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Hello everybody, welcome to the first lecture, which is a lecture on Introduction to 

Computer Architecture. The aim of this particular lecture is to first give you an overview 

of the field which is computer architecture, and then also to give you an overview of the 

book; that this particular chapter is based on, is the first chapter of the book Computer 

Organization and Architecture, published by McGraw hill in 2015. So, towards the end 

of this chapter I will show you the outline of the way concepts are presented in the book, 

and how the rest of the lectures will proceed. 
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Let us begin by describing what exactly is computer architecture. So, the answer is very 

simple, it is a study of computers. So, computers as you know are there everywhere. The 

computer that I am using at the moment to record this video. Computers are used in cell 

phones, and cameras, and then nowadays computers are there in watches, they are almost 

there everywhere. So, let us distinguish between two kinds of terms that are used for the 

study of computers; the first is computer architecture, and the second is computer 

organization. So, computer architecture is a view of a computer; that is presented to 



software designers, which essentially means, that it is an interface or a specification that 

the software designers see, it is a view that they see, of this is how the computer works 

and this is how they should write, software for it, whereas computer organization, is the 

actual implementation of a computer in hardware. 

Oftentimes, the terms computer architecture and computer organization, are actually 

confused or computer architecture is used for both. So, that is common, but we should 

keep in mind that there are two separate terms; one of them is computer architecture, and 

the other is computer organization. 
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So, again is a computer, we have computers everywhere, we have a computer on the 

desktop over here, we have a computer in a laptop or phone, an iPad. So, we can define a 

computer, as a general purpose device, that can be programmed, to process information, 

and yield meaningful results. So, mind you this definition has several facets to it; the first 

is, that a computer you should be able to program it. So, circuit that does a specific 

action is actually not a computer. 

So, for example, let us say that you have small thermometers on top of the room, which 

is showing what is the current temperature: that is not a computer even though you know 

is showing it is temperature on a nice screen. The reason is that this device cannot be 

programmed. Second, it needs to be able to process some information that is given from 

outside; like you enter some keyboards some information via a keyboard or a mouse. It is 



processing that information; it needs to yield meaningful results. So, all these three facets 

are important for defining what a computer is. 
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So, how does the computer work? A computer has a program which tells the computer 

what needs to be done; that is because, the way that we have defined a computer, is that 

it should be possible to instruct it to do something. So, having a program is point number 

one. Second there needs to be some information that the program will work on. For 

example, let us say you are trying to you clicked the photograph, and the photograph has 

some red eyes. So, we are trying to remove the red eye effect in photographs. So, in this 

case the photograph will be the information stored, and the program will be the piece of 

code; that is working on the information, photographs in this example, and then the 

finished good looking photographs is the result. 

So, what is the program again, it is a list of instructions given to the computer. The 

information store is all the data image images files videos that a computer might process, 

and the computer once again is an intelligent device that can be instructed to do 

something, on the basis of the instructions, it processes some known information, to 

generate new and better and meaningful results. 
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So, let us take the lid off a desktop computer and see what is over there. So, if you take, 

if you open a desktop computer, the first thing that you see over here, is a green board, 

and this is called the motherboard. So, this is a circuit board for the rest of the circuit is r. 

The two most important circuits is that at least we are interested in at the moment, is the 

CPU the central processing unit, which is the main brain of the computer. This is the 

CPU. You would also see a small fan on top of it the job of the fan is to remove heat, and 

it is the other rectangle over here which is called the memory of the main memory. So, 

this temporarily stores the information that the CPU the processor is going to use, and 

the computer processor reads data from main memory processes it and writes it back. 

We also another very important unit over here which is the hard disk, this also saves 

information. What are the key differences between the memory in the hard disk; number 

one, the memory storage capacity is small. Maybe in today’s day and age it might be like 

32 gigabytes, whereas, the hard disk storage capacity might be 10 times more or 20 times 

more. So, so we will get into the definition of how much what is a kilobyte or megabyte 

or gigabyte in chapter two, but essentially it is a unit of storage. So, the hard disk can 

typically store 10 times more data, but it is also significantly slower. 

The other advantage of a hard disk is that if I turn the power off, all the data in the 

memory will get erased, whereas the data in the hard disk will remain. So, those are the 

differences. So, in this course, we will primarily be interested in these three unit is which 



are the CPU the memory and the hard disk, but mind you there are many other smaller 

processors all over the motherboard. So, will not have a chance to talk to them, but we 

will have a chance to at least discuss some of them, in the last chapter, in chapter 12 not 

at the moment though. 
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So, what does a simple computer look like? Simple computer, like the one that we 

looked at right now, has this computer a CPU, which does the processing; it has the 

memory and a hard disk. So, the hard disk maintains all the information’s, when a 

computer is powered off. When it is powered on, some of the information comes to the 

memory, and then the computer reads information from the memory, works on it, and 

again writes the results back. 
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What more do we need to add to make this a full functioning system. We need to add I O 

devices, input output devices. This can include a keyboard a mouse for entering 

information. And for displaying information, it can be a monitor or a printer, to display 

the kind of information that a computer has computed. It can be other media also; like 

the network or a USB port, but we will gradually see what these are, at the moment let us 

confine ourselves to a very simple system. 

(Refer Slide Time: 09:54) 

 



So, some food for thought, what do you think is the most intelligent computer. So, we 

will have many of these burger icons throughout the presentations. So, this will stimulate 

the student to think a little bit more. 
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So, the answer is our brilliant brains. They are clearly the best computers by far and. So, 

how does a computer differs from our brilliant bring. Well our brilliant brains are 

extremely intelligent, they can do very complicated things, and they can think about the 

meaning of life, they are endowed with abstract thought. So, basically they can think 



about the difference between, thought thinking memory consciousness. Computers have 

none of that they are very dumb machines. All that they can do is they can add, they can 

multiply, they can subtract, but the advantage here is and that is mind you a very big 

advantage, that the speed of basic calculations in a computer is very high. 

So, it might be doing dumb things; like addition and subtraction, but it is doing them a 

billion times a second. As a result it becomes ultra-powerful. Whereas, even the fastest 

human beings will not be able to do even a thousand or a hundred or even ten additions a 

second. So, this essentially says that we might be capable of very abstract and profound 

thought, but we are not capable of doing a lot of simple things very quickly; that is where 

computers excel. 

Well some more advantageous. Computers never get tired, they never get bored, and 

they never get disinterested. Whereas, we human beings after some time we get tired, 

almost always we get bored, and disinterested. So, in a nutshell computers are ultra-fast 

and yet ultra-dumb; that is fine. 
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So, how exactly do we tell a computer what needs to be done. So, what we typically do, 

is that we write a program, and the program is written in any other languages that you 

people know; it can be C, it can be C++, it can be java, it can pretty much be any 

language that students know, it does not matter. So, after that this is compiled into 

another program called an executable. So, the issue is that computers do not understand 



complicated languages; such as C++ or java. We only understand a language comprising 

of 0’s and 1’s. So, the language only has a 0 and a 1. So, any kind of a computer program 

would just be a sequence of 0’s and 1’s, like the sequence that I am writing right now. 

After we have created an executable; so by the way an executable is also called a binary, 

it is also referred to as a binary. Once you have built the executable, the executable can 

be sent to the processor. So, I need to have a processor over here, and the processor will 

execute the program, and get the desired output. So, what exactly is the job of a 

compiler, the job of a compiler is to compile, compile what. Compiled programs written 

in a programming language such as c or C++, and convert it to a sequence of 0’s and 1’s. 

What is the job of a processor? The job of a processor is to take the sequence of 0’s and 

1’s, understand what they are telling it to do, do it and generate some meaningful output. 

(Refer Slide Time: 13:57) 

 

So, what can a computer understand? So, computers are not smart enough to understand 

instructions of the form multiply two matrices or compute the determinant of a matrix, 

find the shortest path between Mumbai and Delhi. So, they are simply not that smart, that 

they can do such problems with such high level of difficulty. They are not even smart 

enough to answer a question what is the time right now. So, what do they understand? 

They understand very simple statements, add a plus b to get c, multiply a and b a times b 

to get c. 
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So, now the question is that how does this differ from humans. Humans can understand 

very complicated sentences in very complicated languages; English, French, Spanish, in 

Hindi, Chinese, Japanese, Italian. Computers in comparison can understand very simple 

instructions, extremely simple instructions; the semantics of all of the instructions. So, 

what is the meaning of semantics, it is a meaning, it is a way that instructions are used as 

what they stand for. So, the semantics of all the instructions supported by a processor is 

known as it is instruction set architecture or ISA. So, this includes the semantics of the 

instructions themselves, how the instructions are written, along with their operands, and 

interfaces with peripheral devices. 

So, just to summarize what is an instruction set architecture or an ISA. It is pretty much 

the set of instructions, that architecture provides or alternatively a processor understands 

right. It is basically the set of instructions, that are given processor understands, and 

these are very simple set of instructions add, subtract, multiply types, but different 

processors might understand different kinds of instructions, or the instructions might be 

written in different ways; that is the reason you will have different ISAs, but pretty much 

the idea is the same. 
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So, what would be examples of instructions in ISA arithmetic instructions, add, subtract, 

multiply, divide. Logical instructions and or a not, and data transfer instructions to move 

data between the memory and the processor slash CPU. So, what are the desirable 

features that you want of an ISA, and what are the absolutely critical features that you 

want. So, the most critical feature that you wanted it needs to be completed. What I mean 

by complete, is that it should be possible, it should be able, to implement all the prog 

programs that users may want to write. 

So, you one user might want to write a program to read todays temperature and send it 

over the internet. One user might want to write a program. So, take a photograph or the 

blackboard, and recognize all the characters. So, irrespective of whatever is the program; 

the ISA should be able to, in a sense realize all the programs that users may want to 

write. So, we will discuss this later, but this is the notion of completeness, that whatever 

I want to write, it should be possible on a given processor. 
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Next the Russell needs to be, the ISA needs to be concise, in the sense we do not want 

too many instructions, and we do not want 10000 instructions. We want a relatively 

smaller set of instructions. What is small is a debatable point, but it as if now ISA 

contained somewhere between 32 to a 1000 instructions, and different ISAs contain a 

different number of instructions. And instruction should also be generic, in the sense it 

should not be too specialized. 

We should not have an instruction of the form, let us say add 14 that adds a number with 

just 14, because this instruction is too specialized, it is very unlikely that this instruction 

will be used by all the programmers, or even a large number of programmers. So, this is 

probably a bad idea, and we also want the instructions to be simple, what again is simple 

is a subjective thing, but the instruction should not be extremely complicated. 
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Now, let us come to designing an ISA. So, we already know that an ISA should be 

complete, concise, generic and simple. Completeness is a necessary criteria, being 

generic and concise and simple they are very subjective criteria. So, we can that, there is 

a massive leeway there. So, there are very important questions that need to be answered. 

Like how many instructions should we have, what exactly should they do, how 

complicated should they be. 

So, there are different paradigms with which we can design instruction set architectures. 

So, we can have what are called RISC architectures, and we can have CISC 

architectures. So, RISC architecture is called a reduced instruction set computer or 

computing architecture. Here the idea is that we will have a fewer set of instructions. The 

instructions themselves will be really simple, such that it is very easy to understand them 

inside a processor. 

So, ARM processors which are typically used in all the cell phones are examples of 

RISC processors. Similarly we have CISC processors, which have a very different 

paradigm. So, instead of having fewer instructions, CISC processors will have a lot of 

instructions. 
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And they will also be, as we see on this slide highly regular, meaning that it is possible 

one instruction might take one argument, another instruction might take three arguments. 

They might take multiple arguments operands and implement very complex 

functionalities. So, this would be an example of a CISC construction set, and the number 

of examples of such instruction sets are Intel at x 86. Intel processors power most of the 

desktops and laptop computers today, to summarize whatever been saying. We have two 

kinds of instruction sets RISC and CISC. RISC means reduced instruction set, where you 

will have few instructions; they are simple and have a very regular structure. The biggest 

example as of today is the ARM instruction set, and ARM processes are used in almost 

all cell phones, and tablet us and smaller computing devices. 

CISC instruction sets are complicated, they have a lot of instructions, and some of them 

are complex, and Intel uses them, Intel and A M D processors use them. So, they have 

their positives and their negatives, and we will get a lot of chance to discuss them as we 

go, as we move through this lecture series and, but we are not in a position right now to 

evaluate the tradeoffs. 
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So, what is the summary up till now; computers are dumb yet ultra-fast machines, 

instructions are basic rudimentary commands used to communicate with the processor, 

very basic simple commands. The compilers job is to transform a user program written in 

a language such as c, to the language of instructions which are encoded in terms of 0’s 

and 1’s; such that the processor can understand it. The instruction set architecture refers 

to all the instructions that a processor supports, including how exactly an instruction 

works, what are it is semantics. This means what is the meaning what does an instruction 

do, how many arguments does it take, and what are the other features of an instruction. 

So, we want an instruction set to be complete, in a sense it should be possible to write 

any kind of program with it. 

It is additionally desirable if it is also concise generic and simple, but then again we are 

getting into the RISC verses CISC debate, which has been a very consuming debate in 

the computer architecture community. So, that is the reason I said that you would want a 

concise generic and simple ISA, but there are other tradeoffs as well. We are just not in a 

position to discuss the tradeoffs right now. 
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So, coming to the outline, what we have studied up till now is pretty much the language 

of instructions, and what exactly is an instruction, what is an ISA; this part of how to 

decide if an ISA is complete or not is optional; and students who are not really interested 

in theoretical computer science can skip this part and directly move to the next part. 
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So, let us start this part a little bit, and then I will have an arrow, which the students will 

be able to click when they download the slides, and they would be able to skip the part. 

So, this particular subsection of the book in this particular part of the lecture, deals with 



the following aspect. How do we ensure that an ISA is complete, which means it can 

implement all kinds of programs, let me give an example. 

Let us assume that we just have add instructions, if you just have add instructions can we 

subtract, can we compute 5 minus 3, the answer is no, but if you just have subtract 

instructions, can we. We can definitely subtract, but can we also add. The answer is yes. 

The reason answer is yes is as follows that a plus p is equal to. So, as you see what I have 

done is, that using subtracts instructions you can implement addition, but using add 

instructions you will not be able to implement subtraction. So, clearly subtract is a much 

more powerful instruction than addition. So, there are some other instructions that are 

more powerful than others. 

So, what we need to see is that we need to have a set of instructions, such that no other 

instruction is more powerful than the entire set, and all programs that we want to write 

can be implemented in that set. 
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So, how do we ensure that we have just enough instructions, such that we can implement 

every possible program that we might want to write? Well to answer this we need to take 

recourse to theoretical computer science. Some of this material can be slightly 

complicated. So, students who are interested can skip this part and directly go to slide 35. 

And the power point is in front of you all that you need to do, is essentially click the 

arrow over here, essentially click this arrow it will take you to slide 35. 
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But in the lecture, let us just get an overview of what is this part. So, what we want is a 

universal ISA. A universal ISA is an ISA which can implement all programs, known to 

mankind. This is the same as implementing a universal machine, for a machine and a 

processor are being used synonymously. The universal machine has a set of basic 

actions, and each such basic action can be interpreted as an instruction. So, they are more 

or less the same thing, because after the instruction is an action, when you are asking the 

processor to add two numbers, we are asking it to do an action.  

So, the fact that I am asking the processor to do something that is an instruction, and the 

fact that the processor is doing it is an action. So, every instruction is correlated with 

every action. So, in that sense a universal ISA and universal machine pretty much mean 

the same thing. 
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So, how do we build one such universal machine that can compute the results of all kinds 

of programs? Well the answer to this is attributed to a gentleman for Alan Turing, who is 

the father of computer science, and he discovered the Turing machine that is the most 

powerful computing machine known to man; so his father. There is an Indian connection 

to Alan Turing. His father worked with Indian Civil Service at the time that he was born 

and, but again this is disconnected with the lecture per say. So, what is the Turing 

machine, it is a theoretical device, it is not a practical device, but at least theoretically it 

can compute the results of almost all the programs, that we are interested in writing. 
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What is it? It is a simple device, very simple device. So, let us consider an infinite tape. 

A tape is, as shown in the diagram, it consists of basic cells, and each cell contains a 

symbol. A symbol can be a letter a number you can define anything. A symbol is 

basically an element of a certain set, where the set can be the set of letter, set of numbers, 

set of words, it does not really matter. So, every cell contains a symbol, and the tape is 

semi-infinite in the sense it. I am sorry the tape is infinite. So, the tape extends in both 

directions infinitely. 

There is a tape head, that points to a current symbol on the tape, it can either move to the 

left or to the right, in every, show in every round, it can either move to the left or to the 

right. There is an additional structure called a state register, which maintains what is the 

current state, and the current state is one among a set of finite possible states. So, the way 

that a Turing machine works is as possible, and the way it works is encoded in the action 

table. So, we look at the old state. I am sorry we look at the old state over here, what is 

the old state, or the current state over here and what is the symbol under the tape head, 

using the old state and the old symbol, we find out the new state. 

So, the new state is written into the state register. We find the new symbol, so the current 

symbol is overwritten with a new symbol, and we move the tape head one step to either 

the left or to the right. 

So, this is an incredible machine in the sense that it might not be obvious to you, but this 

can implement any program that you and I are interested in writing. So, how will such a 

simple tape head that can only move left or right to it?  
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Well, let us take a look at an example then only we will find out how it works. So, I am 

skipping this particular slide, because this summarizes what I just described, about the 

operation of a Turing machine. 
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So, let us take a look at a simple example, there are a few more examples in the book 

with far more details. I would advise you to go to the book and read that part, but let us 

at least take a look at a very simple example over here. Let us assume that we have a 

number that is written on the tape of the Turing machine, where each cell contains a 



single digit, and it is demarcated on both sides for the dollar signs. The tape head starts 

from the unit are place, and what we want to do is increment the number by 1, add 1 to it. 

So, what we need to do is we need to figure out two things. 

One is that what would be the states that we keep in a state register, and how do we 

construct the action table. Well the states that we want to keep. Let us have two kinds of 

states 1 and 0, the state 1 basically means that we need to add 1 to the current digit; that 

is under the tape head. So, you can think of it as a carry right, that 1 needs to be added, 

and 0 means that nothing needs to be added. So, let us have only these two states 1 and 0. 

So, here is how we would start out to construct the action table. We will start from the 

rightmost position with a state equal to 1, which means that 1 needs to be added. If the 

state is equal to 1, we replace whatever number x that is there over here with x plus 1 

mod 10, which means that we replace 9 with 0 in the first round. 

So, the new state will be equal to the value of the carry. So, since I added 1 to 9, we still 

have a carry of 1. So, the next state will be equal to the value of the carry which is still 1, 

and the tape head will now move over here. So, the tape head will then see that, it has 6 

under the tape head. So, it will come to this line over here. Replace 6 by 7, but since 

there is no carry. Here the state will be equal to 0. Subsequently the tape head will move 

to each of these locations, and since the state will be 0, nothing needs to be changed, and 

finally, the computation will complete, when it hit is the dollar sign over here. So, what 

we have seen over here is an example, of how the Turing machine can be used, and how 

it can be used to effect a very simple computation, which is to add 1 to a number. 
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So, this machine looks simple, it actually is simple, yet it is extremely powerful. We can 

solve all kinds of problems, starting from mathematical problems, engineering problems, 

protein folding, games, you name it you can do it, the question is how well start by 

reading the book, and then read a book on theoretical computer science. Any languages 

in formal language, or any book on formal languages or automata theory, will give you 

the answer. 
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So, you can try using the Turing machine to solve many more kinds of problems. So, 

now, I should discuss; what is the Church Turing Thesis. So, during the time that Turing 

was doing his work, there was another mathematician could Alonzo Church. So, both of 

them Alonzo Church also came up with another formalism, which can be used to write 

programs for anything that we possibly want to write for. So, together the thesis is 

attributed to them. What is the Thesis? It is not a theorem, it is essentially a statement 

which is said without proof, and it is up to others to find a counter example, but in the 

last 60 years or so we have not found a counter example; so this Church Turing Thesis. 

So, you can think of a thesis as a hypothesis. The Church Turing thesis says, that any real 

world computation can be translated, to an equivalent computation involving a Turing 

machine. So, what I can do is that if I have a program which is a real world computation. 

I can translate it, to exactly the same and equivalent competition, which does exactly the 

same on a Turing machine. 

So, what do I need to do, is in the Turing machine all that I need to do, is create a set of 

symbols that need to be written on the tape, create a set of states, and then populate the 

action table; that is all that I need to do, to basically create a Turing machine for any 

possible program. So, mind you there is no proof of this, is just that we have not found a 

problem that cannot be solved on a Turing machine in the last 60 years. So, any 

computing system that is equivalent to a Turing machine, is said to be Turing complete. 
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And. So, we will be using this term frequently at least the next few slides. So, now, for 

every problem in the world we can design a Turing machine, this Church Turing thesis 

tells us. Now can we design a universal Turing machine that can simulate any other 

Turing machine? So, what is a universal Turing machine? So, let us call it an UTM. So, 

what a UTM does is as follows that if a Turing machine is given to it, and the inputs are 

given to it. So, whatever is written on the tape is given to it. Can it produce an output? 

The output that the original Turing machine would have produced, can it in a sense 

simulate the Turing machine, and simulate it is action table, all of it is actions, and 

produce the output to the original Turing machine would have produced. If we can 

design such a machine we will call it the universal Turing machine, or the UTM, and the 

UTM it unit is a truly universal machine, because every program can be mapped to a 

Turing machine, and if the Turing machine can run on a universal Turing machine.  

We basically have a universal machine that can produce the results for any program. So, 

the question is why not. The logic of a Turing machine is really simple, what do we do. 

We read the current state and the symbol that is pointed to by the tape head. Update take 

it then consult action table, change the current state, write a new value in the tape, write 

overwrite the earlier symbol if required, and then move the tape head left or right. If this 

is all that needs to be done, a UTM or universal Turing machine can easily do this. It can 

take a Turing machine as input, and then easily simulate it. A UTM needs to have it is 

own action table state registered, and a tape to simulate any arbitrary Turing machine, 

but that is not very hard to do, and definitely some of you who are listening to this video, 

can take a crack at doing this, it is not that very hard at all. 
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So, where do we stand right now? We stand at this point, where we know from the 

Church Turing thesis that given every program, given any program we can make it 

Turing machine, to implement the logic of the program and given inputs, a Turing 

machine and provide the output. So, basically given any program or any problem that we 

want to solve, we can always create a Turing machine for it. And we have a universal 

Turing machine, which given the Turing machine and the input, we will be able to 

produce the meaningful output. 

So, the universal Turing machine by itself is a computer, which can be programmed. 

How is it being told what to do? Essentially the Turing machine is that is being given as 

input, is telling that Turing UTM what to do, and the tape of this Turing machine has the 

information, that needs to be processed, and it is the job of the UTM to simulate the 

Turing machine that is being given to it, and generate meaningful output. 
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So, how does a universal Turing machine work? Well it is very simple. So, it has a 

generic action table, which is the action table of the UTM. It has a generic state register, 

and it has it is tape head. On the tape, it has the action table of the Turing machine; that it 

is simulating called the simulated action table. It simulates the state register of the Turing 

machine that it is simulating. 

So, it has a simulated state register. It also simulates the tape of the Turing machine that 

it is simulating, plus it has it is own temporary symbols that it uses. So, we can refer to 

the tape and a temporary symbol area the work area. So, this is pretty much how, you 

would design a universal Turing machine, and it is fairly simple to do so. 
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So, how exactly is this related to a modern process? The way it is related is actually very 

simple and very obvious the generic action table that you have. So, what exactly is it 

doing? It is finding out that what does simulate a Turing machine want to get done and it 

is doing it. So, we can think of the generic action table as the CPU, as the processor, 

which is a general purpose computing device you give it instructions, the processor will 

give you meaningful results. The work area is pretty much the tape of the simulated 

Turing machine plus an area where you can keep some temporary data and symbols, can 

be referred to the data memory, but this is where contains all the information. 

The simulated action table which tells the UTM what needs to be done, essentially 

contains all the instructions. So, that we can think of it as the instruction memory, and 

the simulated state register, is basically telling you that at what point are we in the 

simulated Turing machine, and what needs to be done next. So, we can think of this as a 

program counter. So, these are essentially the four basic elements of any computing 

system. 

Let me go over there once again. The CPU is pretty much the brain of the system, it is a 

generic computing device, and where given an instruction it does whatever it is told to 

do. The instructions pretty much come from the instruction memory, which holds all the 

instructions, and the instructions work on the data. So, they come from the data memory 

and we also need to know that given a certain instruction of, what do we need to do next 



right in a given the current instruction that we are doing. What exactly do we need to do 

next, and what should be the behavior of the next few instructions, and this can only be 

done by having some kind of a storage area, to at least save the fact that where exactly 

are we there inside the program, and the pretty much like the current state, and this in a 

modern processor is called a program counter and this concepts. 

So, mind you this, you can take a look at the book at the relevant chapter and you can see 

a better mapping between a universal Turing machine and these concepts. So, I am just 

presenting a very high level view out here. The job of a program counter is basically to 

indicate to the hardware, as well as to the software, what exactly is the point in the 

program, at which the processor is currently there. So, think of a program, and the 

program. Program counter is typically abbreviated as PC. 

So, it holds for which point in the program are we currently there at, and it continuously 

keeps changing, as the program keeps executing. So, it keeps on changing it is position. 

So, the simulated state register has sort of become the program counter in a practical 

implementation. Even though you have not understood possibly most of the theoretical 

aspects of this; here is the important takeaway point which will also do summarized in 

the next slide, that from a theoretical device, we have created a practical device, with 

pretty much cutting down the theoretical device into multiple chunks, and assigning a 

practical device to each chunk. 

So, the generic action table may merit the CPU. The simulated action table we merit the 

instruction memory which has all the instructions. The state register we merit. The 

simulated state register we made that the program counter or the PC. So, what this 

essentially tells us, is that where exactly are we they are inside a program, and the data 

memory, pretty much tells us that, what is the data that we need to work on. 
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For all of those who skip the theoretical part welcome back. So, the computer that we 

have designed with, you know after getting inspired from a theoretical device called a 

Turing machine. So, for those who skip the discussion on theoretical devices, a Turing 

machine is a theoretical device, which inspired a practical device, the practical device 

being the modern computer. So, the modern computer has certain components. So, the 

components are the CPU, or the central processing unit, whose job is to read instructions 

interpret them and execute them. So, it has an arithmetic unit. 

So, the arithmetic unit the job of that is to add, subtract, multiply, divide. It has a control 

unit to pretty much run programs with if statements and for loops. It has a program 

counter, which says which line of the program we are currently executing. So, a small 

animation over here, to visually show what a program counter is like. So, it points to a 

certain instruction that we are currently executing. We have a program, which is the 

physical set of instructions, in the instruction memory, and we have the data in the data 

memory. 
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So, what again are the elements of a computer, let us just go through. So, the memory is 

an array of bytes. We will discuss what exactly the byte is in the next chapter, but we can 

think of it as a unit of information. So, the memory is a large array of bytes, in that it 

contains the program, which is a sequence of instructions, we can maybe divide the 

memory into two types, instruction memory and data memory. The program data which 

is the variables that you use, the constants that you use, the files that you work with, are 

all there in the program data memory. 

So, this is the memory part. The program counter points to a given instruction in a 

program, after executing an instruction you move to the next instruction, and just in case 

you have if like in C E A of s statement in some languages have a go to statement. So, at 

that point the processor jumps to a new point in the program, and the program counter 

reflects that. Finally, you have the CPU or the central processing unit, which contains all 

the execution unit is and the program counter. 
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So, let us now design an ISA, which is Turing complete. For those who missed the 

theoretical part what this means is, that the ISA is equivalent to a Turing machine or it 

can be. In other words you can say that it can be used to implement all kinds of 

programs. So, surprisingly a single instruction just one instruction is Turing complete in 

a sense I can write a program with it. And in fact, I can write all kinds of programs with 

it. So, this instruction is sbn, subtract and branch is negative. So, let me maybe slightly 

digress and tell the readers what exactly an sbn is. So, consider that you want to add two 

numbers a plus b, and assume the variable temp initially has 0. So, the v that an sbn 

instruction works is as follows. 

So, what an sbn does, is that it essentially subtract b from a. So, it compute a is equal to a 

minus b, and if the result is negative now, if the result is negative, it will go to the line 

number; that is mentioned over here; otherwise the program will go to the next 

instruction. So, in this case what we do is if we assume temp is 0. So, what we are 

essentially computing is temp is equal to 0 minus b. So, irrespective of the outcome we 

from instruction one we come to instruction two, and here again we compute a is equal to 

a minus temp, which is pretty much equal to a plus b. 

So, in this case we are adding a plus b with the sbn instruction, and we can assume that 

the next instruction is exit. So, in both cases irrespected the result being positive or 

negative we just leave the program. So, the very surprising thing, which also can be 



proven, is that this simple instruction can be used to implement all kinds of programs, 

why would you want to or not want to do it let us discuss later. 
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So, let us discuss one more example which is to add the numbers from 1 to 10; a simple 

arithmetic se progression series is being added. So, let us assume that the following 

variables have the following values to begin with; one as the name suggests contains 1, 

index contains 10 and the sum is 0. So, that we would essentially write a program to add 

numbers from 1 to 10, is actually very easy in such kind of an instruction set. It is all that 

it requires is only 6 lines, and here is how it works. 

So, we take a variable temp and subtract it with itself. So, temp is equal to temp minus 

temp, the temp is equal to 0. Irrespective of the outcome we go to instruction two. There 

we compute temp is equal to 0 minus index or temp is minus 1 times index, then we 

come to the third line where we add some plus equal to the index. So, this is same as the 

addition trick that we showed in the last slide, we are essentially computing sum is equal 

to sum plus index, using these three lines, and mind you here irrespective of the outcome 

from 3 we go to 4. 

Then what we do, is that we subtract 1 from the index, we are essentially adding some 

plus equal to 10, then some plus equal to 9, some plus equal to 8 and in that fashion. So, 

we subtract 1 from index, and if we see that it has become negative, means it is time to 

get out of the loop. So, we just jump and we come here to the exit point. Otherwise we 



do the same trick we set temp to 0, and we subtract 1 from temp. So, since the outcome 

is known it is minus 1, this essentially acts like a go to statement, where we go to 

statement number 1 and we jump from here to here. So, we have also implemented a for 

loop, where we loop for, we loop till the exit condition is satisfied. 

Once the exit condition is satisfied we come out. So, what is the final outcome of this 

piece of code is that we are doing an addition in this line. See initially sum is 0. So, first 

we do sum plus equal to 10 then we decrement index. So, in the next iteration we do sum 

plus equal to 9. Similarly we just keep going, till we have sum plus equal to 0. So, 

ultimately sum contains the sum of all the numbers from 0 till 10, and this is exactly 

what we wanted to compute. So, we have written our first simple program, using a very 

simple instruction, using only one instruction, is being subtractive negative, and within 6 

lines you have achieved quite a bit. 

So, such kind of method or a style is also called low level programming, where instead 

of using any high level primitive, you have just used very simple machine instructions. 

So, this is also the first assembly program that we have written. So, what is an assembly 

program? It is well it is the kind of low level program that we just wrote, and as you can 

see it is very easy to actually simulate this, run this on a computer. So, we are all set 

when it comes to writing such simple instruction based programs. 
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Now, the question is that this exercise was partly theoretical also, in modern ISAs you 

will have multiple instructions. You will have separate instructions for add, subtract, 

multiply, divide, in our logical instructions for and or and not. You will have move 

instructions to transfer values between memory locations, and you will have branch 

instructions to move to new program locations; like implemented go to, as we did in the 

last slide, based on the values of memory locations. You will have all kinds of branch 

instructions to implement if statements, for loops, while loops since all. 
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Finally we look at the design of practical machines. So, how exactly would we extend 

our theoretical results to practical results? 
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So, there are two kinds of machine categories. So, one practical machine is known as the 

Harvard architecture. So in this we have the CPU, we have a separate data memory and a 

separate instruction memory and once the results are computed they are communicated 

to input output I O devices such as a monitor or a printer, and we can see the results. 
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The other is a one Neumann architecture, where the data if it is, you know almost the 

same, it is just the data and instruction memory is fused into one that is all; that is the 

only difference. 
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So, whatever we assumed up till now that the memory is assumed to be 1 large array of 

bytes. A byte is a unit of information, we will discuss it in detail in the next chapter, but 

if you assume such a large structure, the main problem that comes, is that larger is a 

structure slower it is. So, that is the reason I mean we need to introduce a small concept 

here, but we will have a lot of opportunities to discuss this in detail, in great detail. So, 

we want to introduce a small array of named locations, called registers, which are there 

inside the CPU itself. 

So, it is very fast. So, our model of computing would be like this, that if you have the 

CPU, will be small array of registers inside it. So, most of the data will be coming from 

the array of registers, mainly because we 10d to use the same data again and again over 

the same window in time. And whenever a data is not there in registers we can read it 

from memory, put it in registers, work on it from register to register the very fast, and 

once we do not have any more space we can write it back to memory, and then again 

read something else from memory. So, memory is large and slow the set of registers are 

small and fast. 

So, typically we will have somewhere between 8 to 64 registers, and this makes 

accessing the set of registers extremely fast and. The reason that this paradigm works, is 

because accesses exhibit locality, which means that you sort of 10 to use the same kind 

variables, same variables actually, frequently in the same window of time. You keep 



them in registers, you can very quickly access them, and you do not have to access a 

large and slow structure like memory. 
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So, the users of registers of the name storage locations are as follows, that we read them 

from memory to the set of registers, using load instructions. We do whatever we want to 

do with them, with our arithmetic and logical operation set of processor supports. 
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Finally data is stored back into their memory locations. So, it is a simple example over 

here. So, it is a tradition to write registers as r 1 r 2 r 3 and so on. So, here what you see 



is a register r 1 we are reading something from every location b into register r 1. We are 

reading something from memory location c, into register r 2. Then we are adding the 

contents of the two registers, saving it in r 3. And again we are saving the contents of r 

3in memory. 

So, of course, we can write a much bigger program where we read in more locations into 

more registers, and then do a lot of arithmetic operations on registers. So, this will ensure 

that programs run really fast, and just to recapitulate, if we have the CPU over here and 

the set of registers. The set of registers are very fast. So, whatever we want to read comes 

from memory to the registers, and we operate on the register that is typically the case, 

and then again when you want to get in something else from memory, we write back the 

value back to memory. 
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So, what does a new machine look like right now? Well is the same one Neumann 

architecture only with registers inside the CPU. 
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So, what is left the row ahead? So, what we have done in this small lecture is that we 

have derived this structure of a computer processing unit, from theoretical fundamentals, 

from extremely theoretical arguments we have sort of derived what a computer should 

look like. So, one is it needs to have a CPU which is the brain of the computer, which 

pretty much runs all the instructions. We need to tell, have a program counter to tell us 



where we are in the current program, which instruction we are executing. We need to 

have storage locations such as registers and memory. And finally, we need input output 

devices like mikes or keyboards or monitors printers. 

So, we learned a lot about the instruction set architectures, which is basically the link 

between hardware and software, in the sense that software is written in c or C++ or java 

or some such language. The compiler converts it to the language that the processor can 

understand which is a set of instructions. Then the set of instructions are sent to the 

processor which is implemented in hardware; such that the results can be generated, and 

we display to the user via I O devices  
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So, once again the ISA is an interface between hardware and software. So, what we shall 

do is, we shall first look at the software aspect of the ISA, and how to write low level 

programs using processor instructions, called assembly programs. Then we shall look at 

how to implement the ISA by actually designing a processor from scratch. Then we look 

at making the computer more efficient, by designing fast memory and storage systems, 

and in chapter 11. It is not exactly the end, but one chapter before the end we will also 

look at this interesting field of multi process, where multiple processes are used to 

achieve a common objective or a common goal. So, we will look at all of that, during the 

course of this book. 
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So, what is the road map of the course? The road map of the course is simple, that we 

subsequently take a look at the language of bit is, which is pretty much what we can do, 

with bit is and bytes and how to represent information in 0’s and 1’s. We will study three 

kinds of low level assembly languages to program processers; one is ARM assembly, 

mainly for ARM processors used in phones. We look at a generic assembly language that 

we will design from scratch. 

Then we shall look at x 86 assembly, the assembly language use in Intel and a m d 

processors. The middle half of the course we will look at processor design, where 

processor design looks at, well many things, we look start from the building blocks, gates 

registers and memories to look at how basic logic gates, and how registers are made how 

memories are made, we look at all of that from the circuit point of view. And then we 

will have slides on how to add subtract and multiply numbers computer arithmetic. 

And then design processors in chapter 8 and 9. So, we will start with simpler processor 

designs and move into more complicated once. After designing a simple processor we 

look at designing a larger system, a more complicated memory system. A system with 

many processes multi-processing systems, and also integrate I O devices and storage 

devices. So, this is pretty much the overview of the book, which is divided into 12 

chapters. We just covered chapter number 1. So, we have 11 more to go. 

Thank you. 


