; let me just write this. 
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So, point p is a clc of points q 1, q 2, q k, if p equal to lambda 1. So, that is another 

alternate definition that these points basically says; if you; geometrically, it means that 

you know I have these points q 1, q 2, q 3 upto q k and this point p will be somewhere, 



essentially in the interior of the convex hull of these points, certainly to be more precise, 

you can look at the convex hulls of q 1. So, this is a definition, algebraic definition and 

the geometric interpretation is that the point p is in the interior of the convex hull of q 1, 

q 2 upto q k, that is what geometrically, this is the interpretation of that; a convex linear 

combination of the boundary points.  

 So, with this definition in place let me go ahead. Linearly independence. See, in two 

dimensions how many linearly independent points can you get? No. So, the boundary the 

corner points of the convex hull; they are certainly not convex linear combination of the 

remaining points. So, you can have any number of points; I give you hundred points, 

then all those points can be corner points, so the convex hull of those points and 

therefore, all those points cannot be expressed as a convex linear combination of the 

other points. 

Then all of them are boundary points corner points, whatever; right. So, that is the 

algebraic way of expressing it. So, going back to this; one more point I should make. 

There was a question yesterday at the end of the lecture that when I separated out the 

upper hull and the lower hull, why should not the upper hull and the lower hull have any 

kind of interaction? That was one question asked and I gave some sort of an answer, but 

let me elaborate on that little more, because this also happens to be one of the so, the 

motivating applications of you know, convex hulls; not only in two dimensions, but in 

higher dimensions also. 
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And that application is that if I given a set of points well, not 1 set of point, let us say two 

sets of points and let me use two different colors for that. Now, I want to ask the 

following question that can we draw a line that separates the two sets of points, namely 

the black and red? Exactly. So, it turns out that, yes and if and only if the convex hulls of 

the two sets are disjoint, but. So, in this particular case, of course, and if you look at the 

red point, this is the red convex hull, right. So, there is an intersection of the convex hull. 

So, there is no way that you can actually separate them. 

And analogously, if the two convex hulls are disjoint, then you can have linear 

separability of point sets; and so very important primitive you know for many things 

including even learning and it is a very hard problem to solve in high dimensions. So, in 

two dimensions we can construct the convex hulls in polynomial time, whatever and find 

out whether they intersect or not etcetera all that can be done. 

(( )) 

Yeah, no no. So, this is the only characterization that we know of well; there is nothing 

else keen as this. So, the question here is that do we necessarily have to construct the 

convex hulls? Well, if it were, so that then we have kind of almost a lower bound 

argument that you know, if the convex hulls are very hard to construct in higher 

dimension, then there cannot be any efficient algorithm. But there is no such result; but 

this is the cleanest formulation that we have at the problem, that is all.  



So, it is not known how to do these efficiently in high dimensions; dimensions means 

arbitrary dimensions; you know it is not just 2 or 3 or 4, but let us say dimension d; do 

we have an algorithm that runs polynomial in number of points n and d, so, that is not 

known, right. 

So, when we talk about the upper and the lower hull essentially what you are doing? you 

are actually. Looking at these convex hulls; for the final convex hull and we are 

essentially linearly separating them out. So, we have this linear kind of separation; this is 

the line that we are using to separate them out, left most and the right most point; it 

means, if the entire upper hull lies upwards of this line, the entire lower hull lies below 

this line and here talk me about you know this convex hull including these two end 

points and this convex hull including these two points, so there is no other intersection 

other than this line. So, they cannot have any kind of interference. So, we can construct 

them independently, because they are actually linearly separated. We have bi 

construction. So, you take any convex hull not this; I can draw any line and you know 

this part and this part, they are linearly separated. So, they are not going to interfere with 

each other when we do the construction; the construction can be done independently. 

So, I just wanted to make this point that you know this is one of the sort of more 

important applications of convex hulls, you know this notion of linear separability . So, 

now, let us proceed with constructing the upper hull.  
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The first thing we are going to do is rotate the axis, so this line that we have, the 

separating line; let us assume that it is the horizontal line; no, this is my x axis; just two 

sort of; may it easier to visualize and we have these points above this line. So, you know 

that even if I rotate the axis, the convex hull remains the same; it is invariant. 

So, we have some points. The first thing that we are going to do is look at the sorted 

order of these points. So, this is the one this is r and I am going to join the points in the 

sorted order along x axis. So, I have some kind of similarity, which I do not like; I mean, 

I am telling you that I do not want two points to have the same; it is cumbersome to 

explain, that is all, so actually sorry. So, I have joined these points in, what is called a 

monotone chain; this chain, if we walk along the chain, it is always going to move in the 

direction of the positive x-axis; it is a monotone chain. Now, this is not necessarily a 

convex chain. You want to now convert this or transform this into a convex chain; it 

means that some points will not belong to the convex hull and those are points that we 

want to identify. 

So, we start walking along this chain, so, we start walking along this chain and the 

property of the convex chain is that you know it should always sort of; if we walking 

from towards in the positive x-direction, it should always basically turn towards the 

right. So, we walk and we make a right turn; that is fine. Then, we come to this point; let 

me number them before I lose them. So, when I come to point 1, I make a right turn, 

which is unacceptable because it is you know by definition, convex chain should be right 

turning. But the moment I reach point 2 and I try to go to 3, I have a left turn between the 

points 1, 2 and 3, right. So, I have made a left turn; here, which means that this point 

should not be on the convex hull and can you explain this on the basis of the definitions 

that we done just recently? Why should not point two be on the convex hull? 

(( )) 

No. No. Yes, triangle area is what we are using to figure out whether it is left turn or 

right turn; my question is why what is the logic or what is the reason that we can forget 

about point 2? Yes, that is certainly you know I think one of the answer; so, what is 

being said here is that this you know; let me use another color. So, you look at. So, what 

is being said here is that this point and you extend it, this point is on the boundary and 

therefore, two is a convex linear combination of that. Yeah, sure sure; that is another 



good argument. So, you are saying that I cannot draw a line through point 2, such that all 

points will be on one side, that is the other observation being. So, if it is a left turn, there 

is no way that I can draw a line through 2, such that all points will be one side of the line. 

Another thing I can see is that you know; well, I mean this is the good enough proof, but 

you know you can look at what is the relation between 1, 2 and 3? So, 1 and 3; so, this 

segment should be in the convex hull. So, any point on this boundary should be on the 

convex hulls. So, you know this thing, again two is the convex linear combination of 

these two points. So again it is basically drops out. 

Right right. So, all those reasoning’s are fine. So, yes I mean that another thing I forgot 

to mention that these kind of angles where. So, you look at the interior of a convex hull, 

you look at these angles; these angle must be less than pi and this is called a convex 

angle; less than pi is a convex angle and greater than pi is called a reflex angle. So, 

clearly any time we make a left turn, this is going to be a reflex angle and therefore, that 

cannot be a point on the boundary of the hull. 

So, there are many reasoning’s due to which you know, left turn basically means that you 

know we have loss that point. So, we get rid of that point and so, we can see that two 

cannot be on the hull. So, I am going to take out 2 and now, change my walk to go to 3 

directly from 1. So, now again l, 1, 3 these 3 points form a right turn. So, there is nothing 

wrong with it.  

So, we proceed further; again at 1, 3, 4 it is a right turn, fine. So, that is also ok and then, 

again we have a problem; from 3, 4, 5 it becomes a left turn. The moment it becomes a 

left turn, it means that I should I cannot consider 4; so, 4 goes out of the consideration; 

then I should go to 5 directly from 3. So, we continue like this and then again its turns 

out to be a left turn; so, in the next when we go to 6, you know even 5 should drop out 

and we should go to 6. Now, it is not clear whether 1, 3, 6 is a right turn or not; you 

know, let me refer to the third umpire and you know let us say is a benefit would have 

out; it is a right turn; all right. But you know 3, 6, 7 makes a left turn again, so that 

means that is form. 

Now, again it refers to the third umpire; my diagram such that and this time let us say the 

umpire makes a decision this is the left turn. So, which means that not only we loss 6, we 

should also lose 3, because 1, 3, 7 or if we look backward, 7, 3, 1; so, there is a problem 



at 3. So, just to make it look better, let me raise the level of 7, a little bit more. Let us 

take 7 to be here and then I think (()); so, now, it looks little more like a left turn. So, this 

is the left turn at 3 from 1, 3, 7. So, we cannot have this change; so, we should also now 

forget about 3, which means that I should go to 7 directly from 1.  

So, what this illustrates is that if there is a left turn at 1 at some point, that point gets 

dropped. But as a result of that, we may also lose some of the preceding points. So, let 

me make this example more pronounced.  

So, we had a situation, let us say where it was like this, these were the points, where you 

made these right turns you know, suddenly we have a point here. Of course, we lose this; 

this goes out. So, we should consider this boundary. Now, this is a left turn again; so, this 

goes out; this is not out; same thing you know this is still a left turn, this is not out. So, 

you can see it could actually have a chain reaction where lot of things can get knocked 

out, you know due to just consideration of a new point. Fine, so, even if all this happens, 

finally, what we get you know; at the end of after walking reaching r, is a chain that is 

necessarily a right turning chain. 

So, in this case we basically end up with this point; so, we end up with this. This is 

always a right turning chain, so, all internal angles are convex angles and we are satisfied 

with this. Any point that is knocked out once can never be a part of the convex hull 

because it is already a clc of some point gone, right.  

So, algorithmically we will see what to do? But we are not yet reached the stage, where I 

am trying to count number of operations. All I am seeing is that you know, but it is nice 

ordered structure, right; when we go back, we are going back by one step, we do not 

have to jump and find out some you know; we just reverse basically from them; we do 

not have to chase a random point. We just reverse and we keep reversing till we find the 

change is right turning and prior to that also it is right turning. So, the entire thing should 

be right turning. In other words, what we are doing here is some kind of an inductive 

argument that if we have considered up to point I, we will have a convex chain up to 

point I. So, that is basically what we are doing.  

Now, let us look at the time complexity of the whole thing what is that we are doing. So, 

we had sorted. so, the running time. So, sorting is going to cost us something; here we 

have, let us say there are n points, n log n. Next, we are doing scan you know; so, we are 



walking and sometimes, deleting points you know; sometimes you know adding another 

point to the chain. So, constructing the convex chain by adding the next point or deleting 

how many points? At most, what I add; the higher stage we are removing I minus 1 

points, at most you know. So, what is the running time? So, you did not sum up the I, 

right; you did something smarter than that. 

See, a point can be deleted only once, right; and what is the data structure that will 

support it? Yeah, stack of the points and when you have to retrace, you know it is the last 

in first out; so, you have to reverse and reversing is very easy in the stack. Any other 

kind of data structure also, if we have the right pointers you can do it; the stack or some 

kind of you know linked list, with the right pointers; anything is fine.  
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So, overall then, a point; what we are saying is that since a point can be added or deleted 

once, using a stack, running time here is basically number of left turns and right turns 

test, right. So, this procedure or this particular algorithm goes under the name of Graham 

scan. The total running time is the sorting time whatever it takes plus linear time. Right, 

but it is a constant size determinant; it is a 3 by 3 determinant; so that we assume within 

the big O notation. So, whatever the time it takes, you know about 3 4 multiplications; 3 

4 additions, so that constant will have 3 or 4 or 5 or 10, whatever. So, we are ignoring the 

constants.  



So, now you have an ordered n log n algorithm as a post to an n times h algorithm for 

that the simple one, where we sort of pull a rope around all the points, which is better; of 

course, in the worst case this is better. But if you have very few points in the convex hull, 

namely you have many, let us say about constant points, then the previous algorithm is 

still somewhat better. 

So, although we have a faster algorithm, there are some cases where previous algorithm 

could be better; we will address that; that is an important issue. But even prior to that, 

again our same question, can we do better? Yes. I mean, when you do the 

implementation you can do it altogether, upper and lower hull, except what you need to 

do is instead of doing; I avoided what is called a polar sorting. So, I would have to 

actually sort with respect to angle, but then again you know that we do not have to 

compute angles; we can do it everything with respect to left and right turns; Yeah, I just 

said this is easier to explain and yeah, I can actually run the whole thing at once, all I 

need to do is identify a point inside the convex hull. I want to sort everything inside the 

convex (hull); just since the point is when raised, you have these points given to us; I 

need to identify some point will be strictly inside the convex hull, may be this. 
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And I am going to do my sorting; my monotone chain will be essentially this, which is 

what I have to convert to a convex chain. So, how do you find a point inside the hull? 2 

is not a good thing; take any three points and any convex linear combination of 3 points 



must be strictly inside the convex hull. No no, it will not work. So, I have actually; if you 

look at the homework problems, I have given one as the problem that you know; we have 

to do this kind of polar sorting; there are some complications, otherwise. You may end 

up getting what is called a self intercepting chain; this is a problem. So, you may take 

right turns, but you know you may take right turns like this; so, you have to avoid that. A 

right turn is not always necessarily good; it is working because we are starting with a 

monotone chain.  

So, can we do better? Are we satisfied with n log n or can we do better?  

So, let me give one construction; nothing that will convince you, at least it will partially 

convince you about something. So, let us consider you know something like a parabola. 
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Let me consider a set of points given to me which are just points, you know thus just 

values. So, these are actually the numbers given to me and not necessarily in this ordered 

fashion; it is given to me in some oddball fashion x 1, x 5, x 2, x i, x n, x 20 and so on. 

I have given some points; what I am going to do is I will project these points on this 

parabola; actually, not project, but I should use the word lift. So, I am lifting these points 

by 1 dimension. So, a point x i is getting mapped to x i, x i squared. So, given a point set, 

given s equal to x 1, x 2, x n, I am defining s prime as a two dimensional set of points x 

1, x 1 squared x 2, x 2 squared etcetera.  



Now, I construct the convex hull of s prime; what is the convex hull of s prime? All these 

points; what is the convex hull of this? So, all the points will be corner points. Are you 

convinced about this? All the points should be necessarily corner points. And, if our 

assumption or convention is that a convex hull algorithm should produce the points in 

whatever, clockwise or counter clockwise fashion, then I can recover from the convex 

hull, the sorted set of the points. So, it gives us an ordered set of boundary points. So 

either, it will be like this or it could be like this; either way is fine. So that we can sort s 

using this ordering since all points are on the boundary. So, we have essentially shown 

that sorting is linear time reducible to convex hull, sorting of s is reducible to convex hull 

of s prime. And therefore, convex hull must have a lower bound of sorting, otherwise 

you know I could reduce sorting to convex hull and then, sort it faster than the lower 

bound for sorting, which cannot be… So, the lower bound for sorting must be also 

applicable to the lower bound of convex hull. 
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These are the points; I have been given that I wanted to sort. No. It is not needed to be 

multiple set of points; I have reduced the problem of sorting, so, I have been given these 

points x 1, x 2 up to x n, which I am supposed to sort. I have shown you how to sort 

using a convex hull algorithm and therefore, convex hull cannot be constructed faster 

than the lower bound for sorting; that is all. 



So, when I reduce problem p 1 to p 2, the lower bound of p 1 is applicable to p 2 and the 

upper bound of p 2 is applicable to p 1. Of course, this must also happen in some 

efficient time. So, I have not mentioned this; so, hopefully you are familiar with the 

reducibility in time f n or whatever. So, this f of n cannot be too large; it has to be. So, if 

this was not order n reducible, but let us say order n log n reducible; did not mean 

nothing. Yes, we will come back to that. But what this problem show what this proof 

shows is a very simple proof. 
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But this proof establishes something; let me summarize what this proof establishes first. 

So, this proof claims that this proof or let us say some observation about the proof, let us 

say we are assuming that convex hull algorithm must output ordered set of corner 

vertices. If I did not have this constraint, suppose I was only interested instead of 

outputting the corner points in any order. Suppose, my convex hull algorithm was not 

required to produce this vertices in counter clockwise or clockwise order, but just either 

set of point sets; tell me what are the corner points? If my convex hull problem was 

specified like that, this lower bound will not hold.  

And number 2, what was just observed here is that; I could be interested in an algorithm 

where I only have to identify which are the corner points. I do not have to output them in 

any given ordering. No, then this previous reduction does not hold because I have to 

assume that the convex hull gives us an ordered set of boundary points, so that from 



there I can reconstruct the sorted set. If the output points when not to be produced in any 

sorted order, then I cannot reconstruct the convex hull from there; the sorted points from 

there. 

So, the proof uses that strong assumption that the output of the convex hull; for most 

algorithms of convex hull, they produces them in sorted order. But then someone may 

have a different specification; that is what it is. So, most natural algorithms you will 

design, will produce them in sorted order and therefore, this proof hole goes through.  

But, then theoretically why do you always want the points to be in sorted order? I may be 

only interested to know, what are the corner points? And therefore, then in that case this 

reduction does not hold. Number 2, if all points are not on the boundary i.e., only h, 

where let us say it is much smaller than n, again this lower bound does not give us 

anything. To the contrary, we have already seen we have an algorithm that works in n 

times h time; we have an algorithm that works in n log n time and they are incomparable 

depending on the size of the output. If the output size is very small, one is better; the 

output very large, the other one is better.  

And, we only know that if the output size is large, then log n is optimal, if my convex 

hull is required to produce the points in the sorted order. So, I will address this one again 

later, I will postpone this discussion when I get into more formal models of lower 

bounds. So, about point 2, it basically leads or gives us hope or you know whatever you 

call it or you know with just we have to break our heads again to figure out if we can 

have something better than n log n. n h and n log n are not comparable; you want 

something that will behave, whatever you call it optimally, for whatever the output size 

is; you remember what we did for the two dimensional maximum? What do we get 

eventually? n log h, right. So, that would be a good guess; if we can get an algorithm that 

is n log h, so, the question I am raising here is this: how about n log h? 

So, can we get an algorithm that works in n log h? Because if it does, then this seems to 

this would actually subsume both the cases n h and n log n, because when h is large then 

it will be no more than n log n and when h is small then again it will be better than n 

times h. However, as I said the optimality of this again will be left; I am not going to 

address at this point; we will just try to see if you can obtain an algorithm for which the 

running time is what, n log h.  



No, but that only give you h log h bound, right. Yeah, that is what I am saying. So, this 

both for maximal points and this one; it turns out that you can actually prove this sort of 

a lower bound n log h. 

(Refer Slide Time: 48:38) 

 

So, this is a tight bound actually, but that discussion and will have to wait. So, let us first 

try to design something better; I will give you the idea and then we will carry on next 

time. So, historically there was a very sort of very well known algorithm for convex hulls 

and that is very simple idea; what it does is it identifies the left most point; again, let us 

look at only upper hulls; right most point. And then, what it does is, we are given other 

points. It finds out the point that is furthest from this line passing through l r. In other 

words, and if you translate, you think about parallely translating the line l r, what is the 

furthest in terms of perpendicular distance? Let us say. 

So, you can find out the distance of this point from this line; again, we are using some 

formula of the analytical geometry. And suppose this is the farthest point in this case, 

then this point will necessarily be on the convex hull; that is known, fine; that is nothing 

new. Then, what you do subsequently is that look at this triangle. Any point in the 

triangle will not be on the convex hull; gone, so, these points are all gone. So, what you 

are left with: points here and points here. So, what you can do now is try to construct 

recursively, try to construct the convex hull of this side and construct recursively the 



convex hull on this side again; this can be simply pasted because that is the separating 

boundary.  

And you keep repeating it; this is a very simple thing, you just find this left most and 

right most point, draw the line, find the point farthest from there and you know 

throughout all the points in the triangle; you can modify these by figuring out some 

trapezoid and throwing out all the points from within, but you know this is I am saying 

historically, this was identified as a very simple procedure for finding convex hull of 

point sets and this goes under the name of quick hull. 

So, quick hull was discovered even before this Graham scan etcetera was discovered. 

Now, what do you think, it should be the running time of quick hull, this kind of quick 

hull? Average over what? All possible what? Yes. So, how would you even sub why are 

you even thinking about average because you do not even know how to express that 

average; till now we are never talking about how the point sets are distributed; point sets, 

how point sets are distributed? We do not even have a measure or notion of that yet. 

So, let us not bring that into; n h? No, in the worst case what will be the running time? 

Let us forget about h. No, but then you can also be dividing it very nicely, right. So, why 

is it called quick hull? Can you make a guess? Why this is called quick hull? Yes, let it 

be a quick sort; what do you do in a quick sort? You identify a splitter and divide the 

points into two sets and sort them recursively and that is you quick sort. 

Here, it is called quick hull because it reminds you of one of that. I have basically, now I 

have two sub problems, where I am recursively sorting and doing. So, sometimes people 

say that you know quick sort has the running time of N Square in the worst case; why do 

people say that? Because if the splitted point or the pivot point is very skewed to one 

end, you are not actually doing much justice to dividing the problem. So, quick sort 

works very nicely when the point sets are more or less equally divided and that can be 

actually almost guaranteed by if you choose a splitter at random. 

Here, by the way we are not choosing anything at random; we cannot choose anything at 

random, everything is defined on the basis of the point sets. Here is the left point, here is 

the right point and it is the point that is furthest from this line. So, there is nothing 

probabilistic or randomized about this. So, we cannot even ensure like we do in quick 

sort, by picking the revert element at random. 



Well, in this description, there cannot be any randomness, clearly. Then, you have to 

prove certain properties about it, right; if you pick a point at random, how is going to 

behave? How is going to split up? We have no idea. So, it is not clear, she is just saying; 

you know that we just pick a point random; how we do it, you know? We have to think 

about it what you know. Somehow randomness is some kind of magic that will work; we 

will come to that. So, I will show you that it does work as magic also, but not a very 

straight forward manner. 

Here, you know we have the same thing again, that I can have a situation where you 

know all the points will be on one side and therefore, I am not going to divide the 

problem into; doing any justice about you know fairly dividing the problem, so, it run 

into the same problem of you know. When you do not use randomized quick sort, you 

may have the problem. So, these are the same problem. But let me just make this one 

modification and again the solution is to use some kind of randomness, but I think we are 

out of time today, I will take it off next time. 


