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Welcome to the chapter on x86 Assembly Languages. So, as we shall see x86 is just not 

one assembly language, it is a family of assembly languages. They are used by the Intel 

and AMD processors which at least as of 2016 dominate the laptop, the desktop and the 

server processor markets. So, these slides are for chapter-5 in the book computer 

organization architecture published by McGraw Hill in 2015. The book should be 

available in almost all geographies around the world, you can always let the author or the 

publisher know, if a book is not available in certain geography. 

(Refer Slide Time: 01:43) 

 

So, let us come to this very interesting family of ISAs. So, the first point is that it is 

actually not one ISA it is a family of ISAs, but all of them end with a x86. So, that is the 

regions x86, where x can mean a lot of things. So, the great-grandfather in the family is 

the 8-bit 8080 microprocessor used in the mid-seventies and say the 8080 

microprocessor used to have an assembly language of its own, it was a 8-bit processor. 

The grandfather is the 16-bit 8086 microprocessor which was released in 1978; and for 

those days, it was a fairly revolutionary microprocessor because 16-bit was also there in 



 

 

those days; and the microprocessor pretty much started the era of microprocessors and 

gradually large server computers started being built of much smaller microprocessors. 

So, the parents in this generation are the 32-bit processors namely 80386, 80486, 

Pentium 1 till Pentium 4. 

So, all of these the processors used to dominate in the 90s and early 2000. So, pretty 

much for 20 years these processors dominated. Finally, Intel and AMD, so they move to 

64-bit processors, so again 32-bits or 64-bits basically means that the smallest unit of 

storage inside the processor is either 32-bits or 64-bits. Alternatively, this means that the 

size of a register is 32-bits in a 32-bit processor, and it is 64-bits in a 64-bit processor. 

And even you know the size of memory addresses that can be issued by the processor 

and so on in one case is 32-bits, in other case is 64-bits 

So, examples of 64-bit Intel processors should be Intel core i3, i5, and i7 the latest Intel 

processors that we use and similarly examples of AMD machines would be AMD 

opteron and AMD bulldozer which are the latest AMD processors that are used. So, the 

main features, so again why is the name of this architecture x86, because as you can see 

if in a previous slide there are lot of micro processors with the suffix 86, 8086, 80386, 

486, Pentiums, Intel core i3, i5, i7, so all of them pretty much use the same kind of 

assembly language. And the nice thing is that assembly language for i5 is also a super set 

of the assembly language of the earlier micro processors, so which is great. So, since 86 

is at the end of every assembly language of processor line at least till 486, the name of 

the ISA per se is x86. 
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Say x86 is the CISC ISA see unlike RM and simple RISC. So, it has 300 plus 

instructions and so that is the basic ISA at least the one that we are concerned with, but if 

you consider all extensions and so on then out then as of 2016, the number of 

instructions are roughly a 1000. So, instructions can have a source or a destination 

memory operand. So, it is a CISC instruction set. So, the operands themselves can be far 

more complicated and instead of so the numbers of registers are actually few and another 

major difference as compared to simple RISC is that it uses the stack for passing 

arguments and return addresses unlike registers. So, in other RISC ISAs with a lot of 

registers, so we were using the registers for passing arguments and return addresses and 

similar kinds of information, but this does not happen over here, and it uses a different 

memory model called segmented memory. 

So, we shall look at all of these points in detail over the next few slides, but an important 

point that I want to make at this stage is that the x86 ISA is per se and advanced ISA. See 

if you are reading this chapter or listening to this video without a basic understanding of 

assembly languages, you will find it somewhat difficult, because as I have been stressing 

all through walking in chewing gum at the same time or trying to understand a certain 

assembly language as well as the fundamentals of assembly languages. Both are not 

possible at the same time. So, it is possible to do only one, but not the other. 



 

 

So, what my suggestion would be is that readers can go to chapter three, get a broad idea 

of what assembly languages are, they need not read chapter four which is about ARM 

assembly languages, so that is not required. But at least my assumption at this stage 

would be that for all the readers or listeners who want to move forward they have a basic 

idea of what assembly languages are. So, this will really help them, otherwise they will 

find this chapter very difficult to understand because the fundamentals would pretty 

much not be there yet. 
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So, the way that the chapter will proceed is that first we will discuss the machine model, 

then we discuss simple integer and branch instructions. X86 has fantastic memory 

instructions or advanced memory instructions, so we will discuss that we will discuss 

floating-point instructions because floating-point instructions are fairly complicated in 

the x86 ISA. And lastly as we did for ARM and simple RISC, we will discuss methods to 

encode the x86 ISA. 
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So, let us take a look at the view of registers. Modern Intel machines are ISA compatible 

with even the oldest 8086 processor. So, what this essentially means that any kind of 

program which was meant for the 8086 processor can still run on a modern processor. 

So, this is mainly done due to market requirements. So, market requirements suggest that 

a 64-bit processor has to be ISA compatible, what means that is a compatible is that 

program is written for earlier processors, older processors which had 32-bit and 16-bit 

ISAs should still be able to run with a 64-bit processor. 

And a market requirement is as follows. Let us assume that a certain company has a lot 

of programs written for 32-bit processors, and because they need some additional 

performance, they buy a newer processor from Intel. And this newer processor is a 64-bit 

ISA. It would be a very bad idea for the company to discard all of its code, and 

essentially rewrite or recompile the code for the newer processor. There are several 

reasons for this; first is that the original developers might be not there, the source code 

might not be available, it might be a lot of work, and there are issues with robustness and 

reliability of the code. 

So, because of so many issues, most companies most customers of Intel and AMD would 

want that whatever code they had that should still run with the advanced processors, 

advanced processors can add more features, but they should not break something which 

was already running. So, keeping this requirement in mind both Intel as well as the AMD 



 

 

ensures that the latest processors can still run code, which was written we can still run let 

us say a binary which was written 30 years ago. 

So, the question is what do we do with our set of registers, do we have a separate set of 

16-bit registers a separate set of 32, and a separate set of 64-bit registers, is this good 

idea? It is probably not a good idea, because we do not have that much of space inside 

the processor and because of performance constraints it is not what we should be doing. 

So, we should definitely not define a new set of registers for each kind of ISA and that is 

a bad idea so we have to look for a better idea. 

(Refer Slide Time: 10:43) 

 

So, let us consider the 16-bit x86 ISA, is the 16-bit ISA had 8 registers they were called 

ax, bx, cx, and dx, sp, bp, si and di. So, actually the idea of these registers had actually 

come from the 8-bit processor whose registers were of the form a b c and d, but in any 

case when they made a 16-bit processor they named the register. So, which was way 

back in nineteen seventy 8 ax, bx, cx, dx, sp, bp, si and di. So, sp is the stack pointer. So, 

recall from chapter three that the idea of the stack pointer was introduced stack pointer 

bp is actually the base pointer. 

So, we will discuss what it is. So, essentially when we enter a function we save the initial 

value of the stack pointer in the base pointer. So, we will discuss this when we come to 

how functions are implemented in x86 then we have the registers si and di say si actually 

stands for source and d for destination. So, this will be clearer when we discuss 



 

 

instructions that use the si and di registers with you know you know in a special form. 

So, for the time being it is sufficient to just simply remember that s stands for source and 

d for destination. 

So, in the 16-bit processor, we had only these 8 registers and see if you would recall both 

ARM and simple RISC add more registers at 16-bit x86 in that sense is fairly 

conservative in terms of the number of registers in 8. We have four you know general 

purpose registers ax, bx, cx, and dx. SP has a special meaning it is a stack pointer; BP 

also has the special meaning it is called the frame pointer or base pointer depending upon 

how it is implemented. And si and di can be used for regular computation that they have 

a special meaning. S stands for source and D for destination. The some instructions 

assume that si is a default source and some other instructions assume that di is a default 

destination. 

So, we shall look at these instructions later in this lecture. So, the question is should we 

keep the old registers and create a new set of registers in a 32-bit processor we have 

already realized that is a bad idea that is not what we should be doing the main thing 

being that the area in which the registers are there, it is fairly cramped. So, if you 

consider that area of the processor you have registers you will have functional units like 

adders and multipliers and you will have many other kinds of structures. So, you can 

consider it just think of it as a downtown or a processor. 

So, this particular area is very, very cramped. So, it is not a good idea to sort of increase 

the set of registers. So, this is definitely a bad idea. So, what we can do is that we can 

widen the set of 16-bit registers to 32-bits. So, we shall see in a next few slides how this 

is done. So, if the processor is running a 16-bit program then it can sort of think that 

every register is 16-bits wide and how will it think it will use the lower 16-bits of every 

32-bit register to essentially saves its value. 
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So, let us take a look at this particular figure. So, this figure is very important we will be 

keep on referring to this figure. So, is very important that readers get a very, very good 

idea of this figure before proceeding. So, let us first can just consider the first 8 registers 

which are there in the 64, 32 and 16-bit variants see in these registers let us assume that 

the processor is running a 16-bit program. So, the registers that it sees are ax, bx, cx, dx, 

sp, bp, si and di. So, ax is actually the lower 16-bits of the eax register. So, consider e as 

the extended ax. So, thus the eax register is a 32-bit register which is seen by a program 

when it is running in 32-bit mode. So, essentially it has we can divide a 32-bit field into 

two bits field 16-bits wide each. So, ax part is the lower 16-bits of the eax register. 

Similarly, dx is the lower 16-bits of the edx register and likewise. 

So, we just extend this idea to 64-bits as well. So, instead of eax we define r ax which is 

64-bits wide it the upper 32-bits are essentially part of the 64-bit mode with a lower 32-

bits store eax and out of this again the lower 16-bits store ax. So, if you consider this, so 

this is a same picture for all the 64-bit registers r ax, r bx, r cx, r dx, r sp, r bp, r si and r 

di. So, what is exactly happening till this point, what is happening is that a 64-bit 

processor, we will have these 8 registers which are 64-bits wide from r ax till r di. So, it 

will have some more. So, we will discuss them, but let us focus on the top 8 first. So, the 

top 8 registers will lit will be 64-bits wide and it will have only these top 8 for you know 

with these names now if we have an instruction that accesses eax eax in this case would 

basically mean the lower 32-bits of r ax. 



 

 

So, what the processor will do is that it will read the r ax register, discard the upper 32-

bits and take the lower 32-bits and return the value the same is true for a right. So, the 

question, so let us assume that you know 64-bit processor, we try to access si. So, we try 

to access si, what the processor would do a it will first and let us say that in a read aside. 

So, it will first write a read the r si registers. So, out of the 64-bits, it will only consider 

the bottom 16-bits this is what si corresponds to. Similarly, if you want to write to si then 

what the processor will do is it will write to the lower 16-bits least significant 16-bits of 

the r si register. So, essentially it all depends on how we view this set of registers, if you 

view the set of registers as 16-bit quantities then we access the lower 16-bits of every 

register. 

So, let us consider one more example, let us assume that we have a 32-bit processor. In a 

32-bit processor, clearly the resistance r ax, r bx will not be there. So, what is basically 

means is that if I write a program with let us say r ax in a 32-bit processor, this will 

clearly be an error, but if I write eax it is say, it is fine. So, it is essentially the first 

register. And I can always write ax, so ax will be the lower 16-bits of the first register. 

So, what we are doing you know in a nutshell to summarize is that every register is being 

viewed in multiple ways the storage area is the same, but it is just that our view is 

changing. So, we can when we say that let us say the name of a register is sp, what we 

mean is the lower 16-bits of pretty much the first, second, third, fourth, fifth register, so 

the lower 16-bits of the fifth register. Similarly, when we say e sp is the lower 32-bits of 

the fifth register; and when we say r sp, it is essentially this fifth register whose length is 

64-bits. 

So, it is possible for any processor that implements the x86 instruction set to define these 

set of registers, and it all depends on how many bits is a processor you know how wide is 

the processor. If it is a 64-bit processor it needs to define r sp, e sp and sp; if it is a 32-bit 

processor clearly every register is 32-bits. So, it is meaningless to define something like r 

x, r ax or r bx, r sp, because 64-bits cannot be supported, but at least we can say that the 

full 32-bits will let us say be referred with the e suffix and for the 16-bit register we 

consider the lower 16-bits. So, the advantage here is that we are not wasting any space 

the code is pretty much compatible. So, the code of let us say 16-bit Intel processor and 

easily run on a 64-bit Intel processor, because the set of registers are all there. And we 

have not created any extra space further all we are saying is given you know. 



 

 

Let us assume that an assembly code for a 16-bit processor at cx what we will do is that 

we generate code which will tell the processor to access r cx and then consider the lower 

16-bits. So, in this case, it is just a question, this is actually a very neat way of designing 

the set of registers, it keeps the clients happy, it keeps the customers happy. Well, it does 

not keep the designers very happy, because it introduces makes their life slightly 

difficult, but actually not that difficult as we shall see in chapter 6, 7 and 8 and, but the 

most important thing is as the compatibility of code is there. 

So, tomorrow if Intel releases a new processor, then we will be sure that all the code that 

we have right all the binaries that we have will actually run. In addition the 64-bit ISA 

defines 8 extra registers r 8 to r 15. And mind your r 8 to r 15, do not have any of these 

sub fields because the 16 and 32-bit ISA, the 16-bit and 32-bit Intel ISA is only defined 8 

registers. So, for these 8 registers, they are appropriately mapped to different fields 

inside large 64-bit registers, but r 8 to r 14 are 8 extra registers, we should not have any 

sub fields and they can be used by 64-bit Intel processors and Intel binaries. But mind 

you any binary generated for a 64-bit processor will not run on a 32-bit processor, but 

neither should it be. See always want whatever programs you write to be compatible with 

future processors you do not want any program that you write today to be compatible 

with processors of the past. So, this is sort of a general rule that most companies follow 

and that is the reason this particular design decision has been made. 

So, before I leave this slide, I would again like to underscore the importance of this 

particular slide is very, very important that readers and listeners understand this slide. 

And basically the imp important takeaway point is that the register is the same given a 

program if the register will just be interpreted in different ways. So, if we write ax, we 

will only interpret the bottom 16-bits; if we write eax, then only interpret the bottom 32-

bits; and if we write r ax, we will interpret essentially all 64-bits in a 64-bit processor. 
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So, x86 can actually takes the arguments slightly further. So, it can even support 8-bit 

registers. So, the ax, bx, cx, and dx fields are further subdivided into two 8-bit fields. So, 

this is to ensure that we are compatible at some of the earliest 8-bit processors. So, in this 

case, also you know it helps us write slightly more efficient code if we need to access 

values at a byte level. So, for because you know compatibility with 8080 which was a 8-

bit processor is not really that important, but this allows us to access information at a bite 

level which is much more important today at least. 

So, here the lower 8-bits of the lower one byte is represented by al, bl, cl and dl, l for 

lower; similarly the upper 8-bits or byte is represented by ah, bh, ch and dh. So, so in this 

case of the idea is the same it is exactly similar as this particular figure where we take a 

register and divide it into several sub fields and interpret the fields based on our 

instruction. So, in this case, if we further divide the top four 16-bit registers into two sub 

fields each ah al, bh bl, ch cl and dh dl. 
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So, along with the general purpose registers which can be used for all the assembly 

programs, and they can be used to do regular arithmetic computation and everything. So, 

these are pretty much in the multipurpose general purpose registers. X86 defines two 

more registers the first, but these registers cannot be used by the assembly programmer 

and cannot be manipulated by the assembly programmer. So, it can be read, but it cannot 

be manipulated. So, these registers are manipulated by the system. So, first we have the r 

flags register. 

So, similar to our terminology in the previous two slides the r flags register is 64-bits its 

lower 32-bits can be interpreted as the e flags register, and the lower 16-bits can be 

interpreted as the flags register. So, flags, e flags and r flags, same way as ax, eax, rax. 

So, the flags register is exactly similar to the Simple RISC flags register or the ARM 

CPSR register. So, what it does is that it contains the results of the latest comparison. So, 

comparison, so there are many bits any many sub fields in this flags register. So, one of 

them is overflow OF. So, this is set if the previous operation can be in compare and there 

are some other operations which can set the flags. So, readers who are interested can take 

a look at the x86 manual and they will find out all the flags that any instruction can set. 

So, the overflow flag is set on an overflow, and so this can be read from the flags 

register. 



 

 

Similarly, we have a C F for a carry flag which is set on a carry or borrow. So, let us 

assume I am doing a doing an addition or a subtraction. So, the carry flag C F is set if the 

addition results in a carry or the subtraction results in a borrow. Then we have the 0 flag 

the ZF which is set when the result of a comparison or result of any other instruction 

which can set a flag has led to equality. So, let us say we are comparing a and b or let us 

say you know in terms of assembly language, we are comparing registers eax and ebx. 

So, let us say the values if eax is you know equal to I am writing equal to equal to in C 

style if eax and ebx are the same value then the 0 flag will be set. 

And then we have SF for the sign flag which is the sign bit of the result. So, the sign bit 

of the result will essentially indicate if the result is negative or nonnegative, non negative 

means positive or 0. So, these 4 bits can be set in the flags register. So, there are other 

bits as well, readers can take a look at Intel’s manuals or the other bits, but these are the 

four main bits. So, the idea over here is that this flags register or e flags or r flags 

depending upon the processor in assembly language, stores the flags in exactly the same 

way as in the simple RISC flags register used to or the ARM CPSR register used to. So, 

the idea here is that any instruction like a compare which can set the flags will essentially 

set the flags based on its result. And then the flags can be used by a later instruction such 

as a branch to base its the decision and what exactly this register contains. So, this also 

has 16, 32 and 64-bit variants. 

Similarly, we the PC the program counter is known as IP or the instruction pointer in x86 

you know this is exactly what the PC is. So, this cannot be set by a user, but user means 

the programmer or the program, but the program can read its value. So, there are 

instructions actually to read its value it cannot be read or accessed directly, but using 

instructions you know there are methods to read the value of the program counter. So, 

the program counter is called the IP register in 16-bits, EIP registered in 32-bits and the r 

I p register extended instruction pointer register for 64-bits, it is called RIP. So, the idea 

is the same that the same register is divided into multiple fields and depending upon the 

nature of the instruction the instruction set in the processor we choose which field should 

be returned as the answer. 
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So, now let us take a look at the floating-point registers. So, ARM, so we did not discuss 

the floating-point registers in x86 and ARM; mainly because, ARM has array floating-

point support somewhat late and so it was not a good idea to have it at the part of a basic 

course, but floating-point support has been there in x86 for a long time now. So, the 

floating-point unit was sort of going back to history in a 386 processor right, 80386 the 

386 processor is like series in the mid 80s, it did not have floating-point support. So, it 

was only possible to have integers. So, an additional core processor was used called a 

387 to give it floating-point support, but finally when the 486 processor came it had 

floating-point support. 

So, in the those days because not a lot of transistors were available in hardware, the 

architectures were somewhat more complicated they were not very simple and pretty 

much x86 has not been able to change that for the floating-point for the set of floating-

point registers. So, they are fairly complicated. So, but I say I hope that after explaining 

how it works, after this slide which is slide number 11, it will not look that complicated. 

So, the complexity arises from the following fact, it arises from this fact that the set of 

registers can be addressed independently, so they can be addressed. So, there are 8 

floating-point registers, so they can be addressed as s t 0, s t 1 or till s t 7. So, they can be 

addressed in that way. And the other is that they can also be addressed as registers that 

are part of a stack a separate stack called a floating-point register stack. 



 

 

So, the way that we ca can think of this is that inside the processor what we actually have 

is we have 8 locations arranged as a stack. A stack is any data structure which are the last 

in first out semantics, something exactly similar to a stack in programming languages. 

So, consider a stack of books. So, the book that we add at the end is on the top. Now, if 

we need to remove any book we start removing books from the top, so pretty much any 

book which was added the last will also be the first to be taken out see the same for 

register values as well. So, in this case, let us assume that we have a stack of 8 floating-

point values. So, this is called the floating-point stack or the FP stack. 

Now, another interesting part is that these floating-point registers each floating-point 

number actually has more precision than a double precision number. So, instead of 64-

bits, each of these registers is actually 80 bits with a huge mantissa it gives Intel 

processors a lot of precision. So, we refer to the stack top as register s t 0, and we refer to 

the bottom of the stack as register s t 7. So, there are instructions to push a value on the 

floating-point stack. So, once this is done, so let us assume that the numbers where 

initially of this form 3, 4.5, 6 we just had three numbers. 

Now, let us say we push two on these floating-points stack. So, the new state of the stack 

would be 3 would come here, 4.5 would come here, 6 would come down and 2 will get 

pushed on the top. So, now we print the value of s t 0, it will actually print 2, s t 1 will 

print 3, s t 2 will print 4.5, and s t 3 will print 6. So, this is where the complexity lies that 

we can look at the set of floating-point registers in two ways; we can either look at them 

in the set of registers or as a stack, it is better to look at them as a stack where essentially 

the register gives you the position on the stack. 

So, let me repeat the floating-point register actually gives you the position on the 

floating-point stack. Say floating-point stack is essentially a stack of 8 values. I am just 

drawing it once again, because this is a very important concept and students typically do 

not get it. So, I am trying my best to explain it in as many ways possible. So, consider a 

floating- point stack as a sub stack of 8 values 8 floating-point values. So, let me draw 8 

rectangles; let me draw one more at the top to make it 8 all. So, we have 8 rectangles. So, 

what s t 0 basically means is that it is a register and its value is whatever is at the top of 

the floating-point stack. Similarly, s t 7 can also be treated as a register, and its value is 

what is the last element in the floating-point stack. 



 

 

So, if I push or pop the stack then essentially the elements move, so the value of these 

registers will also change right. So, essentially it is not a register in a registered sense, it 

is only something which tells you that for this let us say for s t 3, it tells you that for let 

us say the third position from the top of the stack or the fourth position in the stack what 

is the value. So, it is essentially you can think of it as a numbered stack, where it is 

possible to access the elements of the stack given its position from the top. 

So, there are historical reasons why this has been done. So, this is sort of reminiscent if 

you still recall what was taught in chapter 1 that there are stack based machines. So, 

those days programming and writing code for stack based machines was somewhat easy, 

so that is the reason this is this was done in a 20 or 30 years ago, but because of reasons 

of maintaining compatibility it has become a very, very essential to sort of keep the 

models the programming models that used to be there. Still you know there is a need to 

keep them alive; otherwise a programs that were written for let say the 486 processors 

will not work on I seven processors. And unnecessarily companies that make x86 

processors will lose business. So, if let say the set of if let say floating-point registers 

were written as a stack, it is a good idea to maintain it. 
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So, the view of memory is also not very easy. So, ARM and simple RISC viewed 

memory has an infinite array of bytes. So, basically the memories the first location was 

at location 0s next at location 1 and so on. So, the x86 memory model is slightly 



 

 

different. So, it is a Von Neumann model no doubt. So, the instruction and data are saved 

in the same memory, but it is what is called a segmented memory model. So, the idea is 

that each address in x86 is actually an offset from the start of a segment. 

So, what we do is that if we consider this is memory. So, any kind of a memory address, 

so we actually think is that we sort of divided this into multiple segments. So, this is one 

segment this is one more segment. So, it is an extension of a von Neumann model, it is 

more like a Harvard model in that sense a logical hardware model, but Howard model I 

am sorry, but the idea is that given a large array, we are interested only in parts of the 

array called segments. So, maybe you know this part and these parts. So, the way that 

this works is like this. 

So, let us consider the code segment, which contains the instructions. So, the starting 

address of the code segment is contained in a code segment register. So, when we have 

the address of an instruction. So, maybe let say the starting of the code segment register 

points over here in memory. So, when we have an address, what we do is that every 

address is specified as an offset from its corresponding segment register. So, in this case, 

we take the value of the segment register, we take the value of the address, and we add 

them, and then the result once the memory address in which we will find the data. 
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So, this can be extended as follows. There is a x86 support six different segments 

registers. So, each register is 16-bits wide. So, we are essentially starting from the 



 

 

earliest days when segmentation was start or was introduced. So, we will have a code 

segment. So, what the code segment basically means is like this. So, let us consider a 

conceptual view of memory where we treated as the large in almost semi infinite area 

bytes. So, where I am drawing a conceptual view of memory where each box is a byte. 

So, the code segment register might let say start over here. Say every instruction in the 

program is specified as an offset from the code segment register. So, maybe let say there 

is an instruction those addresses 4. So, we will start from the code segment register and 

count 1, 2, 3, 4. So, this instruction would begin from here. 

Similarly, we can have a data segment that contains all our data. So, may be this can start 

from here. So, the data segment would be this wide, let us call it the data segment ds and 

similarly this might be the code segment. We can then have a stack segment to say to 

store the stack of a function. So, mind you this is different from the floating-point stack, 

the floating-point FP stack is stored in hardware, but the stack is a programming 

language concept which was in elaborately introduced in the second half of chapter 3. 

So, you the reader should definitely go back to that those set of lectures or those videos 

and understand what the stack is all about. 

So, the stack essentially stores the activation block and function, what is an activation 

block it stores all the arguments, the return address, all the temporary variables of the 

function this is called the stack. So, the stack segment also has its segment register; and 

along with that we have three extra segment registers cs, fs and gs which are not used, 

but they can be defined if need be. 
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So, ARM, simple RISC and so on, have a linear memory model where the address that is 

specified in the instruction is sent to the memory system. So, segmentation is not 

required. So, there are no segment registers; however, x86 does not have a linear 

memory model, it has a segmented memory model where let say we define divide our 

addresses into three types code which is regular program instructions data which is all 

the data that we would use and then a stack. So, data is pretty much global variables and 

you can think of stack of local variables. So, given a conceptual view of memory, we 

map these segments to different locations, and the segments, and every single address is 

specified as an offset from its segment register. 

So, we will see this kind of a model has some advantages. We will not be able to discuss 

a lot at this point of time. We will actually discuss more of this in chapter 10, the chapter 

on memory system. But the idea basically is that this gives us some amount of security, 

because what a computer virus typically does is that the computer virus tries to change 

the code of a program such that instead of doing its normal job it does what the virus 

asks it to do. 

With a segmented memory model this is somewhat difficult, but will appreciate all of 

this in chapter 10, but what can be understood at this point of time is that it will give us 

some advantages in terms of security. There were other advantages as well, for example, 

in early processor that were really memory constrained it was possible to use this 



 

 

mechanism to actually work with a smaller amount of memory and keep on moving data 

between the hard disk and memory to support a larger programs. Those reasons are not 

very relevant today, but still there are issues of security that this model handles very 

well. 

So, we look at them in chapter 10, where we will show that for most viruses, it is not 

possible to modify you know instructions in the text section of the program that is 

because any stores are by default supposed to use the data segment and the instructions 

are in the code segment. So, this gives us some amount of separation, so between the 

code and the data segment. So actually you know I was not very accurate when I said 

this follows the Von Neumann model the physically yes physically is the same memory, 

but logically it is more like a Harvard architecture where we are thinking of the code part 

of the memory and the data part of the memory is actually separate. So, the code part and 

the data part we are thinking of them as actually separate. 

So, it is very difficult for instructions such as a store which modifies data to actually go 

and modify the code, and this actually makes it much, much harder to implement a 

malware such as a virus. 
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So, how does segmentation work? So, in the 16-bit version, it had six segment registers, 

but nowadays with 64-bit you know with 64-bit systems, the segment registers will not 

be able to hold a 64-bit memory address. So, what they actually do nowadays is that they 



 

 

contain an offset into a large segment descriptor table and this is again because 16-bits 

are not sufficient to store a memory address. So, again you know just to show an 

example. So, let us say the cs registers which contains the code segment instead of 

pointing to a memory address actually points to a location in a large system wide table 

you can think call it a segment descriptor table. 

So, in this case, so since it is a 16-bit quantity, this table can have at the most 2 raise to 

power 16 entries. So, this entry will actually point to a memory address. And think of 

this that this entry it will actually be a memory address. So, this is how modern processor 

works that we still have 6 segment registers which can be modified by the operating 

system. What is an operating system it is a special program whose job is to take care of 

the rest of the programs. So, we will again discuss what an operating system is in slightly 

more detail in chapter 10 and chapter 10, 11 and 12, not 11, but chapter 10 and 12. 

Mainly, but at the moment we can think of each segment register still containing 16-bits, 

but in this case 16-bits refer to an entry in a large table called the segment descriptor 

table. So, Intel processors have two kinds of segment descriptor tables, there is 

something called an LDT segment descriptor table, and a GDT - a global descriptor 

table. So, the LDT is actually meant to be one per process; what is the process a process 

is running instance of a program. So, this is typically not used nowadays if it is not used 

we will not discuss it the GDT is a global descriptor tables. So, the GDT is what we will 

discuss and so pretty much this does not have 2 to the power 16 entries because we will 

typically not need that many segments, this is this is slightly smallest it contains 8191 

entries. So, 8192 is actually a very special number, it is some time to guess, it is 1024 

times 8 which is nothing but 2 raise to the power 13. 

So, we will actually use 13-bits from the contents of the register to access this particular 

GDT table to read the starting memory address of the segment. And what are the three 

segments that we are interested in the code segment which contains all the instructions 

the data segment which contains all the global variables, and the constants. And the stack 

segment which contains all the local variables and function arguments and return 

addresses and so on. So, these are the primarily the three segments that we are interested 

in. 



 

 

So, the starting address of these three segments will be different for different programs in 

the system, because they shared the memory the large memory is being shared and where 

these segments actually begin will definitely be different for all the programs in the 

system. But in any case we do not care about this at the moment all that we are 

concerned is that we will have a single large table we will be shared by all the running 

programs in the systems. And pretty much every program can access this to find out 

where its segments begin. And each entry in these tables in the GDT table in for say will 

contain the starting address of the segment. 

(Refer Slide Time: 50:41) 

 

So, now the question is for every memory access what do we need to do. For every 

memory access let it be a store or a load. So, we will pretty much generate an address. 

So, we will have a base register depending upon the addressing mode, we can use base 

offset or base index or does not matter whatever is the addressing mode, we will generate 

a memory address. In a 64-bit processor, the memory address will be a 64-bit number; in 

a 32-bit processor, the memory address will be a 32-bit number. So, it does not matter. 

So, with this memory address, what we need to do is we need to do something else. 

So, let us say that we need to access the segment register right we need to find the entry 

in the GDT which for corresponding to the value stored in the segment register. We need 

to read that entry add it to the memory address, compute the new memory address and 

send it to, so compute the new memory address and send it to the memory system right. 



 

 

So, I am just writing MEMS is over here. So, this is pretty much the main idea that if for 

any store or a load instruction, which will have a memory address that the processor will 

compute we need to add it with the contents of the relevant segment, so we need to add it 

with a number which is obtained as follows. We read the relevant segment register, we 

access the GDT; from the GDT, we get the starting address of the segment in memory 

we add both to get the final memory address and this is sent to the memory system. 

So, does it mean that for every memory access we need to access the GDT or LDT that 

would make things very slow? So, let us instead have a have the same mechanism we try 

to speed it up. So, let us use a segment descriptor cache - a SDC at each processor that 

stores a copy of the relevant entries in the GDT, which is in my opinion our opinion 

everybody’s opinion a much faster route. So, what we do is that we define a shortcut 

what we do over here is that we define a segment descriptor cache we access that first 

with a very, very small and fast hardware structures. So, this will keep the memory 

addresses of the segments that we are interested in. So, we are typically interested in 

three segments code, data and stack; and given the fact that a processor at any point of 

time executes only one program, it cannot do more. 

So, we just need to access a small hardware structure which is processor specific access 

the value and add it to the memory address. If you do not find it, the value is still then we 

will have to go through this longer route. So, I will sort of you know cut this and say that 

this is this going viral segment descriptor cache is a default method. Just in case, we do 

not find an entry we need to take the much slower method, which is this method. So, let 

me call this the slow method. So, I actually you know ultimately they produce the same 

information's. So, I can put it over here and cut it right here. So, this is the slower method 

this is the faster method. 

So, what is the idea we look up the SDC first, if an entry is not there then only we get it 

from the GDT, and we populate SDC, otherwise we take the value from the SDC. So, 

this method is very quick fast and efficient and almost hides the fact that we are adding 

an additional level of work to every memory access. So, this fact although gets hidden 

with modern hardware. And we will discuss how in chapter nine, but the important point 

to note that is that with a segment descriptor cache things become really fast you do not 

have to access the GDT for every single access for every single memory access. 



 

 

(Refer Slide Time: 55:19) 

 

So, x86 addressing modes given the fact that is a CISC instruction set are also somewhat 

complicated. So, it is very important for us to get a general idea of what the addressing 

mode looks like before actually we move forward. So, up till now listeners must have 

gotten a feel of the fact that x86 is definitely more complicated than most other 

instruction sets and well. So, that is where the see in the CISC comes from right 

complex, but it is not that complex there is some amount of there is a large amount of 

elegance to it. So, it is not that difficult. 

So, let us take a look at this particular figure say any memory address this is the way that 

we actually specify it in assembly language and this specification is translated into 

machine code as well then we define a base register that is the first thing that we do. So, 

the base register we specify the segment, but mind you this is optional this field. So, 

actually all of these fields individually are optional. So, this field is definitely optional. 

So, let me write optional over here. So, typically you will not find this being done unless 

is a special case. So, in any case all of these fields are actually optional. So, so we will 

discuss that part later. So, the then we have a base register which can be any of the sta 

any of the 8 general purpose registers and in 64-bit mode it can be the additional 

registers as well right there is no problem in that, but we will not discuss that for the time 

being. So, let us proceed with the rest of the lecture assuming that we are talking about 

the 32-bit instruction set right. So, there are different variants of x86. 



 

 

So, let us assume that we are talking about the 32-bit instruction set. And with that 

assumption let us proceed, but clearly if you know how to write assembly code for a 32-

bit ISA, you can always write assembly code for a 64-bit ISA all that you need to do is 

convert everyday register from ax to r ax right. So, you will move from 32 to 64 that is 

pretty much all that you need to do and there are some other instructions which will also 

change, but we will you know discuss them when a time comes similarly to move from 

let us say 16 to 64 ax will become r ax. So, this is a very simple transformation that we 

need to apply. 

Similarly, going from 64 to let say 32, what we need to do is that all registers of the form 

let say r ax or r bx does not matter will become eax. So, that is the reason it is not 

necessary to discuss every variant of the x86 instruction set separately for example, 

sixteen 32 and 64. So, we sort of take the middle path and we discuss the 32-bit 

instruction set, and then the readers can do the simple transformation which is just in the 

register name throughout the e and put in the r, and it will become 64-bit compliant as 

simple as that it is not harder than that at all. 

So, coming back to our present discussion here we have a base register, for the base 

register can be any of the first 8 registers plus we can. So, this is scaled indexed at 

addressing mode that we can have, here again the scale is optional. So, in this case the 

index can be any of the first 8 registers other than e sp. So, the e sp the stack pointer 

cannot be used as an index. 

So, let me write that other than e sp or the stack pointer right, all the other seven registers 

can be used on index and optionally they can be scaled by a factor of 1 or 2 or 4 or 8 and 

then we can add a displacement. So, displacement is an offset it is a constant. So, we can 

add any displacement that we want; and in 32-bit instruction set the displacement 

maximum size is limited to 32-bits. So, what does x86 do, it supports the base scaled 

index and an offset. And the offset is known as the displacement and mind you each of 

these fields is optional all right this is something which has to be kept in mind. 
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So, let me now give an example of addressing modes. So, let us consider the memory 

operand as it is specified in the x86 assembly language. The value of the address in 

register transfer notation. So, for this go back to chapter 3. So, it will tell you of what it 

is. So, this basically we are just mathematically trying to represent what the address is 

like and then the addressing mode. So, x86 supports many kinds of addressing modes, so 

one of the basic modes is a register indirect addressing mode where the value of the 

memory address is stored in eax. So, we represent it as eax with a square bracket on both 

sides. 

Then we can have a base and scaled index addressing mode, where it can be the address 

can be represented as ax plus e cx multiplied by 2. So, the value of the address is eax 

plus 2 times e cx. So, this is base scaled index. Similarly, we have a base scaled index 

offset mode where the address can be other type eax plus e cx into 2 plus a displacement 

which in this case is minus 32. Similarly, we can have base offset just edx minus twelve 

we can just have scaled index which is just edx into 2. And we can just have a 

displacement which becomes memory direct. So, we can directly specify the memory 

address. So, this is also allowed in this form. 

So, let us just go back to the previous slide and look at this once again. Now, that we 

have seen examples. See, you will be able to appreciate how and why this happens. So, 

in this particular case, as you see the base the index the scaled index rather and offset all 



 

 

of these fields are optional. So, the memory address can be any combination of these 

fields as we see in this particular table over here that we can have all kinds of 

combinations of memory addresses. And this makes the entire thing very interesting and 

slightly complicated. But if you understand the main idea again I am going back to this 

figure where we have a base register and another index register which can be scaled by a 

factor from 1 to 8, 1 to 4 or 8 plus a fixed offset or a displacement which is a constant. 

So, basically if this is a general format, we can start fitting any kind of an address in this 

format where one or more of the fields are optional, and sort of not present. For example, 

in this case only the displacement is present, but the base and the index are not present. 
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So, after taking a look at the machine model which was binomial in simple we have done 

most of the hard and difficult and dirty work. So, now, we can appreciate the greatness of 

the x86 instruction set slightly better. So, again you know as I have been pointing out 

over and over its reading the book, listening to a video is great, but unless students 

actually sit down and practice and physically write assembly code, they will actually not 

learn or be effective programmers. 

So, what I would suggest is that they can write assembly code. So, an assembler and a 

runtime are there not a runtime, but an assembler you can find on the books website. So, 

you can just go to the website of the book and type my name go to the home page of the 

author and go to the website of the book. So, you will find a link to an assembler called 



 

 

naam - n a s m. And this can be used there are many other assemblers x86 assemblers as 

well such as tasm or nasn and say any assembler is fine right, there is no problem. But 

we will be using the national assembler format at least the format of the nasm assembler 

in this lecture, but other assemblers have similar format. So, the format per say is not that 

important. 
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So, the url of the nasm assembler is www.nasm.us. So, this is a fairly easy assembler to 

use, so you will find a lot of examples on the website of this assembler and at least on a 

linear on the Linux system and on a MAC OS system this assembler seems to be work 

seems to work this fine. So, the generic structure of an assembly statement is very similar 

to the generic structure of an assembly statement in both simple RISC as well as ARM. 

Any assembly statement can have an optional label followed with a colon then the 

assembly instruction. And comments here start in nasm comments start with a semicolon 

not with an as has been the case earlier. 

So, x86 assembly instructions typically of two formats one is the ATNT format and the 

other is the Intel format and the other is the Intel format. So, in this book, we shall 

actually be using the Intel format. So, the formats are more or less the same, but in 

ATNT format that the destination comes at the end, which is not what we are used to, we 

are used to the destination operand coming at the beginning. So, we will use the Intel 

format. So, there is something important to keep in mind because we you know the 



 

 

readers, listeners should know that both of these formats are out there, but you have to 

verify that the Intel format is being used.  

So, typically most x86 instructions use a one and two address format. So, basically they 

can have one operand or two operands. So, the two address format which is of this type 

instruction operand 1 and operand 2, if we are using the Intel style operand 1 is typically 

both the source as well as the destination. So, essentially we will perform an operation on 

operand 1 and operand 2, subsequently we will save the result in operand one. So, 

operand one will get over it. So, this is standard format of x86 instructions for the 

uninitiated this can look as something new, but once you get used to it, I think its fine. 

So, in general you know people get scared or the fact that you know the Intel x86 

assembly is very complicated that is not the case. So, there is a lot of elegance in the 

instruction set and it is actually very easy to learn one sort of the basics are in place. So, 

what are the basics let me just repeat. So, I will just keep on repeating it several times 

during the slides I said readers do not forget the first basic is the way that we define 

registers. So, essentially ax, eax and r ax are the same registers, but we are just using you 

know is the same register, but we are using different parts of it in a 64-bit system, that is 

point number one, Intel has a segmented memory model. 

So, let me just write it. So, in a 64-bit system, r ax, eax and ax are actually the same 

location in hardware is a different parts of it is being used. The next is a segmented 

memory model this is something that we all need to get used to. What are the main 

components of the segmented memory model well the main components are the segment 

registers, which give the start of the segment and the GDT table. So, well the segment 

registers previously used to give the start of the segment. Now, they point to an entry in 

the GDT table which gives us start of the segment to make this process faster. And we 

have a segment descriptor cache, which is a small piece of hardware, which stores some 

of the mappings that this particular processor would be interested in, so that a table need 

not be accessed all the time. 

And we have the floating-point stack which is slightly difficult to understand, but 

hopefully we have understood it by now, where the idea basically is that all the floating-

point values are saved in an 8 entry stack. And a register just gives the position of a 



 

 

register let us say s t I refers to the 8h entry of the stack. So, once these three ideas were 

cleared, we can proceed with the rig with the rest of the lecture very easily. 
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So, let us now look at some of the basic rules for operands for most x86 instructions. So, 

both the operands can be registers. So, which is fine this is also this rule was also there in 

our earlier instruction sets ARM and simple RISC. So, at most so here are some 

additional points. So, at most one of them can be an immediate. So, both cannot be an 

immediate or a constant right that is meaningless. So, one of them has to be a variable 

which means stored in a register or memory, but at most one of them, one of them can 

be, but not two, at most one of them can be an immediate. 

Utmost one of them sorry this should be m over here; that means, at most one of them 

can be a memory location. So, which means that you cannot have two memory locations 

as operands and a memory operand is encapsulated in square brackets which we have 

already seen. So, what are the rules for immediate, the size of an immediate is equal to 

the size of the memory address, for example, in a 32-bit machine, the maximum size of 

an immediate is 32-bits. 
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So, what are some of the other rules? So, we shall use the 32-bit flavor of x86 in this 

book in this lecture. So, the readers can seamlessly write as I have said 16-bit x86 

programs no difficulty at all. Simply use the registers ax, bx, cx, dx, sp, bp, si and di. So, 

all the programs that we write can easily be converted into a 16-bit programs, sometimes 

some additional suffixes need to be changed in the instructions, but when that arises 

essentially I will tell you what needs to be done, to write the 16-bit or the 64-bit variants 

of those instructions. But in general converting a program between any of the three 

flavors and the three flavors being 16-bit, 32-bit and 64-bit is easy, only the register 

names have to be changed. 

So, the readers can also write 64-bit programs by using the same set of registers, the r 

series r ax, r bx, r cx, r dx; and the 8 new registers that are provided by the which are 

essentially provided by the 64-bit system. And these registers are actually should be 

sorry r 8 to r 15 right not r 9 to r 15, but r 8 to r 15. So, next we will discuss what the 

individual instructions are like. So, this particular part of a lecture, we will end here; and 

the next part will begin with the move instruction and what it is like. 


