

Computer Architecture

Prof. Smruti Ranjan Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Lecture – 04

The Language of Bits Part-III

(Refer Slide Time: 00:26)

So, now we have taken a look at Boolean algebra which is the manipulation of bits. We

have taken a look at how positive integers are represented in binary, how negative

integers are represented in binary. So, let me maybe just summarize. At this point, so we

have for a quick recap Boolean algebra had to do with Boolean variables, so each

variable could take a number between sorry not between a number which is either 0 or 1.

And we defined basic operations on Boolean variables such as the AND operation which

means that the AND function is true only when both the variables and all the variables

involved in AND operation, all of them are 1. And the OR operation is correct only when

is true only when one of the variables is 1. Then we define a NOT operation that is a

compliment, and we define an XOR operation which is 1, when 1 is 0 and other is 1.

Then we define the binary system to represent positive integers with different basis. So,

the important point to recapitulate you know for at this point of the lecture is that what is

the relationship between binary between octal which is base 8 and between hex which is

hexadecimal which is base 16. And the important result that we had proved is that the

octal and hexadecimal notations can be thought as short forms you know abbreviations

or reduced representations of a binary representation.

So, what do we do for example, in base 16, we these group blocks of four binary

numbers; and represent them with one base 16 number. For example, a number of this

form, which can be represented as this becomes 1 and this is actually 8 plus 3 - 11 which

is B right. So, the instead of having 8 digits you only have 2 digits. Then we represented

negative integers we looked at different methods of representation; one is a sign

magnitude representation, which has a sign bit the problem there was that performing

arithmetic operations was difficult. And there were two representations was zero; the

other is ones complement same problems two representations.

The other was with a bias; so in with a bias we had a single representation for every

number, but even addition and subtraction were relatively easier, but multiplication was

hard, so that is the reason we introduced 2s complement. Where essentially the 2s

complement of a positive number is the number itself; and a 2s complement of a negative

number is 2 to the power n minus u. The fantastic thing about this number system is yes

it preserves a notion of the sign bit, it is easy to find if a number is positive or negative

just take a look at the m s b there is one representation for zero and all other numbers.

And performing addition, subtraction and multiplication is simply as simple as take the

unsigned representations of the numbers and add, subtract and multiply them. The last n

bits of the result are the representation of; the last n bits of the result are actually the

representation of what the actual result should have been right.

So, then we discussed some properties of this numbers system which is when what are

the conditions for an overflow that is very important. And we also discussed the issues of

sign extension which is that when you convert a number from one you know from an n

bit system to an n bit system, where m is greater than n what do you need to do.

(Refer Slide Time: 05:09)

Now, let us discuss floating-point numbers, which are numbers the decimal point. So,

what is the floating-point number is any number with a decimal point inside it like 2.356

or 1.3 times 10 to power minus 10. So, now the question is the moment we say that a

number is a floating-point number, we need to answer the question what is the fixed-

point number. So, in a fixed-point number, the number of digits after the decimal point is

fixed. So, one example of such a number is 3.29. So, any number representing let us say

currency is a fixed-point number, the number of digits after the decimal point is fixed

(Refer Slide Time: 05:51)

So, what is the generic form of a number in base 10, if we consider just positives

numbers. If we just consider positives numbers, the generic form of a number in base 10

is 3 times 10 to the power 0, which is 3 plus you know 0.2 which is 2 times 10 to the

power minus 1 plus 0.09 which is 9 times 10 to the power minus 2. Say, any generic

form is a form of this type where we make a summation from a minus n to a plus m or

plus n where we are essentially adding powers of 10 with a coefficient. So, in this case

the coefficient is 2 and 9 and 3 and so on. So, what would a generic form of a number

being base 2, all that we can do is that we can take 10 and replace it with 2.

(Refer Slide Time: 06:55)

So, let us take some simple numbers and expand them in this notation. So, let us say

0.375 is 2 to the power minus 2 plus 2 to the power minus 3. A number like 1.5 is 2 to

the power 0 plus 2 to the power minus 1; a number of the form 17.625 is this

representation as shown over here 2 to the power 4 plus 2 to the power 0 plus 2 to the

power minus 1 plus 2 to the power minus 3. So, if we can use base 10 to represent all

floating-point numbers right all decimal numbers like the value of pi and e and even a

number like 5.36 times 10 to the power minus 17 nothing stops us mathematically to

replace base 10 by base 2.

(Refer Slide Time: 07:55)

So, what do we do we take the base 2 representation of a floating-point number. So, what

we have done here is that we have replaced 4, I am sorry replaced base 10 by base 2

everywhere just one small correction here this should have actually been minus 3. So, we

have replaced base 2 by base 10 everywhere. And so as I said if you go to a planet where

people have only 2 fingers they would use base 2, they would not use base 10, and a

pretty much any base 10 number has an equivalent base 2 expression, which is an

expression of this form which is just a binary representation of the number from base 10

to base 2.

And so if you consider 10.11 in decimal this would be 2 plus 0.1 is 2 to the power minus

1 which is 0.5 plus 0.25 which is 2 plus 0.75 or 2.75. So, this gives us a very easy way to

at least represent positive numbers with by just simply extending the logic and instead of

a base 10 using base 2.

(Refer Slide Time: 09:16)

So, let us now create a standard form of all floating-point numbers. So, in this case, we

will use the sign magnitude representation, because otherwise that will become too

complicated. So, any number A can be represented as minus 1 to the power S, where S is

a sign bit. If S is 0 then minus 1 to the power S is 1; and if S is plus 1, which means the

number is negative minus 1 to the power 1 is minus 1, so number becomes negative.

Then we can define P which is a significand, so the significand is typically a number

between 1 and 2. In this case, not typically it is a number between 1 and 2

 So, we can represent the significand as a number as 1 plus M. So, 0 is less than equal to

M and M is less than 1 multiplied by 2 to the power X, where X is an integer right. So, X

is element of Z, which is the set of integers and the significand. So, let us just go over

this terminology once again is very important say any floating-point number, we are

representing as minus 1 to the power S, where S is the sign bit multiplied by the

significand, the significand is the number of the form 1 plus M, where M is strictly less

than 1 and it is positive M is called the mantissa. So, the M is given a name and the name

of this term is the mantissa. Multiplied by 2 to the power X, where X is the exponent and

X is an integer

So, as we see any numbers can be represented in this form there is absolutely no

problem. Like a number of the form 2.6 can be represented as minus 1 to the power 0

multiplied by 1.3 multiplied by 2 to the power 1, where 1.3 is a significand which is 1

plus 0.3 where 0.3 is the mantissa. So, this is also called the normal form or the

normalized form.

(Refer Slide Time: 11:38)

So, let us see some examples at least in decimal, we will go to binary later. So, 1.387

times 10 to the power minus 23. So, the significand is 1.3827, Mantissa is 0.3827. Since

we consider in decimal instead of base 2, it is base 10, so the exponent is minus 23 and

the sign bit is 0. Similarly, 1.2 times 10 to the power 5, the significand is 1.2, mantissa is

0.2; the sign bit is 1, which means is minus 1 to the power 1 at the leftmost point and the

exponent is plus 5.

(Refer Slide Time: 12:24)

So, let us now take a look at the IEEE 754 format for representing floating-point

numbers, and take a look at the general principles. So, the significand should be of the

form one point something. So, there see if you think about it, if we have 32-bits, so this

is a 32-bit number system. If we think about it if every number significand is one point

something right, there is no need to waste 1-bit representing that 1, we can assume it as

the default that is always there. We just need to save the mantissa bits right, for example,

if a number is 1.384, we just need to save 384 right need a binary representation for 384,

we can automatically assume that 1 is in there. We also need to store the sign bit S, and

the exponent X.

(Refer Slide Time: 13:30)

So, the IEEE 754 format is something like this it is a 32-bit format. The MSB is for the

sign bit where we use one bit for the sign bit or we use 8-bits for the exponent which

means it can take 256, values and we use 23-bits for the mantissa.

(Refer Slide Time: 14:02)

So, let us now take a look at the representation of the exponent. So, the exponent uses the

biased representation in the sense that if the exponent is equal to X then we actually

saves X plus the bias. So, in this case it allows us to represent negative exponents as

well. So, we can actually represent exponents in the range of minus 127 to plus 128 right.

So, since the bias is 127, what we actually save in this case is 0 till 255, which is a total

of 256 numbers. So, what was the need for having a biased representation over here well

the need was that the exponent can be positive or the exponent can be negative.

Hence, we need to have some kind of a representation 2s complement was found to be

bit too complicated, and it was also not required because typically in floating-point

numbers, we do not multiply the exponent with some other number. Most of the time you

only add and subtract the exponents; in that case it was not necessary to go for something

as heavy weight as 2s complement, the biased representation was found to be nice and

simple.

So, as I said. So, let us consider some examples the exponent is 0, we actually save 127

if the exponent is minus 23, we save minus 23 plus 127 which is 104; last example is the

exponent plus 30, we save 157. So, what are the different fields once again the one bit

sign bit is there; after that we have 8-bits, and the 8-bits are for the exponent. But the

exponent is actually x it is representation is E, and what is the relationship between E and

X, we are saving E, where E is equal to X plus the bias. So, whatever is a real exponent

we add 127 to it and we save it in this particular number system.

(Refer Slide Time: 16:21)

Now, let us con consider normal floating-point numbers in the IEEE 754 format. So,

IEEE by the way is an Association of Electrical and Electronics Engineers. So, they

IEEE typically makes standards and formats for representing a variety of information. In

this case, the 754 format has been made 754 standard has been made to represent

floating-point numbers in binary. So, normal binary numbers have an exponent between

minus 126 and plus 127. So, the other exponents which can be represented minus 127

and plus 128 are reserved for special purposes so which we will discuss later.

So, now the standard form or the normal form of an floating-point number in IEEE 754

format is exactly what we had seen before and with a little bit of modification. So, we

have the sign bit minus 1 to the power S multiplied with the significand, where the

significand is of the form 1 plus M, M being the mantissa strictly less than 1. Multiplied

by 2 to the power E minus bias where E is the representation of the exponent. So, E is

between 1 and 254 right. So, the values of 0 and 255 are reserved for special purposes.

(Refer Slide Time: 18:02)

So, here is the food for thought, what is the largest positive normal floating-point

number, what is the smallest negative normal floating-point number. I will not answer

them, but I have kept them as exercises for the reader and the answers are in the book.

(Refer Slide Time: 18:19)

So, let us now take a look at some of the special values for the floating-point numbers.

So, in this case, so if you would recall the valid values of E or E actually has to be in the

range of 1 and 254. So, the other the values that we are excluding as 0 and 255 which

basically means that exponents with a value of minus 127 or plus 128 are not allowed.

So, if they are not allowed what does it mean it means that we are using these values for

denoting something special. So, what should it be what it should be is something like this

that if E is equal to 255 and the mantissa is 0, let us treat this number as positive infinity

plus infinity if the sign bit is 0. If E is 255, the mantissa is 0, and let us treat another sign

bit is 1, let us treat this number is minus infinity. So, let us give an example 1 divided by

0 is plus infinity; and minus 1 divided by 0 is negative infinity; and infinity is

represented with the fact that E is 255 and M is 0.

Now, let us consider the case the third case where E is 255 and M is not equal to 0. So,

there can be many such values, but we say that all of these values represent an NAN for

an NAN is an not a number. For example, what is 0 by 0, 0 by 0 is undefined. So, we

treat this case as a NAN or what is log of minus 1, log of minus 1 is undefined. So, let us

again treated as a NAN or sin inverse of 5, a sin inverse of 10, it is undefined. So, we

treat this as an NAN. Any arithmetic expression that has an NAN will always evaluate to

NAN. So, NAN plus NAN is equal to NAN, NAN minus NAN is equal to NAN, NAN

plus any other number is equal to NAN. So, the moment any part of an expression

evaluates to not a number. The entire expression will evaluate to not a number.

So, in this IEEE format, we sadly have two representations for zero which is not

desirable, but this is still there. So, in this case, if E is equal to 0, which is one of the

special cases that we had excluded if E is 0, and the mantissa is 0, then the value is 0. So,

of course, there are two representations are sign bit can either be 0 or the sign bit can be

1, we thus have two representations for 0 in this particular number system which is not

something that which is not much that we can do. So, the sign bit can be 0 or 1, but then

the E field has to be all 0s to represent a 0, and the mantissa field also has to be all 0s.

And a sign bit can either be 0 and 1, it does not matter it will still be in a both the

variants will be treated as a 0.

The last subclass is very interesting is called a denormal number. So, we will discuss this

in later slides. In this case, E is equal to 0, but M is not equal to 0. So, we will discuss

this case in the next few slides.

(Refer Slide Time: 22:16)

So, let us but before going to denormal numbers, I just wanted to give an example of

how we would represent a floating-point number. So, let us maybe consider a number of

the form minus 1 point let us consider number of form minus 3. So, minus 3, the first

thing would be to reduce it to standard form or a normal form which is minus 1 to the

power 1 multiplied with 1.5 multiplied with 2 to the power 1. So, this is equal to minus 1

to the power 1 multiplied with 1 plus 0.5, where 0.5 is the mantissa multiplied with 2 to

the power 128 minus 127, where 127 is a bias.

So now, if I consider the representation of this number in binary then the sign bit will be

equal to 1, because the number is negative. The exponent right the E field will actually

be equal to plus 128, because we are subtracting the bias minus 127 to get 1. So, this is E

minus bias right for 127 is the bias. So, E is plus 128. So, let us have the binary

representation of 128 and the binary representation of that would essentially be 1 and

seven 0s

Now, let us come to the mantissa. So, the mantissa part is 0.5. So, 0.5, if you want to

represent the way that we would represent, so it is essentially is 0.5 is basically equal to 1

times 2 to the power minus 1; the mantissa contains 23-bits. So, is a 23-bit mantissa. The

first bit corresponds to 2 to the power minus 1, the last bit corresponds to 2 to the power

minus 23, and the ith bit corresponds 2 to the power minus i. So, the mantissa can be

thought as a summation from i is equal to 1 to 23 the coefficient x i multiplied by 2 to the

power minus i. Since, this is 0.5 which is 2 to the power minus 1 we will have one over

here which is the MSB position and the rest all will be 0s. So, this is how we would

represent a number of the type minus 3 in the IEEE 754 format.

And this is actually very easy the first we represent the sign bit then we figure out the

value of the E field by adding the bias to the exponent which is 128. And then we figure

out the mantissa. So, the mantissa mind you is strictly between strictly less than 1 and it

is greater than equal to 0; and it is essentially a summation from you know 2 to the

power minus 1 to 2 to the power minus 23 each term multiplied by a coefficient in this

case we just need to stop at 0.5. So, the MSB needs to be 1, because it is 2 to the power

minus 1 and rest all the terms need to be equal to 0. So, this is the representation of our

floating-point number in binary.

Given this, let us take a look at some of the clear aspects of floating-point math. So, the

smallest normal floating-point number that we can have, the smallest normal positive

floating-point number that we can have is let us work it out. So, that basically since it is

positive the sign bit is 0 and the smallest value of E that we can have is actually 1. So,

basically this is minus 126, this is the exponent and the smallest mantissa that we can

have in a positive setting is all 0s. So, assume that f is 1 such number, which is a smallest

normal floating-point number. So, we have a floating-point f is 3 to the power minus

126. We take another number g which is f divided by 2. So, this number is 2 to the power

minus 127 which is g, and g can clearly not be represented in our system of normal

numbers because we do not have a representation for it.

Now, let us consider the next statement if g is equal to 0. So, now, the question is that

what is the value of g, if g is equal to 0, let us print error and should this code print error

and do you think this is the right behavior, well intuitively no right. So, let me maybe

you know write a big no over here, intuitively no, because f is a positive number g is the

same positive number divided by 2, it is not equal to 0. So, there is as such no reason of

concluding the g is equal to 0 and printing error, but we also do not have a representation

for g. So, we somehow need to solve this situation.

(Refer Slide Time: 28:12)

So, what we can do is that we can define a set of denormal numbers, where the E field in

the representation is 0, and the m field is not equal to 0. So, the normal form of a

denormal numbers here we change the significand; instead of assuming that the

significand is of the form 1 plus M, we assume it is 0 plus M, 0 becomes the default and

mantissa remains the same between 0 and 1. And the exponent we assume is 2 to the

power minus 126. So, in this case, E is equal to 0, and we assume that X is equal to

minus 126, mind you it is not minus 127, this is a common mistake that students

typically make, it is not minus 127, it is minus 126. So, and a common question that

instructors typically ask is why minus 126.

So, let us try to understand what is happening. So, let us consider the number line and let

us assume that these are all the floating-point numbers that we can represent. So, the

smallest normal floating-point number is 2 to the power minus 126. So, basically we

want to define a very small region or numbers after this such that. So, mind you the

diagram is not drawn to scale. So, this part is normal right. So, we want to define a very

small regional numbers around here called denormal such that you know we our

programs make sense and this particular program does not print error. To actually ensure

that this is the case we define a normal form of this type, but the significand is assumed

to be 0.

So, in this case, let us find out what is the value of the largest possible mantissa. The

value of the largest possible mantissa is pretty much equal to the mantissa or the

significance. So, they are actually the same is equal to 2 to the power i where i is pretty

much or I would say minus i for i is going from 1 to 23, which is equal to 2 to the power

minus 1 plus 2 to the power minus 2 all the way till 2 to the power minus 23. So, this is a

simple geometric series summation. So, when we look at you know any kind of

geometric series summation, so we can expand the geometric series and we can do some

maths. So, I will write down the result directly and the result is 1 minus 2 to the power

minus 23.

So, this is an important result and this will come many times in the book and in our

discussion. So, users might want to memorize this, readers might want to memorize this,

but the important point over here if I want to find the largest denormal number, this is

essentially equal to 1 minus 2 to the power minus 23 multiplied with minus 126 which is

2 to the power minus 126 minus 2 to the power minus 149. So, this is the largest

denormal numbers. So, pretty much if we take the number line right and if this point is 0,

so the largest denormal number is at this point and the smallest normal number is at this

point.

So, as we see the difference between them is really small 2 to the power minus 149. So,

some difference needs to be there, because it is after all the discreet number system, it is

not a continuous number system, but the important point to appreciate is that this should

not have been minus 127, it should be minus 126. Because that is only when we get this

property over here that we have a very, very small distance between the largest denormal

number in the smallest positive normal number.

So, what is the smallest, what is the range of the denormal numbers the range of the

denormal numbers, the smallest positive denormal numbers would pretty much have the

mantissa the last 23rd bit would be equal to 1. So, it will be minus 2 to the power minus

23 multiplied with 2 to the power minus 126, which is 2 to the power minus 149. So, just

to summarize, what is happened is that we have the set of all the normal numbers, we

have just created a little bit more room of denormal numbers such that a lot of our maths

in a programming actually makes sense. And we do not come up with very non-intuitive

answers, so that is the reason denormal numbers have been defined in this particular

fashion.

So, I would request the readers to take a look at the normal form for both normal in a

standard or normal form for both the normal floating-point numbers as well as the

denormal floating-point numbers, find out what are the differences do some of the maths

that I did just now and convince themselves for the utility of denormal numbers, and how

they can help avoid non-intuitive results.

(Refer Slide Time: 34:25)

So, we had pretty much the same thing in the slides but I have over written that. So, but

here is the example the ranges of denormal numbers which you just found out. So, the

positive denormal numbers starts from 2 to the power minus 149 to 2 to the power minus

126 minus 2 to the power minus 149, and the normal numbers then start from 2 to the

power minus 126. Similarly, for negative denormal numbers, the range is minus 2 to the

power minus 149 to the same thing albeit with a sign reversals.

(Refer Slide Time: 35:03)

So, as I said all that denormal numbers do will to extend the range of floating-point

numbers a little bit, and mind you such diagrams are never drawn to scale such that again

our maths make sense.

(Refer Slide Time: 35:16)

So, what we saw is that the range of floating-point numbers, so let us take a look at the

range of the number systems. So, for an integer with a 32-bit, so typically an integer is

32-bits right and that is what an int in C or in java would typically correspond to in a 32-

bit number system it 2s complement roughly the largest number that you can represent is

2 to the power 31. So, maybe let me write it down that for a 32-bit integer, you know

these are just rough figures; the maximum that we can go to is like plus minus 2 to the

power 31. For a 32-bit floating-point number, the maximum that we can go to is roughly

you know in the range of plus minus 2 to the power positive 127, but then of course, the

mantissa can be higher. So, I can make it 128 that is maybe another largest that we can

go to a very approximate figures; and 2 to the power 128 is around 10 to the power 40

typical numbers. The approximate range of doubles is much more a double precision

number because this user 64-bits and does not use 32-bits.

So, in this case, we have a one bit sign bit we have 11-bits for the E field, mind you not

8-bits, but 11-bits. So, this means that. So, the bias is also different instead of a bias of

127 the bias is 1023 right; and we can cover a much larger range of numbers from minus

1023 till plus 1023. So, the range is typically plus or minus 10 to the power 308, which is

a fairly large range and we would typically not need more than this for most of our

calculations. So, this is a lot right and we do not typically need more than this.

So, I can add note over here that for a 64-bit double precision, what we have double in C,

we are roughly at plus or minus 2 to the power 1023 and this is roughly 10 to the power

300. So, this is roughly 10 to power 300, this is roughly 10 to the power 37 or 38, and

this is much, much smaller. So, 2 to the power 30 is around a billion. So, this is roughly

10 to the power is actually 3, 4 billion something like that. So, this is roughly a 10 to the

power 9 kind of figure slightly more than that. So, it is several billion is limit, around 4

billion is the limit; and if I consist it is around 2 billion to be precise plus minus.

(Refer Slide Time: 38:40)

Let us now take a look at some basic floating-point math that we want to add, we have

two numbers A and B, where A is 2 to the power 50, and B is 2 to the power 10. We

want to add A plus B and then we want to subtract A, but A plus B we want to be done

first that is the reason is there inside a bracket. So, if we add if A and B, we are

essentially adding two raised to the power 50 plus 2 raised to the power 10. If we do this

the result, we would look something like this that a sign bit will be 0, the exponent has to

be the larger one cannot be the smaller one, the 2 to the power 50 plus the significand has

to be something of the form 1 plus 2 to the power minus 40, so this is the only way that

we will be able to represent such a number. So, the mantissa has to be 2 to the power

minus 40, but the smallest value of the mantissa that we can possibly represent in our

system is 2 to the power minus 23. So, this is the smallest value that we can represent as

a result this number cannot be represented in our system.

So, this is the problems. So, what most hardware would do is that they will actually take

2 to the power 50 plus 2 to the power 10. And since the mantissa cannot be represented

they will just produce 2 to the power 50, as a result; and then when we subtract 2 to the

power 50 minus 2 to the power 50, C will be computed to be 0. So, this is a non-intuitive

result mathematically. So, mathematically we do not expect this result, what do we

expect we expect A and A to be canceled in a result to be B, which is to the power 10.

So, what a lot of smart compilers can possibly do is reorder the operations to increase

precision and in this case actually break down the bracket, but this is again not what the

programmer wants. So, as a result, there is a big gray area over here, but the most

important thing that we need to understand is a floating-point math is approximate, it is

not you know exact. The reason it is approximate is because we have a limited number of

bits; and with those limited number of bits, we can own and also with a lot of constraints

we can only represent a very limited set of numbers within our constraints. In this case,

we cannot represent a number of the form 2 raised to the power 50 plus 2 raised to the

power 10, it is simply not possible for us to represent a number of this kind. As a result

here we will have a non-intuitive result are coming at the end where C, will be computed

to be 0.

At least most compilers would do that a lot of compilers might want to reorder the

operations or locally resolve the operations, but it is very much conceivable that this

program on a lot of programming languages and hardware would actually produce 2

raise the power 10 sorry would actually produce 0. It would not produce to raise the

power 10, which is a non-intuitive result. So, programmers need to keep these things in

mind while writing programs with floating-point numbers and always keep in mind that

is an inexact approximate representation. Now, let us take a look at the fifth part, fifth

and last part of this chapter, which is representing strings. What is a string? It is a piece

of text.

(Refer Slide Time: 42:45)

In any piece of text any the same way that these slides are there where I have written

ASCII is American Standard Code this is a piece of text. How should we represent it. So,

the most common way of representing pieces of text was with the ASCII format, and

ASCII is American Standard Code for Information Interchange. It has 128 characters.

The first 32 characters are actually non-printing characters therefore, control operations

like. Character number 8 is for backspace to actually delete characters; character 10 is

line feed which used to tell printers to jump to the next line; 27 is the escape character it

corresponds to the escape key on our keyboard. And then the remaining letters small

letters capital letters special characters like exclamation mark enact and numbers of

course. So, since there are 128 characters, each character encoded using 7-bits.

(Refer Slide Time: 43:54)

So, the ASCII characters set looks like this that is a here is a code of some of the

common characters from small a to small z, the code goes from 92 till 122. Similarly,

from capital A to capital Z, the code goes from 65 till 90. So, basically then we have a

numbers from 0 to 9, where the codes are assigned from 48 to 57 and there are different

kinds of code for different kinds of special characters and punctuation marks that we

used like exclamation, hashed, all their brackets, comma, semicolon and so on. So, the

problem with the ASCII set is first is only for English and English is a very simple

language.

In English the number of characters is few, and we do not have special marks and what is

there in you know other specialized characters that come up in other languages with also

combinations and so on.

(Refer Slide Time: 45:08)

So, for this, we have the Unicode format. So, it is the universal character set

transformation format is a UTF format. So, the UTF-8 standard enables around encodes

around a million characters defined in this set and it can use 1 to 6 bytes for this purpose.

So, what I have done over here is that I have written a couple of characters in different

languages some of these, so this is Hindi for example, of Devnagari script. This I believe

is a Tamil character; this I do not recall it might be a Korean character; and this is a I

think character name from the Kannada language. So, with so many characters it is

necessary to encode them.

So, for this the UTF for the Unicode format was designed which has become standard

now. So, UTF-8 is compatible with ASCII in the sense that the first 128 characters in

UTF-8 correspond to the ASCII characters. So, when you use ASCII characters, UTF-8

will require just one byte, and it will have a leading 0, which means that the remaining 7-

bits specify ASCII characters. Most of the other languages that use variants of the roman

script such as French, German, and Spanish require 2 bytes per character in UTF-8

Greek, Russian, Hebrew and Arabic also require 2 bytes.

(Refer Slide Time: 46:44)

So, this has become a standard across all browsers and operating systems. So, nowadays

it is very common for users to read articles which have been written in multiple

languages maybe an ad is coming in some other language. So, all of this happens cuts a

Unicode. So, UTF-8 has been superseded by UTF-16 and 32. So, UTF-16 uses 2 byte or

4 byte encodings and java and windows support UTF-16. So, as of now at least UTF-16

is a more popular character set, and UTF-32 uses 4 bytes for every characters and rarely

use it is not that commonly used, but UTF-8 and UTF-16 are the encoding sub choice

where basically every character is represented with a certain sequence of bits.

And in any document, you just have character by character which is essentially a

sequence of bits that encode each character. So, when the document needs to be shown

on the screen your word processor program extracts all the bytes out, converts them into

characters for each character it draws a small image that corresponds to the way the

character should look on the screen.

So, this brings us to the end of chapter two. So, what are we achieved in chapter two let

us go back to the outline slide. Say in the outline slide, we have basically shown what is

possible to do with a set of bits. So, we can work on them we can define an algebra, and

we can have basic operations, we can represent both positive as well as negative integers

using a set of bits. So, they have their constraints, but again we overcame all of those

constraints and we came up with a 2s complement notation which is the most effective

notation as of now to represent negative integers.

After that, we extended the results that we had to represent floating-point numbers. So, in

that case, we needed to go for a slightly different representation. The reason being that

we actually needed to represent the exponent as well, and we also made a trade off for

simplicity, this is one of the vital learning’s that you need to have that in computer

architecture sometimes you need to walk a step back and make things simple. So, in this

case, instead of going for a 2s complement representation of the exponent, we actually

used a bias based representation. And you also use an explicit sign bit just to make our

life easy and also to leverage the pattern that you typically do not multiply the exponent

you would only multiply it when a number is being raised to the power of some other

number, but that is a relatively rare operation.

Most of the time, we are only adding and multiplying floating-point numbers; in that

case, we do not you know for say multiply the exponent lastly we talked about strings we

talked about the basic simple ASCII format for English. We also talked about the generic

Unicode formats or the UTF formats two of them are very common UTF-8 and UTF-16.

UTF-8 and 16 are used to represent almost all the text today in all the worlds’ languages,

and there are many additional characters as well and many cartoon like characters that

can be used to make really expressive documents.

So, now that we have a certain hold on bits, and how they can be used. We need to

design a language, a simple low level language that can communicate with the processor

using these bits to accomplish fairly complex tasks which is the main goal of the next

chapter, the chapter on assembly language to achieve complicated tasks using simple

bits. So, see you then with chapter 3, which is going to be the next lecture.

