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Welcome back. 
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Let us take A look at faster multipliers namely; an order log n square multiplier. So, this 

is fairly simple to construct. So, let us consider an n bit multiplier and n bit multiplicand. 

So, if you write the multiplier and the multiplicand, multiply here and the multiplicand 

here. So, what we can do is, we can construct n, partial sums, where reconstructing is 

partial sum is very simple and also it can be done in parallel. So, whenever we have a 1, 

we write the multiplicand as is if you have 0, we just writes 0s, and every partial sum is 

offset by one position to the left, as compared to the partial sum before it. So, if you are 

multiplying n bits, we will have n partial sums, small n mind you. 

So all and all of these partial sums can be generated in parallel. So, this partial sum can 

be generated simultaneously with this, which can be generated simultaneously with this. 

So, generating all the partial since is very easy, it takes a constant amount of time. So, 

after that we need to add n numbers. So, for adding n numbers what we can do is, we can 

have a tree of adders. 
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So, we can add the first and second here, we can add the third and fourth numbers here, 

the n minus 2th and then the n minus 3th numbers here. Similarly we can have a tree of 

adders. So, if we take a look at the sizes of the numbers; the first partial sum is n bits 

long, and the last partial sum, is 2 n minus 1 bits law rights. So, this is n over here, and n 

minus 1 over here, n minus 1 0s. 

So, at each level adding even 2 n, you know even numbers with 2 1 bits with take order 

of log 2 n time, which is the same as order of log n time, because we ignore constants, 

and even the base of the log is not important. So, after that we have log n levels, because 

in each level we reduce the number of, numbers that we need to add by a factor of 2. 
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So, now if we realize that we have log n levels, and each level takes maximum of log of 

2 n time, because they 2 n bit numbers, which is the same as log n, because we have 

always ignore Constance in our work. So the total time taken is the number of levels, the 

number of levels multiplied with the time per level which is log n times log n which is 

order of log n square. So, this is the complexity with a new multiplier that we have, and 

this is significantly better than our previous complexity which was order of n log n right. 

So, log n square is much better than n log n. 
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So, this is a faster multiplier in that sense, but we can do better we can do much better as 

it turns out. 
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So, before we discuss how we can do better, it is important for me to mention, that there 

is a new kind of device that we should use, we can use and we have to use. It is a carry 

save adder. So, what the carry save adder does, is that it takes three numbers A B and C, 

and it generates two numbers D and E such that A plus B plus C is equal to D plus E. So, 

essentially it takes three inputs which are the three numbers and it, produces two 

numbers is output; such that the sum of D and E in this case is A same as the sum of A 

plus B plus C. 
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So, the way that we can do it is like this. So, let us consider a one bit carry save adder or 

A CSA adder. So, let us add three bits A B and C; such that A plus B plus C is equal to 

two D plus C. So, D and E are also single bits, and this can be done. So, I will tell you 

why this can be done. So, let us consider you know the smallest value is the A B and c, 

and largest values. So, the smallest values are 0 0 and 0. So, we will have D is 0 where 

the sum is 0, and we will have E is 0 if we consider the largest values, which are 1 1 and 

1, then the sum is 1 plus 1 plus 1 3 which is 1 1, which is pretty much equal to two times 

1 plus 1 

So in this case D is 1 and E is 1. So, what we can do, is that if we add A plus B plus C 

right. So, since we are adding three 1 bit numbers, the potential output right can be A 2 

bit number, as we just saw in this case. If he let us say we can you know conveniently set. 

So, in the 2 bit number, the left bit is a carry bit, and the right bit is the sum bit. We said 

this bit to D and this bit to E then the value of this number would be equal to 2 D plus e, 

which is exactly what we need. 

So, what we says that in the case of one bit CSA adder D and E can be in A computed as 

follows, that D can be the carry bit, the more significant bit, and E can be the sum bit, 

which is the less significant bit, the lesser significant bit in that sense. so let me just 

explain once again, if you are adding three 1 bit numbers A B and C the smallest value is 

0, and A largest value is 1 plus 1 plus 1, which is 3 which is 1 1. So, the final result will 



fit in 2 bits. If I keep the 2 bits over here let me do one thing. So, let me call the sum bit 

which is this bit as e, and let me call the carry bit which is the most significant bit is D. 

So, as we can see the final result can also be expressed as two D plus E, which is exactly 

what we want to do, this is exactly what we want to do. So, we basically have A plus B 

plus C, is equal to 2 D plus E. 

So if now if I take a look at the previous diagram, what I have done is, I have taken three 

1 bit numbers in produce two numbers, where 2 D can be thought as D and e can be 

thought as E. So, basically produce two numbers is a sum of these two is equal to the 

sum of these three. Now let us do this for more bits right, at the moment A B and C 

where only 1 bits each. So, let us consider wider versions of A B and C. 
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So, let us do A little bit of algebra, to compute the two numbers. To compute two 

numbers D and E such that A plus B plus C is equal to D D plus E. So, way the way that 

we will do it, is that we will use the same logic that was used here, and we will just 

extend our results. So let us express A as sum of you know it is bit. So, any number A 

can be A expressed as. So, let us me consider A right, let the bits in A B A 1 to A n. So, 

let the number A be A n to A 1. 

So, this can be expressed as this number here is A. Similarly we can express B in the 

same way as A sum of parts of two, and each part is multiplied with the corresponding 

bit of B, and we can do the similar things the C. Then what we can do is, we can group 



all the terms together as A i plus B i plus C i and multiply them it 2 raise to the power i 

minus 1. So, what we have seen, in the previous result for 1 bit. This can be expresses 2 

times 2 D i plus E i times 2 to the power i minus 1, you know this is something that 

exactly we have seen here. So, we can do the same you know the same thing sum of 

three bits is the same as sum of two numbers. 

Once we do the same, we can then. So, this, since you are seen in the previous slide, 

slide number 76 I am not repeating. Once you have done this again we can break up this 

expression over here. So, we will have two terms i equal to 1 and 2 n D i times to the 

power i. So, this is one binary number rights, which we can treat as d, and this is one 

more number which we can treat as E right. So, what we see here is that we have 

replaced the sum of A of A and B and C A plus B plus C as two numbers D and E rights. 

So, let me just get rid of the ink, and you will be able to see it better. Or computing D 

and E is also very easy; the reason computing it is very easy is that, we take. So, in 

parallel we consider. So, since is hardware everything is parallel. 

So, we considered the corresponding ith bit, we add them. So, we get this D and E, 

where E is the sum bit as we have seen just before in the previous slide. Sorry E is the 

sum bit and D is the carry bit rights. So as we have seen here we just add them up. Then 

all that we need to do is that. So, actually what we can do is that in A here, we can take 

the two out and this written D i times 2 i minus 1. So, this is one binary number which is 

composed entirely out of the sum bits, where we after adding individual bits. And this is 

one more binary number which is composed entirely out of the carry bits. Carry that is 

obtained by adding the three bits at the same positions; so ones we get E, E is as is but 

ones you get this number which is left shift multiplied by 2, which means left shift it by 

one position and we get the number D. 

So essentially computing both D and E can be done very quickly in constant time, or an 

order one time, and the way it is done is that we consider the ith bit of all three numbers 

A B and C, we add three 1 bit numbers. This can be done in parallel. So, will get a sum 

bit and carry bit. So, we from one number just with the some bits of all the, you know 

individual sums right, and one more number with the carry bits that we obtained by 

adding all trip let us of numbers right, of the form A i B i and C i and then we just take 

the number that we get and left shifted by one position, which is to effect this 

multiplication by 2, and one number becomes D and the other number becomes E 



So this can be done. So, this particular step of extracting the ith bit, adding the three ith 

bit getting D i and E i all of this can be done in parallel. So, this takes constant time, then 

forming the number with these bits also takes constant time, and left shifting also takes 

constant time. So, it is not an issue right by one position. So, that is a reason getting D 

plus E from A plus B plus C. The entire operation is a constant time operation. 
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So, I just summary of what we just discussed, how do we generate D and E. Well we add 

all the corresponding sets of bits A i, B i, and C i independently. Simultaneously 

independently and simultaneously we said D i to the carry bit produced by adding A i, B 

i, and C i and we said E i to the sum bit produced by adding A i, B i, and C i. So, since 

all the operations are done in parallel, it takes order of one time. 
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So, let us now discuss the Wallace Tree Multiplier, the idea is like this that we generate n 

partial sums. So, this as we have seen in the previous example can be done very quickly. 

So, this can be done in order of one time, where we generate the n partial sums. How do 

we do this? we take a look at each bit in the multiplier if it is one, the partial sum is the 

multiplicand; of course, shifted by a certain number of positions to the left; otherwise the 

partial sum is 0; that is the exactly what we do. 

If the ith bit in the multiplier is 0 the partial sum is 0 p i is 0; otherwise that p i is the 

multiplicand, left shifted by i minus 1 positions, if the ith bit in the multiplier is 1. So, 

this can be done in parallel. Once we have n partial sums we can use a tree based adder, 

to affect the multiplication, the way this is done is like this, that we have a similar tree as 

we had in the log n square multiplier. 
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So, in this case, what we do is, that we divider n partial sums into groups of three. We 

have a carry save adder CSA adder that takes in three inputs, and that produces two 

outputs. So this adder produces two outputs, and then the next adder; one output is sent 

here, and one more adder is send to another carry save adder, which takes two outputs 

from here, and the two outputs from the next partial sum adder rights, from the next CSA 

carry save adder. So, in this case if you have. 

So, basically each carry save adder here is decreasing the number of inputs by 3 by 2. So, 

if there are three x inputs here, there are two x inputs in the next level. So, what we do is 

that we create a tree of adders, where we start with the partial sums and keep on adding 

them. So, recall that the carry save adder takes three inputs and produces two outputs, 

where the sum of the outputs is the same as the sum of the inputs. Then what we do is 

that we keep on adding levels till we finally have A case where we have only two outputs, 

and A sum of these two if the sum of all the partial sums. 

So the approximate number of levels that we will require is order of, log of n to the base 

3 by 2. Why three by two. It is three by two, because that every level where decreasing 

the number of partial sums by A factor of 3 by 2. So, we are just adding, so ultimately 

we will reach a point for the sum of all the partial sums is just some of these two 

numbers. Once we have two numbers we can use a regular carry look ahead adder, which 

again takes in order log n time to add these two numbers. So, these two numbers will be 



much larger, and they will have roughly 2 n bits. So, that is the complexity relation still 

holds, and then will get the final product. 

So let us now compute the total time of this tree of CSA adders, which is also called a 

Wallace Tree Multiplier. So, what we have is, since we have the does you know tree over 

here, the tree has log off n to the base 3 by 2 levels, and each level takes order one time, 

because one CSA adder runs in order one time. So, the total time that is required is order 

of log of n to the base 3 by 2, which is the same as orders of log of n, and the reason 

being at the base of log does not matter, because in a log to any base and log to any other 

base, the related via constant factors. So, those constant can be ignored. So, once we 

have order of log n levels, in the time per level is order one. The total time required to 

compute these two numbers; let us call them x and y. 

So here what we have is x plus y, is the sum of all the partial sums. And the sum of all 

the partial sums is essentially the product the result of the multiplication, which 

essentially we are producing two numbers, whose sum is the final product final product p. 

So, first thing that we do is, we add this n partial sums, to come up with two numbers x 

and y say that x plus y is equal to p 1 till p n, via a tree of carry save adders, and each 

carry save adder takes order one time. And since we have log n such levels the total time 

is log n, and finally, we need to add x and y with A carry look ahead adder, which again 

takes log n time. So, as we can see the final result, we can get in order of log n time. 

So this is the fastest possible multiplier, and this is very commonly and frequently used 

in commercial circuits. So, as you can see this is very fast. And the reason it is fast, is 

basically, because of this carry save adder right. and you know had we, not had the carry 

save adder it would have been difficult, but because we have this carry save adder which 

is a very fast unit, which can taken three inputs and produce two outputs for the sum of 

the two outputs, is the same as the sum of three inputs. 

We are quickly. we know we can quickly reduce the sum of n numbers to sum of only 

two numbers within log n time, and then we add the two numbers we get the final 

product, which is the result of the multiplication. So, we have achieved our goal of 

having a log n time multiplier. 
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So, this slide only summarizes what we have discussed, just a quick recap use an array of 

CSA adders to add three numbers to produce two numbers. So, we reduce the set of 

numbers by two third every level or divided by 3 by 2. After of log n to the base 3 by 2 

level so left with the only two numbers. We use a carry look ahead adders to add them. 

So, this takes log n time. So, the total time as a result is log n. 

(Refer Slide Time: 20:49) 

 



(Refer Slide Time: 20:58) 

 

So against the time complexity is log n this. So, I am skipping this slide, because you 

have already discussed the content. So what have we done? What we have done is that 

we have focused on addition and multiplication in this, you know in the last three 

lectures. So, now, will move to other things, we will move to division, floating point 

addition, floating point multiplication, and floating point division. So, because this was a 

long chapter I divided the slides into two sub slides, like two set up sub slides. 

So, you will find one slide as chapter 7, part 1 and other is chapter seven part 2. So, what 

will do is when move to the next slide set which is part 2. So, we will discuss these four 

topics in part 2. So, the current part which is part 1 is over. 


