
Computer Architecture 

Prof. Smruti Ranjan Sarangi 

Department of Computer Science and Engineering 

Indian Institute of Technology, Delhi 

 

Lecture - 11 

x86 Assembly Language Part-II 

 

(Refer Slide Time: 00:25) 

 

Let us start this part by describing the mov instruction. So, the mov instructions arguably 

the most versatile instruction in the x 86 instructions set, say it can actually do a lot. So, 

in terms of RISC instructions, it combines, it is a combination of three things. 



(Refer Slide Time: 00:46) 

 

So, in if you recall in the RISC instruction set, we used to have a mov instruction which 

was nowhere as powerful as this. So, the mov instruction in the RISC instruction set was 

actually moving the value of a register or a constant to a register. So, the CISC mov 

instruction does that. So, we can think of it as a RISC moves plus it is also a load. So, 

you can load a value from memory and put it in a register, and it is also stored. So, it can 

store, something from a register to a memory address. So, the mov instruction in x 86 is 

equivalent to a RISC move a load and store all combined into one. 

So, what is the semantics, the semantics is very simple, the semantics is that the mov 

instruction takes two operands. The first operand is a source as well as a destination 

right. So, it can either be a register or a memory, the second operand is clearly a source. 

So, it can be a registered a memory or an immediate. So, as discussed in some other 

earlier slides, that most x 86 instructions are actually in a two address format, they take 

two operands, and the first operand is both a source as well as a destination. 

So, we should see this is standard format for almost all instructions. So, here the idea is 

like this. So, what is the mov, for the case of the mov instruction, we you know the 

duality of a source and a destination is not very important, so we will not over stress on 

this aspect here. 

So, say let us consider an example, let us say we write move m o v eax, ebx. So, in this 

case this is very simple, that the first instruction is the destination the second, sorry the 



first operand is the destination, and the second operand is a source. So, we move a value 

the source value, to the destination; the value of the source to the destination. So, this is 

extremely the mov instructions extremely versatile, instead of this I could have always 

written numb, something of this type. 

So, in this case, this is actually a memory address right. So, what we are doing is that we 

are reading from memory. So, the first thing that we are doing is we are computing the 

value of this expression, by accessing the registers esp and eax. Then we are accessing 

memory we are reading 4 bytes, and then we are saving those 4 bytes in the register ebx. 

So, this is a load. I could have similarly, just interchanged both and maybe just written. 

So, this actually would have been a store, because we would have read the value of ebx 

and put it in a memory address. So, the former is an example of a load, and the latter is 

an example of a store. So, the mov instruction can move values between registers. It can 

move a value from a register to memory, which is the same as a store. It can move a 

value from memory to a register, which is the same as a load. So, as you can see we have 

pretty much combined the functionality of three RISC instructions; a normal register or 

constant mov instruction, a load and a store instruction all into one, which makes this 

particular instruction very interesting, because if we just know this we will be able to 

write a lot of assembly programs, and mind you the standard rules that we discussed in 

the last few slides still hold, which means that both the operands cannot be, both the 

source operands cannot be memory locations. 

Which means that we cannot use this instruction, to move values between two memory 

locations, but other than that we can easily achieve a load and store, and every memory 

operand will have the following form, it will start with a left square bracket, end with a 

left square bracket, and the value of the memory address will be specified within the 

address, where we can have a base register scaled index and n offset, and in x 86 

parlance an offset, is known as a displacement. 

Similarly, we have the movesx and movezx instructions. So, the regular mov instruction 

assumes to the source and the destination to the same size, but the movsx and the movzx 

instructions, actually assume that the source and destination have different sizes. So, let 

us consider this. So, the genetic semantics is, that let us say we are trying to. So, this sort 



of slightly restricted semantics in the sense, the first operand can only be a register, and 

the second one has to be registered or memory. 

So, once this value is being moved over here, we can for example, write movsx ax bx. 

So, mind a bx is a 16 bit registers and eax is a 32 bit register. So, what we do is that we 

read the value of bx, and s stands for sign. So, the s here stands for sign, sign extends. 

So, the sign extend, extend the sign of bx, and then we save it in a x. So, second operand 

in this case can be either 8 or 16 bits; that is fine and we extend the sign of bx and save it 

in eax. 

Similarly, where the movezx instruction, where we do not extend the sign, but treat it as 

an unsigned number. So, with zero extend it, which means that we add the, we the m s b 

bits instead of them being replaced by the sign bit, they are replaced by the number zero, 

and this number is stored in the registered ax and so in this case also the second operand 

is can be either 8 or 16 bits, but instead of extending the sign, we treat the number in the 

smaller registered bx as unsigned, and replace the m s d bits. Sorry do not replace the m s 

b bits, but set the m s b bits to be 0. 

That is pretty much it. So, it is a special kind of mov instruction, where we are moving 

from a source with which has a less number of bits, to a register that can accommodate 

more bits. So, the question is that those extra bits what should they be set to. these extra 

bits which are in m s b position in the case of s x are set to the sign bit, So, which means 

that the value is maintained in the case of z x they are set to zeros which is an unsigned 

extension. 



(Refer Slide Time: 08:33) 

 

So, we have seen the mov instruction movesx and moveszx. So, let us now take a look at 

the exchange instruction x c h g. So, the exchange instruction is also very important, but 

we will not be able to fully understand the meaning of an exchange instruction and why 

it is that important, till we actually read chapter eleven, and even in chapter 11 we will 

only discuss a little bit of it. So, exchange instruction is very useful while writing 

parallel, alos we will discuss maybe a little bit of exchange over there. 

So, the main idea is that exchange takes two arguments two sources which are also 

destinations by the way. So, e source 1 can be a resistor or memory, and source two can 

be register memory, I can maybe write s 1 and s 2. 

So, for example, this can be, but mind you both cannot be memory locations. So, the 

same constraint still holds. So, we can write exchange eax and a memory location eax 

plus edi in square brackets. So, we will essentially swap or exchange the contents. So, 

the contents of eax will come here, and the contents of this memory location will come in 

to eax right. So, it will exchange the contents of eax and eax plus edi will just swap the 

contents, of operand 1 and 2. So, what are the instructions you have seen up till now. We 

have seen the move series of instructions and exchange. 



(Refer Slide Time: 10:08) 

 

So, given the fact that we have seen this, there are some more instructions that we need 

to see, to get a better idea of the memory and the data movement instructions. So, two of 

those instructions are push and pop. So, why do we have this? The reason we have this 

is, because an x 86 processor, is explicitly aware of the stack, unlike simple RISC where 

that was one of the case. 

So, an x 86 processor is aware the stack pointer is stored in the register esp and so that is 

the reason it defines two instructions called push and pop, which take a single operand. 

So, let us consider the push instruction. It takes a single operand. The operand can be a 

registers, can be a memory, or an immediate value a constant. So, for example, we can 

see you push ecx on the stack. In this case the value of. So, this is similar to this small 

code snippet over here, this is exactly what the processor would do. So, given the fact 

that this is a cisc instruction set, a single instruction can actually do a lot. A single 

instruction can do the same as 4 or 5 equivalent RISC instructions, maybe sometimes 

even more. 

So, what we would do is first we will read the value of ecx put it in a temp value, then 

we will decrement the stack pointer by four right, because we are pushing it in assuming 

a downward growing stack, and then the value of, then what we will do, is that we will 

access the new stack location, put in the value of ecx. 



Now, let us consider the pop instruction. So, the pop instruction does the reverse. So, that 

is the reason. So, we will see the explanations of the same sequence of steps are just 

written in reverse, to make the understanding easier. So, in the pop case, we can pop the 

value from the top of the stack, and put it in a register or memory .For example, it is a 

pop ecx. So, just you know these statements are in reverse. So, first we read the value 

under the stack pointer into a temporary variable. So, this is sort of an equivalent 

programmatic explanation of pop would do, then we increment the stack pointer, and 

then what we had read from the stack, we assign that to ecx. 

And it is the definitely possible to write this program without the temp variable, but it 

has just been and to show the order of actions of, what exactly the processor would 

internally do and, but definitely we can make the program simpler, if some of you are not 

happy with three sub instructions we can replace it with two, but the basic idea would 

still remain the same, that we the push the value onto the stack, and retain the stack 

pointer in. While pushing we decrement it, and while popping we inc increment the stack 

pointer. 

(Refer Slide Time: 13:29) 

 

So, specifying memory operand sizes. So, let us take a look at it. So, the processor knows 

the size of the register operand from the name of the register for example, eax is a 32 bit 

operand we know that, ax is a 16 bit operand we know that, an r ax is a 64 bit operand 

we also know that, but what about memory operands. So, let us take a look at, some 



instruction or the form push a x. So, in this case, we read the value of ax we get a 32 bit 

memory address, we access memory, we read some bytes and push them onto the stack, 

but the question is how many bytes need to be pushed. Is it 2 bytes 4 bytes 8 bytes how 

many bytes. 

So, that is the reason it is necessary to provide a modifier to the push instruction, such 

that especially when we are trying to push something into a memory address, we can 

specify how many bytes need to be pushed. This is not necessary for a register, but for a 

memory operand this is necessary. So, in this case we will actually push 32 bits, because 

we are using a d modifier, and d means 4 bytes or 32 bits. 

Similarly, we need to use modifiers for other instructions such as pop, when the numbers 

of bytes that need to be transferred are not known. In a case of a register since we know 

it is size, we are assuming that we will fill up the entire registers, but in a case where we 

are not really sure, because we are transferring something from the stack to another 

memory location, we do not know for sure. So, that is the reason it is necessary to use 

this particular modifier over here; such as d word to say that we want to push 32 bits. 

(Refer Slide Time: 15:25) 

 

Let me now discuss some of the common modifier, depending upon the size, depending 

upon the number of bits that need to be transferred from memory, we can use different 

kinds of modifiers, with instructions that access memory. The first modifier is byte. So, it 

specifies at 8 bits or 1 byte needs to be transferred. The second modifier is word. So, it 



means that 16 bits need to be transferred. So, I need to make a point here in simple RISC 

and in ARM, we assume that a word is 32 bits of 4 bytes. So, this is not correct in x 86, 

because of historical reasons. So, in x 86 a word is assumed to be 16 bits or 2 bytes. So, 

this is what a word means, in the context of x 86. 

So, we use the modified d word or double word in the last slide, slide number 27. In this 

case we assume that we are transferring 4 bytes or 32 bits, to support till the newest and 

latest 64 bit instruction set, we have the modified q word which is squared word or 8 

bytes or 64 bits. So, after we have seen this, let us take a look at this example over here 

which I have deliberately chosen, as a slightly complicated example. So, we will take a 

look at 4 x 86 assembly statements, and at the end we need to answer this question, what 

is the value of ebx after these four instructions. So, let us not take a look at answer just 

right now. So, the first; let me maybe give you 10 seconds for you to take a look at these 

four instructions and work it out, and after that I will work out each and every instruction 

and show you the steps. 

So, let us see. So, the first instruction sets that a register eax to 10. So, this is nice and 

straightforward the second instruction moves eax to the location of the stack pointer 

points to. So, let us say the stack pointer points to this location, and since it is a 

downward growing stack which grows downwards towards lower memory addresses. 

What we do here, is that we save the value of eax which is 10 to the location pointed to 

by the stack pointers. Subsequently what we do is that we take the value that is contained 

in the location of the stack pointer points 2, and push it again on the stack. So, this 

particular instruction is complicated. So, I would like the readers to pay special attention. 

So, here what we do is, the first thing in any push instruction, is we see what is the value 

of the argument, you know what is it that needs to be pushed. 

So, what needs to be pushed is a d word or a double word or 4 bytes. So, we need to read 

4 bytes from the current stack pointer. So, the current stack pointer contains 10. So, 

essentially we are pushing 10. So, what we do now. So, if you take a look at the pseudo 

code of push; that was explained a couple of slides ago, what we now need to do is, that 

we need to decrement the stack pointer by 4 in the new location, which is the next 

location on the stack, we need to push the value of 10, which is what we just read. 

Subsequently the next instruction; so now, what is the current status, the current status is 

of the stack pointer, points to this location which is the next location. So, let us see 



another memory address, the previous memory address of the stack pointer was 1000. 

So, the current memory address of the stack pointer is 1004. 

So, the next instruction, the last instruction reads the contents of the memory address the 

stack pointer points 2 which in this case is 10, and the value of 10 is transferred to ebx. 

So, what is the value of ebx at the end of this code snippet, it is 10. So, the important 

point to remember, is that in any push instruction we first read the value, read the value 

of the operand that we are trying to push, then we decrement the stack pointer and 

essentially in the new stack top, at the new stack top we push in the value. So, this 

instruction I deliberately made it complex. What was the complexity the complexity was, 

that the argument of the push instruction was a memory address that was determined by 

the current value of the stack pointer. Just to ensure that the understanding is clear. So, 

let me just go back to the point where we define the push instruction. You see here we 

first read the value of the push argument, whatever is being pushed into a temporary 

variable, then we subtract the stack pointer, and at the new location we push in this. 

So, the advantage of this, is a just in case this argument contains the stack pointer it will 

get taken care of, as we saw in this particular example. 

(Refer Slide Time: 21:22) 

 

So, now that we have taken a look at the memory instructions. Instructions are basically 

moved and it is variants, exchange pushes and pops right. So, let me just write it let me 

just go back to the previous slide, and write all the instructions that we have seen up till 



now. So, we have seen moves, and we have additionally seen two of it is variants s x and 

z x. 

We have also seen the exchange instruction that exchanges, the values at two locations. 

We have seen the push and pop instructions; that are explicitly for dealing with the stack. 

Interesting thing is that in x 86, the hardware is explicitly aware of the stack, and it uses 

the stack pointer. Not the case in other architectures, not in simple RISC and ARM, but 

in this case the push instruction, actually reads the stack pointer decrements it, which is 

good. 

So, now let us take a look at ALU instructions. ALU instructions follow exactly the same 

format, as we had discussed earlier when you get the generate format of to address 

instructions. So, they take two operands; the first operand, is the first source as well as 

the destination. Second operand is the second source. So, the first operand can be either a 

register or a memory. Second operand can either be a register or a memory or an 

immediate or a constant. Example, if you have add eax ebx, in this case explanation is 

that we are setting eax equal to eax plus ebx. So, mind you the same rules hold. Rules are 

that both these operands, both the source operands s 1 and s two, cannot be memory 

operands, only one of them can be a memory operand; that is the first rule that we talked 

about. So, and also the second rule is that, the first operand is a source as well as the 

destination. 

So, the subtract instruction is similar, it is add and sub, so the names are also similar. 

And here also we set ax equal to eax minus ebx to ARM. So, in ARM recall that we had 

two instructions, where we were able to add with a carry or subtract with borrow. So, the 

x 86 is very similar, it also has the adc instruction; adc instruction adc eax ebx, will 

essentially set first add eax plus ebx, then add the value of the carry bit. So, this is just to 

ensure that we can add very large numbers, even if they do not fit within a register. 

So, we can add two pair of numbers. We can add two numbers or a single pair of 

numbers, then the carry bit can be saved, and it can be used in a future addition. So, that 

is the reason this particular instruction is eax plus ebx plus the value of the carry bit; sbb 

the same thing, adc is add with carry, and sbb is subtract with borrow. So, let us consider 

an example is sbb eax ebx. So, we are setting eax as eax minus ebx, and this is minus the 

carry bits. In this case the carry bit actually works as a borrow bit. So, unlike ARM and x 



86, the carry bit in the borrow bits are the same and have the same connotation. So, 

basically what we do we first do a regular subtraction, and then we subtract the borrow 

bit. Call it the carry bit, but it can be interpreted the borrow bit as well. So, we do the 

subtraction in that manner. 

So, since this part we have seen earlier also in chapter 4, and for those readers have not 

read chapter four, let me just explain once again. So, the main advantage of adc and sbb, 

is to ensure that we can add numbers that are much larger, add or subtract numbers that 

are much larger than 4 bytes, in the case of a 32 bit o s. would we do that we will 

essentially save the numbers in a set of registers add one pair, and then save the carry, 

use a carry to add the second pair and so on. 

(Refer Slide Time: 26:05) 

 

So, let us now take a look at some simple one address single operand instructions in the 

one address format. So, these are very handy and useful actually. So, the instructions are 

inc for increment, dec for decrement, and neg for negatives. So, they take a register or a 

memory as an argument. So, in one case we increment the value of the register or the 

memory location by one; in the case of dec we subtract, and in the case of neg what do 

we, do we multiply the number with minus 1. 

So, let us consider an example nothing is complete without it us write an x 86 assembly 

code snippet to compute eax is equal to minus 1 times eax plus 1. So, in this case what 

do we do, since the value of eax is changing what we do, is that we first increment eax 



which means setting eax to eax plus 1 and then we do call neg eax which means subtract 

eax plus 1 with minus 1. 

(Refer Slide Time: 27:24) 

 

Now, let us take a look at the compare instruction. Always have a compare instruction 

we have to have rather a compare instruction, we cannot live without it. So, the compare 

instructions job is exactly the same as was the case, in simple RISC and ARM. So, here 

we compare two operands. So, in this case source one and source two. So, the first 

operand can either be a registered or memory. Second operand can either be a register or 

memory or an immediate. So, we need to compare both of them and save the re results in 

the flags register, which as we saw comes with different names flags for sixteen bit e 

flags for 32 bits, and r flags for 64 bits. So, in this case if we are comparing eax and ebx 

plus four. So, ebx plus four is actually a memory address, we are comparing the contents 

at this memory address. 

So, we compare both the values in eax and ebx plus four, the the memory operand 

corresponding to be expressible, and we set the flags. We can compare with an 

immediate also. So, we compare the contents of a ecx with 10, and we set the flags. 



(Refer Slide Time: 28:49) 

 

Now, let us take a look at multiplication and division instructions these instructions are 

always complicated, but they are not all that difficult, they are similar to ARM, but there 

are certain complexities involved. So, let us take a look at the imul instruction in the 

single address format. So, in a single operand form in the one operand form, which is the 

first one what do we have. So, what we do is that if we call imul ecx. So, by default it 

multiplies the value in eax with that of ecx. So, that is the default behavior that whatever 

is there in eax it will multiply it with ecx. 

So, now in the case of a 32 bit instruction set, the value of eax is 32 bits in the value of 

ecx is also being put into 32 bits. So, you can see that the product can in theory be a large 

number right. So, how large can can the product be, let us assume it is twos complement. 

So, basically in a twos complement system, if you multiply minus 2 to the power 31, 

with minus 2 to the power 21, it is 2 to the power 62. 

So, pretty much the product has to be represented in. in this case 63 bits 63 the bad 

numbers. So, let us take 64 bits a power of 2. So, basically we will unless we allocate 64 

bits is a chance that we will have an overflow, if we multiply two numbers which is a 

problem. So, in a single operand form what we will do is, we will multiply whatever is 

the value given, with the value stored in eax the final product will be 64 bits, and we will 

save the upper 32 bits in edx, and we will save the lower 32 bits in eax. So, what are we 

doing, we are multiplying in this example eax with ecx. 



So, assume eax contains a value seventeen, and the ecx contains the value thousand will 

represent the product as a 64 bit number all right. So, the 64 bits is 8 bytes. So, the upper 

4 bytes will have an upper 4 bytes in a lower 4 bytes right; significant 4 bytes and least 

significant 4 bytes. So, the upper 4 bytes will get saved in edx and the lower 4 bytes get 

saved in eax. 

(Refer Slide Time: 31:44) 

 

Let us now consider the two operand form. So, the two operand form given in the next 

slide, basically multiplies takes one register at the first source, and then we multiply the 

register with either the contents of a register or a memory. So, we multiply ecx with eax 

plus four; this is the memory address the contents of it. So, in this case, what we do is 

that we do not save a 64 bit product, rather what we do is we treat it as a regular 

instruction, and absolutely regular instructions similar to you know add and subtract and 

so on. 

So, in this case we will just set ecx as ecx times eax plus four if there is an overflow the 

overflow flag will be set, but will not save a 64 bit product will simply take the first 

register, treated as. First registered in this case is a source as well as a destination as has 

been the case other ALU arithmetic logical instructions. So, what we do is that we take 

the first and second sources multiply them, and save them at the location of the first 

operand 



(Refer Slide Time: 33:02) 

 

Now, let us consider a three operand form of the imul integer mul instruction. So, in this 

case we have a register the first operand is register, the second operand is registered or a 

memory location, the third operand is an immediate. So, in this case since the cisc 

instruction set we can take the liberty, of having a lot of instructions, a lot of different 

instruction formats, pretty much you know whatever suits us. So, in this case what we do 

is that, the first operand is the destination. Then we will have source one: the first source 

and the second source. So, what we do here is that this is the first source operand you 

multiply this with five, because the last one is immediate. So, we multiply the first 

source with 5, which is an immediate, and then we store the result in the first operand 

which is a register. 

So, these are pretty much the three variants of the imul instruction. So, as you see, you 

know these three variants were chosen with a lot of care, and you know thoughtful 

consideration. First variant was chosen, because in some cases we might want to store a 

64 bit product, and so that additional facility was given, and this facility is there in the 

ARM instruction set as well. The second case we want to treat in, implement and imul 

instruction the same way as we have been implementing other instructions like add and 

subtract. In the third case designers realized, that maybe it is very common, that you 

multiply the contents of a register or memory with an immediate, and save it in other 

register. So, we should have an instruction for it. So, that is the reason they have an 

instruction for it. 



(Refer Slide Time: 35:03) 

 

Let us take a look at the idiv instruction, which is definitely complicated. So, let us go 

back as you see idiv instruction takes a single argument, and this is exactly what we will 

expand in the next slide. So, the idiv instruction, the integer divide instruction, which is 

complicated, we shall see why. This is also one reason why the original designers of the 

ARM instruction set, for the early ARM instruction sets, not the later ones, did not have 

divided instructions, because you know it is somewhat complicated. We will see why 

and we will also correlate this with what we had done in simple RISC, to sort of resolve 

the issue. 

So, here the idea is that we take a single argument which can be registered on memory. 

So, what would an example be? Something like, idiv ebx. So, what we do, is that we 

consider a 64 bit number, in the case of a 32 bit instruction set, where the number is 

stored in edx and eax, edx stores the upper 4 bytes, eax stores the lower 4 bytes. 

So, same see the logic is similar, if you multiply to 4 byte numbers the product can at 

most be 8 bytes. So, here what we do is, that we can, thats the reason considered a larger 

number and divided by a smaller number, and it is sort of an exact analogue of the single 

address form of the imul instruction were assuming that the dividend the number that, we 

will divide is an eight bit number, it is stored in edx and eax with the upper 4 byte. So, let 

me maybe draw it, it will be easier to understand that way, if this is the dividend, we are 



assuming that the dividend itself in this case. Case meaning the 32 bit instruction case is 

8 bytes, the upper 4 bytes are in edx, and the lower 4 bytes are in eax. 

Now, in this case we are dividing it by the cons. what is the devisor, and the divisor is 

this argument, which in this case is ebx; such a divisor is source one. So, once we divide. 

So, the main difficulty in a division instruction is that, a division instruction actually 

produces two results. So, let us try to divide integer divide, 10 divided by seven. So, in 

this case the results, there are two results one is the quotient, which is one, the other is 

the remainder which is three. Another example fifteen divided by seven quotient is two 

and remainder is one. 

So, as you can see there are two results, essentially we need two registers to store them; 

one register to store the quotient, and one register store the remainder. So, this makes our 

life very simple. So, by default eax will store the quotient after an idiv instruction, and 

edx will contain the remainders. can sort of think as eax and edx as a pair, that will come 

together very very often. And so in this case edx and eax are containing the dividend, 

then they are getting overwritten. So, eax will ultimately contain the quotient at the end, 

and edx will contain the remainder all right. So, let me just summarize whats written 

here. The dividend contains is contain an edx eax. In a 32 bit instruction set edx contains 

the upper 32 bits, eax contains the lower 32 bits, or the input operant contains the divisor. 

So, which is basically either a register or a memory address? After the end of the division 

eax will contain the quotient, edx will contain the remainder right. So, this is very 

simple, but here is one mistake that most students do, and this is a very very very very 

important point to keep in mind. So, let me put a star and this is, so important. Let me put 

on one more star right. So, let me also write importance in a just in case, you know. So, 

basically what is the idea, the idea is if the dividend is positive. So, let us assume the 

dividend is 10, So, in this case edx would contain all zeros, and eax would contain 10, 

and let us write 10 and x which is 0 x a. 

What if we have a number? So, we have inside eax, we have minus 10, what do we do 

then. So, here is the mistake that students to, what should edx contain. edx should 

contain, is edx contain all ones, because we are essentially sign extending the number, or 

extending the sign of the number, which in this case is minus 10 minus 10 represented in 

binary of course,. So, we are extending its sign from 32 bit to 64 bit. So, that is the 



reason edx should contain all ones right. and if this is not the case, then we will have a 

lot of trouble, in the sense if you set edx to all zeros that is going to be wrong, and this is 

a large source of bugs in the idiv instruction, and setting any number to all ones is 

actually very easy, all that we do is mov edx minus 1. This is all that needs to be done. 

So, if a number is negative and it is fitting within 32 bits and the number is within the 

eax all that needs to be done. in the case of a negative dividend is that we need to extend 

the sine of eax. say eax is positive what we do, is that we set edx to zero, and if edx if 

eax is then negative what we do, is that we set edx to all ones, extend the sign of eax 

pretty much, and the way that this can be done is, we move minus 1 into edx. So, this is 

very very important, it is a big source of bugs, I request all readers listeners to keep this 

in mind. 

(Refer Slide Time: 42:20) 

 

So, the learning is never complete without an example. So, let us write an assembly code 

snippet to divide minus 50 by 3, and let us say the quotient in eax and remainder in edx. 

So, minus 50 what do we need to do, we mov minus 50 into eax, we extend it sign we 

mov minus 1 into edx. We mov three into ebx and we call the idiv instruction on ebx. 

Automatically the eax will contain the quotient, which in this case is minus 3, and edx 

will contain the remainder which in this case is minus 2. 



(Refer Slide Time: 43:06) 

 

Now let us take a look at logical instructions. So, logical instructions will do a boolean 

bit manipulation; the logical of the instructions that we have standard instructions that we 

have seen in the case of simple RISC and in the case of ARM also. So, they are, and or in 

xor. So, these are the standard logical instructions, that take two source operands, and we 

have the not instruction which takes a single source operand. 

So, the way that they work is very similar. The and or and xor instructions work exactly 

the same way as three other arithmetic counterparts such as add and sub work. So, the 

format is exactly the same. The not instruction works the same way as ink and deck, and 

other single source arithmetic instructions. So, in this case not of eax, would basically 

take the value of eax compute bitwise complement, and store it in eax itself. 



(Refer Slide Time: 44:15) 

 

Now let us take a look at shift instructions. So, similar to simple RISC and ARMS I am 

not, I am deliberately going slightly fast here, because my assumption here is, that 

readers have an idea of what shift instructions are, and so this idea has come from 

chapters two, and chapter three, because you know I have been seeing all the time it is 

not possible to explain the concepts or the fundamentals of assembly language, and a 

complex assembly language together at the same time. It will just make understanding 

very hard. So, if listeners are still having difficulty, they can always go back to chapter 

three when simple RISC was introduced, take a look at shift instructions and come back. 

So, we have three shift instructions; one is an s a r instruction which is a arithmetic shift 

right, shift arithmetic right, which is essentially the same as dividing a number by a 

power of 2. So, in this case what we do is that the format is that the first operand which 

is the source, as well as the destination, can be shifted with an immediate number, with a 

number of positions as you need to shift with. For example, writing s a r, s a r eax 3 will 

set eax to eax right shifted by three places. 

Similarly, we have the s h r which is the logical shift right, which is the same as dividing 

the unsigned representation by a power of 2. So, let me write, it may be unsigned. So, in 

this case we have always been using the three right arrow conventions. So, the format is 

exactly the same s h r eax 3 as an example. Here we set the value of eax, the eax right 

shifted in a logical manner, where the m s b s are being replaced with zeros, not the sign 



bit all right. Then the shift left instruction does not have when arithmetic and logical 

counterpart, it is only one instruction. So, the one instruction has actually two codes and 

both of them are equivalent s a l and s h l, essentially they are the same instruction. So, 

this can be arithmetic left and logical left are the same. So, the same instruction s a l or s 

h l, format is the same, first operand can be a register memory, and the second operand 

can be an immediate. 

So, what we do is, we log do a logical shift left, we take the register, and we take a 

number, we set the register as eax left shifted by two places. So, we use the left shift, 

operand here. So, it is important that the second operand the shift amount, needs to be an 

immediate. 

(Refer Slide Time: 47:18) 

 

So, nothing is again complete without an example. So, what is the output of this 

particular code snippet? So, let us consider this is a eax number actually it sounds like an 

English word, but if we take a look each and every digit over here is the hexadecimal 

digit. So, it is dead feed. So, let us move this to eax, and let us shift it to the right by four 

places. So, four places means, pretty much by 1 eax digit. So, then the remaining the 

seven digits of the n become dead fee, the question is what is the m s b. 

So, this is easy to find out, because d is actually 13, and 13 representation is 1 1 0 1. So, 

the m s b is 1. Say the m s b is 1 we in the case of an arithmetic shift right, which is 

replicate the m s b. So, we put in an f, which is four ones. Now let us do the same thing, 



but with a logical shift right. In this case the only difference is, that the m s the most 

significant digit is actually zero the answer is zero x zero dead fee. Since zero need not 

be explicitly mentioned, we have not mentioned it. So, the answer is 0 x dead fee. 

So, now, we have taken a look at the machine model of x 86 simple integer instructions. 

So, now, we will proceed and take a look at branch instructions. 

(Refer Slide Time: 49:11) 

 

The first thing that we need to note about x 86 is branch instructions, is that branches are 

actually called jumps. Anyway there is nothing in a name Shakespeare, says called a rose 

chrysanthemum a rose will remain a rose, the branch will remain the branch. 

So, branches pretty much work the same way as they worked in simple RISC and in 

ARM. So, here we have the jump instruction which is the unconditional branch. So, we 

always jump to a label, and the label essentially indicates the instruction that we want to 

jump to. So, in this case if you are jumping to label dot foo, it essentially means that we 

are jumping to the instruction; that is pointed to by the label dot foo x 86, also has a lot 

of conditional instructions. So, the conditional branches are very similar. So, recall that 

in ARM and simple and x 86, sorry in ARM and simple RISC are the conditional 

branches, where the form b and then the condition code. 

So, there were instructions of the form b e q b n e and so on. So, in this case instead of a 

b, we have it a say an instructional from j e q, basically means a jumped if equal and 



equal, so where does equal come from. Well the last instruction that has set the flags. So, 

basically there are some flags setting instructions, compared to one of those instructions 

which can set the flags after that there can be many instructions. If these instructions the 

only condition is that, they should not set the flag for this example, then we have j e q 

and then the name of a label. 

So, if they compare instruction here led to an equality, then the j e q condition will be 

true, and we will branch to the label dot foo; otherwise the program will just fall through 

in a sense of the next instruction will be executed. 

(Refer Slide Time: 51:34) 

 

So, there are many kinds of conditions the same way as an ARM. We had 15 conditions, 

we have many conditions also in x 86. So, the condition codes are like this. So, all of 

these conditions code codes come after j. For example, j o would mean that branch if 

there has been an overflow right, in the last instruction which is doing some kind of 

arithmetic of operation. 

Similarly, j n o means no overflow. There are some comparison operators for unsigned 

comparison; so for unsigned less than that is called below. So, j b basically means jump, 

if it is less than in an unsigned sense, and n b means not below. Then we have two 

conditions e and z which are actually the same conditions. So, they can be used 

interchangeably, no problem in that j e and j z, which means that the last comparison or 

the last flag setting instruction, should have resulted in an equality. 



So, recall that how do we check for equality, essentially when we are comparing two 

values a and b, and when two values a and b have been compared, what the processor 

actually does is that it subtracts b from a. So, it computes a minus b. So, the a minus b is 

equal to 0, it essentially means that a is equal to b. So, we have equality here, and it is 

same as a minus b being equal to 0 c equal or 0 is sort of the same condition. There are 

other flag setting instructions as well. So, essentially there we see the value of the result, 

if the result is zero this particular flag will be z. So, the opposite of e and z is n e and n z. 

So, that is, we will have two instructions j n e and j n z which are also totally equivalent. 

So, we introduced the b flag here, below and sign less than. So, b e is below or equal and 

sign less than or equal. So, now, we have after these comparisons we have another class 

of condition codes. The condition codes are s and n s, s is basically means the sign bit is 

one, or alternatively the number is negative, n s means that the sign bit is zero, which 

means as the number is zero or positive. So, recall that we had similar flags in ARMS 

also p l and m i. So, we have you know very similar flags in x 86. 

So, this is the similarity between the instruction sets, between simple RISC ARM and x 

86. So, what we get to see over here, is that most of the core mechanism such that 

branches and condition codes, are similar, and to a large extent to this, they are also 

inspired from some earlier designs, but the basic point to note is, that the difference 

between instruction sets, in a lot of cases is only superficial, lot of their fundamental 

underlined mechanisms are still the same. 

Now, we have some signed operators l and l e. So, l means less than signed less than, is a 

signed comparison, l e means less than or equal signed, g and g e mean greater than, and 

greater than or equal all right. So, basically a branch of the form j g would mean jump if 

greater than, and j g e would mean jump if greater than or equal in a signed sense. 



(Refer Slide Time: 55:33) 

 

So, now that we have seen this basic condition codes, we are all set to write a program 

and so this is an assembly program. My assumption here again, is that readers have some 

familiarity of assembly programs, from chapter three. Otherwise in this program, I will 

still explain all the steps, but it might be slightly difficult. So, the example here is test if a 

number eax is prime, and they put the result back in eax results, what is the result 

typically it is a Boolean result if the number is prime, you essentially put one right one 

indicates for the number is prime. And zero indicates for the number is not prime, that is 

a Boolean result. 

So, what we do. So, what is the basic algorithm, how do we find if a number is prime or 

not. So, what we do is, let us say given a number n. So, here the assumption is the 

number is large enough. So, we do not want any corner cases. So, given a number m v n 

we divided by 2 we divided by 3. So, we keep on dividing it till we reach n minus 1. If 

any one of the remainders of these divisions is zero, this means that it has a factor, and 

which is not either one or n itself, as a result a number is not prime. 

So, let us start with the first index which is two. So, see I am setting ebx equal to 2. So, 

now, we the original number, which we need to test if it is prime or not, we are 

transferring that to ecx, the ecx will contain the original number and then we start a loop. 

So, what we do is that since the original number is in eax now. So, this is required for 

correct divisions, recall that the idiv instruction, actually needs a 64 bit number in edx 



and eax. So, what we do is, since the original number is in eax also. We can go ahead 

with a division, but we need to set edx. So, the number is positive, the value of edx will 

be 0, because we are just extending the sign of a positive numbers, and the sign bit of a 

positive number is 0. So, it moves zero to edx, this is needed for division, and then we go 

ahead with the divide, and we divided with the value stored in ebx which is 2, for the 

first iteration. 

Subsequently, we take a look at the remainder which is stored in edx. So, we compare 

this with 0. If it is 0 which means j e, we jump to dot not prime. So, not prime the answer 

is very simple, we move 0 to eax, which means the number is not prime and we exit. 

Otherwise we increment ebx; so from to the significant 3 and 4 and 5 and so on. Then the 

value of eax has also changed, because the core the idiv instruction puts the quotient in 

eax. So, recall that, the quotient is being put in eax and the remainder is being put in edx. 

So, what we do is, since the value of eax change we put back though, set the original 

value of eax again we are transferring the contents of ecx back to eax. So, eax gets 

restored. Then we compare ebx and eax, which is essentially the index, and the original 

number. As long as the index that we are dividing the original number by the divisor is 

less than the original number j l, we jump back over here, jump if less than. So, we 

jumped back over here. 

Otherwise we reach the end of the loop. At this point we can compute that since we did 

not find any factors the number is prime they put one there, and we jump to exit which 

means we move out of the program. So, this program is simple, the program is not very 

difficult, in terms of assembly statements how many do we have; 1 2 3 4 5 6 7 8 9 10 11 

12 13. So, we have thirteen assembly statements, it is not that difficult, and now after 

have explained to it, it must be appearing slightly more straightforward, but the question 

is that can students were listening to this lecture. 

Can they write such a program from scratch right. Given any problem can they write 

such a program, and that is unfortunately not going to come by listening to such lectures 

or reading books. The only way that it is going to actually happen is by practicing as 

much as possible, because all of these things are pretty much a function of practice. So, 

what listeners need to do, is that they need to write hundreds of assembly programs; such 



that they can write fairly good bug free code, almost all the time, in a very repeatable 

reproducible fashion. 

(Refer Slide Time: 61:22) 

 

So, let us move ahead. So, what is left? What is left is function call and return 

instructions. So, the call and return instructions are exactly the same as simple RISC with 

some differences. So, the differences are like this. So, lets us find out what is similar. So, 

what is similar is. So, we have a call instruction, we always call the format is call any 

labels. So, let us say we go to label dot foo, dot foo is the beginning of the function right. 

And so recall that what was simple RISC and ARM doing, what they were doing, say 

call instruction is just not a jump; something needs to be done with the return address. 

So, what simple RISC an ARM we are doing, is that the return address was. So, basically 

call has something to do with the return address. So, return address in those i s c s was 

being put in the return address registers, x 86 does not do that, it is rather stack way. So, 

it pushes the return address on the stack. So, it knows the value, it knows which register 

contains the stack pointer, see it pushes the value of the return address that is on the 

stack, and then it jumps to the label dot foo. 

Similarly, we have is view addresses format instruct instruction called ret. So, here we 

return to the address; that is saved on the top of the stack and we pop the entry. There is 

completely a stack based system, so assume that this is a stack, and then we have a call. 

So, the return address gets saved on the top of the stack, and then we keep moving. 



Finally, what we need to do is we need to kill the stack; the return instruction will take 

the value of the return address and pop the stacks. 

(Refer Slide Time: 63:15) 

 

So, what does a typical function in x 86 do. So, well it needs to do similar things. So, we 

recall that we have discussed everything about functions, in a chapter three. So, the idea 

is that first before calling a function, we need to put all the arguments and so on, on the 

stack or in registers. So, once the function begins, it extracts arguments from the stack it 

creates space on the stack to store it is own activation block. It spills registers if required. 

So, there these are the issue of call is saved, and call is saved comes into play. It calls 

other functions does whatever processing it, it does it is own logic, it implements it is 

own logic. 

Finally, after doing that it puts the return values, either you know in designated places of 

memory or in registers, it restores the stack pointed and it returns. 



(Refer Slide Time: 64:19) 

 

So, now let us take a look at an example. So, this is the example. So, the idea here is to 

write a recursive function. The users might wonder that why do we always give recursive 

function to the examples. Well our aim of giving an example, is to give the most difficult 

examples. So, it is not a difficult example is hopefully stimulate the reader to go into 

depth. So, the idea here is, write a recursive function, to compute the factorial of a 

number which is greater than equal to 1, and the number is stored in eax and save the 

result in ebx. Essentially compute eax factorial, save it in ebx, and the function has to be 

recursive. What does the recursive function mean; it basically means that the function is 

calling itself. 

So, let us start. So, the name of the function is factorials, we will start when whenever we 

jump, we will essentially jump to this point. So, here we put 1 in ebx. So, this is the 

default return value. So, recall that zero factorial is one. So, maybe I can write it over 

here zero factorial is, what is this? This is equal to 1, 1 factorial is also equal to 1 right. 

So, basically the default return value we put it in ebx, and then we compare eax is 1. So, j 

is z, it can be j z here or j e does not matter at all. So, if there is equality we return. So, 

we return if the input is equal to 1, so which means that the answer is 1. So, we can just 

return and answer will be there ebx; otherwise we go to the recursive step. 

So, in the recursive step we push the value of eax which is the value of the number n 

right, that we got. So, we are actually calling it num over here; so the number num on the 



stack. We decrement eax, and then we call the factorial function. After calling the 

factorial function what is the expectation. The expectation is that. So, the reason this is 

made in red is, because this is these are the important instructions. So, the expectation is 

that ebx will contain n minus 1 factorial. 

So, what do we do now we pop x. So, bring it read it back from the stack, and we 

multiply. So, what is eax contain at this point, eax contains the number n, and what is the 

ebx contain ebx contains n minus 1 factorial times n. So, we multiply n minus factorial 

times n. So, ebx will now contain n factorial right, a regular multiply instruction, and 

then we return. So, this is you know as simple as it is a very simple function, where we 

have a single push in a single pop, and what is the reason for actually pushing eax, 

because we are changing it is value and we are sending it to other function, and we need 

the value at the end. So, you can think of this as. Well it is can be that the sense of a 1 

value, is being used does not matter if it is called, it call is save it or call is saved, but 

essentially the value of eax is required, and the value is being changed. So, before calling 

the function, we essentially store it on the stack and later on restore it. 

The reason the read function works is, because we are otherwise every push has an 

accompanying pop instruction. So, the size of the stack is otherwise not being changed. 

So, when we do a read instruction, when you call the read instruction, it will find the 

return address at the stack top, which is this point, it will pop the return address and go 

back to it is original parent function. So, this is a simple program, it has 3 4 5 6 7 8 and 9 

instructions to compute the factorial. 

Even if I were to write it in c it would still take three four lines, depending upon how we 

count. So, x 86 assembly in that sense, is not all that inefficient, it has many instructions, 

so a lot of cool things can be done. It also has conditional instructions similar to ARM, 

for example, in conditional add or so on. So, they are called c moves instructions. So, I 

am I am not discussing them. So, you can see the x 86 manual, that has hundreds of 

instructions and a lot of them have very cool features, but I am only discussing the main 

instructions. 

So, here what is the trick, well there are hardly any important tricks, the only trick is we 

are using the imul instruction, and we are pushing and you know saving and restoring the 

value of eax via the stack, those are the only take home points from this algorithm. 



(Refer Slide Time: 70:01) 

 

Say implementing a function what do we do, we use push and pop instructions in small 

functions like the one that we showed, which is fine, because it worked. So, if you see in 

the last one, we used a push instruction and a pop. For large functions that having a lots 

of internal variables and arguments, it might be necessary to push and pop a lot of values 

from the stack; fair enough. For languages such as C ++ that dynamically declare local 

variables. So, what you have is in languages like C ++. A lot of local variables can be 

declared even within the body of the function. So, it sometimes becomes difficult to keep 

track of the size of the activation block, because even at compile time you would not 

know what is the size of the activation block right, how many internal variables of the 

function actually use. So, at runtime the size of the stack needs to be varied. 

So, x 86 processors have a mechanism of doing this. So, what I do is, that we, this is 

where we use the ebp register. So, we save the starting value of esp. So, whenever a 

function, whenever we enter a function the value of the stack pointer is called the starting 

value. So, we save the starting value of esp in the ebp register, this is the stack pointer is 

stored in a base pointer register. So, let me maybe this might require a little bit of 

explanation. So, whenever we start a function, the first thing that we do, is that we set the 

ebp equal to the esp, and then we keep on growing the stack, that a lot of instructions. at 

the end to restore the stack pointer back all that we do is esp is equal to ebp. 



So, that keeps our life very simple, because note that in x 86 not. In fact, in any other 

assembly language, before leaving a function we need to kill the activation block. Killing 

the activation block is same as restoring the stack pointer. So, let me write it killing, it 

should not be killing, it should actually be deleting, but that is ok, we will be deleting, is 

a signal restoring the stack pointer. 

(Refer Slide Time: 72:58) 

 

So, let us write recursive functions for factorial without pushing pop instructions right. 

So, let us not use any push and pop instructions, and let us write a recursive function for 

factorial. All right, so let us do one thing, let us assume that whoever calls the factorial 

function, it puts the value of eax which contains the number whose factorial needs to be 

computed, on the stack. 

So, so whatever is the stack pointer, on the stack pointer we do that. So, the assumption 

in x 86 is like this, slightly complicated if this is the stack pointer. So, at the beginning of 

a function if we read what is there inside the stack pointer, you only get the return 

address because this is; what is the last thing that is done before calling a function. The 

last thing that is done is that you will have an instruction of the form call factorial, and 

immediately the control will jump to the factorial function, and that is when the return 

address will be pushed on the stack, and a stack pointer will point to it. Just above the 

return address which means, because the stack is downward growing. So, pretty much 

esp plus four, which is this address. We have the opportunity of pushing in arguments. 



So, we push in the value of eax, we can the moment we enter the factorial function, 

which is at this point, we can read s b plus for the stack pointer plus four. It is contents 

would contain the value of eax, which is essentially the value of the number, and this we 

can transfer to the registers eax. So, let me repeat, consider the function that is calling the 

factorial function, what is the last thing that it will do before calling. It will invoke the 

call instruction. What is the call instruction do? The call instruction decrement the stack 

pointer and pushes the value of the return address on the stack. 

So, before that if we need to access the stack of the caller function, it is possible for the 

caller to push the value of eax on the stack, which is push the value of any register or any 

memory address, but in this case we are only concerned with the eax. So, push the value 

of eax, which is a number num on the stack, and then invoke the call instruction. So, 

when we reach here esp will point to the return address, but esp plus 4, would point to a 

location within the callers activation block, and there we can read the value of num and 

store it in eax. Then what we can do recall the star star star which are the new 

instructions, we can push ebp. So, we can store the value of the base pointer that was 

there, and transfer the value of the stack pointer into the base pointer. 

Well subsequent instructions are the same, setting the default return value comparing the 

number with one, jumping if there is equality, this is all the same. Now let us come to the 

recursive step, in the recursive step what I do is I create some space on the stack. So, you 

subtract eight from esp, which gives me space to put in several things between two 

integers. So, at esp plus 4, what I do is, I put in the value of eax which is a number, and I 

decrement eax, and at esp which is essentially. So, let us me consider, this is the stack 

pointer what I do. So, we will assume that this is the old value of the stack pointer, which 

is this instruction prior to this instruction, this is pointing over here. So, we are subtract it 

by 8, and creating positions, I am creating actually two spaces, two slots to save two 

integers right, if I am subtracting it by 8, and a new stack pointer will point over here. 

So, what I can do is at esp plus 4 which is this location. Let me save the value of the 

current numbers right, and then at esp which is this location. Let me decrement the 

number by 1 and save num minus 1 right, it might not be visible. So, I will just write 

once again. Then I call the factorial function, what that would do is, that would do 

exactly the same go to 8 esp plus four which is this location sorry. So, basically what that 

would do is, we will call the factorial functions. So, when you are calling the factorial 



function what will the stack look like at this point when you are doing the call 

instruction? Additionally the return address will be pushed, and the esp the stack pointer 

will point over here. Inside the called function we will add four to esp and read num 

minus 1 and compute it is factorial. 

So, after calling factorial what do we need to do, we need to restore the value of eax. So, 

just take this instruction, and flip the arguments. So, s b plus 4 is restore, retrieving the 

input. Finally, we do the multiplication prod equal prod times num then we have these 

two extra lines here. So, we restore the stack pointer. So, basically whatever was there an 

ebp we put it into esp, and we restore the value of ebp by popping it, and we return. So, 

in a nutshell what did we achieve this program, is exactly the same as this program right, 

but here we are the only difference is, we are not using push and pop instructions, instead 

what we are doing is that very explicitly managing the stack. So, in terms of hardware 

performance, it will not be any different, because push and pop instructions actually 

encapsulate a lot of functionality. So, what we do is, that we first. So, the main magic 

lies here, is that we create an activation block, with space to store two integers. Let me 

call it the activation block, activation block, it is space to store two integers; one of them 

is the esp plus 4. So, new stack pointer would point over here esp. 

One of them is used for register spilling. So, we are spilling the value of eax which 

essentially contains the original number. The other one is being used to pass an argument 

to the next function that will be called. So, this has num minus 1 right, only two things 

right. In the activation block this is a spilled register, and this is an argument for the next 

function that we are calling, then we call the next function it works in exactly the same 

way, then we restore eax, and we multiply. So, ebx at this point is supposed to contain n 

minus 1 factorial eax. So, n sorry num minus 1 minus take, num minus 1 factorial right 

and eax is supposed to contain num. We multiply and then we get num factorial. 

Subsequently the, since we change the stack pointer whatever was the original value 

saved in ebp we move it to esp, and we restore the value of the base pointer and we 

return. So, what are the extra instructions, extra instructions are used to right, these two 

over here and the instructions to create the activation block and manage it, which is 

subtract eight from esp and mov eax to esp plus 4 mov eax to esp, and restore the value 

of eax right, couple of extra instructions are there. 



(Refer Slide Time: 82:24) 

 

So, do we need that many extra instructions, if you see we have seven instructions that 

we are changing. Do we need them, the answer is probably no say x 86 is great in 

providing shortcuts. So, the complexity that we saw in the last example, that will not 

happen that is not required, we have an entire instruction. So, what the entire instruction 

does is that it does a lot of things in one instruction. It pushes the value of ebp onto the 

stack, the value of the base pointer on the stack, it mov esp to ebp, so saves the value of 

stack pointer in the base pointer, and it subtracts from esp whatever argument has been 

specified here. 

So, we are here we are specified 32 bytes, certain subtract 32 from esp. So, is it doing it 

is doing a lot of things. First it is doing the job of pushing ebp, putting esp to ebp, and, 

the job of this instruction, this instruction, and this instruction are all being done by one 

instruction, which is essentially storing the value of ebp on the stacks, are setting ebp to 

the stack pointer, and creating the activation block by deleting the size, sorry by 

subtracting the size of act activation block from the stack pointer. So, this is like a three 

in one kind of instruction. So, basically this is what it does, push ebp, mov esp ebp and 

subtract the stack size from esp. It is a standard sequence of operations we instead of 

having three instructions for it, the entire instruction I will do actually all three. 

Similarly, we have the leave instruction which will do the reverse. So, it will move the 

value of the base pointer into the stack pointer, or in other words restore the value of the 



stack pointers, it will pop ebp, which means restore the value of the base pointer, which 

is also a standard sequence at the end of a function right. So, what does the leave do, the 

leave instruction does the job of these two instructions over here; restore the stack 

pointer and the base pointers, and the enter instruction does the job of actually storing the 

base pointer setting the base pointer equal to the stack pointer, and creating the activation 

block. 

So, pretty much these three instructions are folded into one instruction called enter, and 

the only argument. Well the two arguments. The second argument is slightly more 

complicated, but for all practical purposes we always set it to zero; the first argument is 

the size of the activation block, which in this example is 32. 

(Refer Slide Time: 85:15) 

 

So, if we were to make write this program, the previous program what do we have to do. 

All that we have to we need to add only two instructions, and remove all the other 

instructions; one instruction would be this, one more instruction would be this. So, let me 

go back to the complicated figure that we have complicated by writing a lot of things. 

Essentially these three instructions get fused into one, and these two get fused into one. 

So, we can call the entire instruction, which saves the base pointer and the stack pointer, 

and also creates an activation block of size 8 bytes. 

The rest of the code is the same, then we save the input on the stack, right saving the 

input on the stack is essentially same as spilling right. So, we know that the calling will 



change it. So, we are pretty much spilling it, and then decrementing eax and pushing the 

argument calling the function, all of this is fine, and at the end we call the leave 

instruction through the only job is to load or the instead of load maybe the word restore 

would be better. So, restore esp and ebp. So now, you see that push and pop are not 

always required. Well they are good ideas if the program is small and simple, and recalls 

that pushes and pops have to be exactly matched. So, if we have n pushes, we need to 

have n pops right; otherwise the stack will not remain the same, and a return instruction 

will not work, and keeping track of the number of pushes and pops in a complex function 

is hard; that is the reason what you do is, that we you save the starting state at the 

beginning with the entire instruction, then you do whatever you want to do with the 

stack, and just before leaving called the leave instruction, which will restore the value of 

the stack pointer and the base pointers, and then you return. 

So, why is this needed the reason this is needed, is basically because we want to 

completely delete the activation block, and when you return the value of the stack pointer 

should be pointing to the return address, because that is where we will read the return 

address from all right. So, after taking a look at enter and leaves. So, let me actually 

come back for two seconds, with enter and leave and then I will again proceed further. 

So, in complicated programs, where a lot of variables are allocated space on the 

activation block, and activation block per say, you know is a large structure. So, let me 

call it the a b, and it can have like hundred integers or maybe in the more right. So, 

depending upon the paths that the program takes the size of the activation block can 

vary. So, instead of monitoring it in very fine grained manners, what is the ultimate thing 

that we need to ensure that, when the function returns this entire structure is killed. This 

is exactly what the entire instruction and a leave instruction allow you to do. 

So, using them, using the, enter as one of the first instructions and a function, and leave 

as one of the last instructions, like the instruction just before read, is actually a good idea 

and good x 86 programming practice. Now, we will discuss advanced memory 

instructions. 


