
Computer Architecture

Prof. Smruti Ranjan Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Lecture – 05

Assembly Language Part-1

Welcome to chapter 3. In this chapter we will cover assembly language, which is the

vital link between the hardware and software. Just to retreat, this is chapter 3 of the book

computer organizational architecture, and the slides are meant to be used along with the

book, otherwise the learning will remain incomplete.

(Refer Slide Time: 01:25)

So, let us first discuss in the overview of Assembly Language. Subsequently we will

discuss the syntax of assembly language. We will design a simple assembly language of

our own called the simplerisc assembly language, along with it is instructions in the

instruction set architecture. Subsequently we will move on to functions and stacks, an

advanced concept in assembly language, and we will discuss the encoding.

(Refer Slide Time: 01:57)

So, let us fist define what is an assembly language. So, in assembly language, is a low

level programming language. So we will discuss what is high level, and what is low

level. So, a low level programming language uses very simple statements, where

typically one statement corresponds to a single machine instruction. So, these languages

are specific to the instruction set architecture and. So, for example; C or java can run on

any kind of a processor. However, as an assembly language is specific to only a

particular process or a particular family of processors. For example, it is possible to run

c.

(Refer Slide Time: 02:53)

Let us move to the different media. For example, it is possible to run a C program, on

both an Intel machine and ARM machine. However Intel has it is separate assembly

language syntax, and ARM as it is separate assembly language syntax. So, so we will

discuss what it is. So, C is a high level language, because concepts are at a very high and

abstract level, and also this is a C program; a single statement in the C program can

actually be many machine instructions, not 1, but actually multiple machine instructions,

sequence of 0’s and 1’s, multiple instructions.

Whereas, in an assembly language program, a single statement typically the most often

corresponds, to a single machine instruction. So, this is the vital in the most important

difference between a high level language and a low level language. So, this C would be

an example of a high level language, and an assembly would be an example of a low

level language.

So, actually an assembly language is not a single language, it rather refers to a family of

low level programming languages. For each instruction set architecture has it is own

assembly language. For example, an Intel machine; like the one that is running on the

desktop right now, has it is own assembly language. You can call it Intel assembly.

Similarly an ARM machine, an ARM processor, which has a separate I S A, separate

instruction set architecture, has it is own assembly language right. You can call it ARM

assembly language so maybe. So, as it is own separate ARM assembly language. So,

different processors, different family of processors have their own assembly languages,

and each assembly statement corresponds to typically a single machine instruction. So,

we can think of it as a language that is very close to the hardware. So, typical assembly

statement has two parts, it has an instruction code, which represents a basic machine

instruction, something like add or subtract or multiply, and it has a list of operands.

(Refer Slide Time: 06:13)

(Refer Slide Time: 06:20)

Let us now take a look at the popularity of a assembly. So, I have a browser window

open, which shows the popularity of the most common programming languages as of

July 2016. So, the first three are usual suspect’s java C and C++; that let us scroll down

to the 10th entry. The 10th entry is actually assembly language.

Again assembly language is not a single language, it is a family of languages, where each

processor family has it is own assembly language, but we see that from July 2015 till

July 2016, assembly languages together are the tenth most popular language among all

programming languages. So, this means that it is a very important language for students

to learn, and they should be familiar with at least one flavor of assembly languages; such

that they can program hardware much better, and also understand how compilers and

assemblers really work.

So, that is why it makes a case where at least learning these languages. One reason for

the popularity of assembly languages is that, we have many small devices today. For

example, there are small controllers in almost everything that we use. So, now, there is a

smart lights, that send if a user is in the room, turn the light on, otherwise they turn it off.

So, this is actually an advantage of, you know very small hardware, and these small

pieces of hardware are not programmed using high level languages, rather they are

programmed using assembly languages, for the reason for its efficiency.

(Refer Slide Time: 08:05)

So, let us introduce a term now called assemblers. So, assemblers are programs, that

convert assembly language programs, written in low level languages to machine code, it

is sequence is 0’s and 1’s, essentially convert an assembly language program to a binary.

So, examples of these would be for x86: nasm, tasm, and, masm are three very popular

assemblers for x86 ISAs. There are similar popular assemblers for ARM as well. The

readers are requested to take a look at the website of the book, to get an idea of

assemblers for different assembly languages.

So, on a Linux system it is possible to generate an assembly file, it is very easy. So, we

need to run this command gcc minus S, and the name of the C file or the name of the

C++ file. So, say the name of the C file is file name dot C; it is assembly file name will

be file name dot s; that is this assembly representation.

So, what gcc minus s tells is that it converts the C file, it complies it to produce an

assembly file, and once an assembly file is generated, you can open it in a text editor,

and see the details of assembly code that has been generated. Then to generate the

binary, we can run the same gcc command once again, and run the command gcc file

name dot s, which will generate binary called a dot out, and then running the binary is

very easy, what we need to do is that. So, running the binary is very easy. So, in the

Linux it is just as simple as dot slash a dot out. So, in this case what we see is that if we

have a C program with a name file name dot c, a compiler converts it to. So, the compiler

command is gcc minus S; that converts the C file into an assembly file; that is file name

dot s. And the file name dot s can be further converted to a binary which the processer

can understand; the sequence of 0’s and 1’s why I am using the command gcc. So, this

holds in the Linux system, it will also hold on a system with mac os x with code blocks

installed. On widows there are different commands, I will not get into that.

(Refer Slide Time: 11:03)

So, let us now take a look at the importance of assembly language in a hardware designer

perspective. So, learning the assembly is a same as learning the intricacies of the

instruction set, because every assembly language statement corresponds to a single

instruction. So, once a hardware designer knows the format of assembly language, he

pretty much knows what is to be built. So, what is the interface between software and

hardware which makes it easy to design hardware as well?

(Refer Slide Time: 11:37)

So, now let us start with the integrities of assembly language, but let us go back to

chapter one, where we had discussed the structure of Von Neumann machine. So, Von

Neumann machine had the CPU at the center. So, the CPU was at the center, it was

connected to memory the memory contains data as well as data, as well as instructions

and if the CPU is also connected to I O devices. Inside the CPU we have a control unit in

a arithmetic logic unit, and a set of registers.

(Refer Slide Time: 12:12)

So, the registers are name storage locations in ARM assembly they are called r0 r1 till

r15. In x86 assembly, the Intel family Intel and A M D family or processors use x86

assembly to registers are typically referred to as eax, ebx, ecx, edx, esi and edi. So, these

are general purpose registers. Additionally there are machines specific registers, which

allow you very fine grained, and you know internal access to changing things such as the

speed of fans, the power, and temperature controls settings.

So, these are called machine specific registers which are you know, specific to the

processor not necessarily specific to the processor family. Then there are reregisters with

some special functions. So, one of them is a stack pointer that we shall discuss later.

Then we have the program counter we all know what the program counter stands for, the

chapter one. It essentially points to the address of the currently executing instruction, and

then there is also a written address register that we will come to later.

(Refer Slide Time: 13:24)

So, now let us take a look at memory. So, memory all assembly language programs are

all programs so that are matter look at memory as one large array of bytes, one huge very

large array of bytes. Each byte or each location has an address; so the address of the first

memory location, the first byte. So, we start counting from 0 in computer science. So, the

address of the first byte is 0, the address of the second byte is 1.

Similarly the address of the nth byte is n minus 1. So, the program is stored in a certain

part of memory. So, we can assume that the program is stored over here, and the data is

stored in some other part of memory. So, we can assume that it is stored somewhere over

here. Say every binary assumes that the entire memory belongs to itself and. So, we are

up till now not discussing what happens if you are running multiple programs at the same

time. We will come to that slightly later. At the moment we are only talking about how

an assembly program or binary program, would actually view memory. And the program

counter contains the address, which is essentially you know the address of the location,

of the current instruction.

So, the current instruction starts from here. So, this address is contained inside the

program counter.

(Refer Slide Time: 15:00)

So, now let us take a look at how data is stored in memory, before we actually discuss

more about assembly languages. So, there are four mainly in a there is a different kind of

data, but the typical data types that we use in C r of this type. We have a char or a

character which is 1 byte. We have a short integer which is 2 bytes, a regular integer

which is typically 4 bytes, and a long integer typically 8 bytes. So, both C as well as java

follows this convention. So, the question that we need to answer is that a memory how

exactly is data stored.

So, how is a 4 byte integer stored? So, what we do is that we save the 4 bytes in

consecutive locations in memory starting, select the first location is i, and the last

location is I plus 3. So, there are two ways in which we can store data. So, one is called a

little Indian representation. This is used in the ARM and x86 family of processors, here

the least significant byte is stored in the lowest location. So, we shall you know see a

visual depiction of this on the next slide. Then we have the big Indian representation

used by Sun Sparc and IBM Power PC, here the most significant byte is stored in the

lowest location.

(Refer Slide Time: 16:34)

So, let us take a look at examples of this. So, let us consider an integer of this form that

actually contains 4 bytes is in hex notations. So, 1 digit is 4 bits. So, as a result 2 digits is

1 byte. So, this is the first byte, second byte, third and fourth. Say in the big Indian

notation the way that we actually store, it is that the most significant byte the m s p is

actually stored in the lowest or the smallest memory location. So, first we store 8 7, then

we store 6 5 then 4 3 and then 2 1, in a little Indian location. We store the least

significant byte first. So, we store 2 1 over here, then 4 3, then 6 5 and then 8 7.

So, what is different is, the order of the storage of bytes, and it is there is a matter of

convention one in a, we cannot argue that little endian is better than big endian or vice

versa it is just a matter of convention of how data is stored. So, ARM and x86 designers

have gone for little Endean, whereas IBM and Son designers are gone for the big endian

scheme. So, different conventions are there in the hardware, as well as the assembly

language right at, the assembler and compiler writers, need to be aware of the particular

mechanism a scheme; that is being used.

(Refer Slide Time: 18:09)

So, now, that we know of how individual integers are stored. We should also take a look

at how arrays are stored. So, in array of integers is basically a set of n integers. So, let us

consider an array of integers a 100. So, where it is stored is actually very simple. We

store the first, we store the first element of the array a 0, and then in a consecutive

location we store a 1 and a 2 and a 3 and so on. Say 1 integer is 4 bytes the entire array

will take 400 bytes, and we save the integers in consecutive memory locations right. And

each integer is stored in either a little endian or big endian format, depending upon the

convention followed by the processer.

Now, there are an interesting question arises, that how do we store a two dimensional

array. You know an array that has both rows and columns. So, how do we store it? So,

there are two methods row major and column major.

(Refer Slide Time: 19:22)

So, row major scheme is used in high level languages; such as C and python. So, here

what we do is, that we store the first row as a 1 D array, and then we store the second

row and so on. So, let me just show you with an example. So, let us assume that this is

the 2 d array with rows and columns. So, a 2 D array is a matrix. So, what we do in a row

major scheme is that we first store the first row. Then we store the integers belonging to

the second row. Then we store the data belonging to the third row. The other scheme

called column major, which is followed by programming languages such as FORTRAN

and MATLAB. They actually store the first column, then the second column and so on.

So, there are tradeoffs between row major and column major, but we are not in a position

to appreciate this right now. We will discuss more of it in chapter 10. So, what exactly is

column major is. In column major the first column is stored, then the second column is

stored, and then the third column is stored, in memory. So, both of these approaches are,

sort of opposites of each other. In one case we traverse the ray row wise; in another case

we traverse the array column wise.

So, there are tradeoffs in this. So, this depends upon the way that we write programs. So,

we will discuss more about this in chapter 10, but what is important to know. So, the

main take home point here is, that all programs including assembly languages and

processors, fundamentally assume that, the memory is one large array of bytes. To save

an integers, which is 4 byte integer, we take 4 consecutive locations in memory and save

the integer, in either big endian or little endian format. To save an array of integers we

can save it in any form that we want; row major and column major. So, let us assume we

want to save the array a 100. If 1 integer is 4 bytes we need to take up a space in memory

which is 400 bytes, and save the 100 integers, and each integer can be saved in either the

big endian or the little endian format.

(Refer Slide Time: 22:16)

Now, let us take a look at the syntax of assembly language. So, syntax basically refers to

the way that assembly language is written. So, typical assembly file looks as shown over

here. So, there are many kinds of assembly languages for many kinds of architectures,

many kinds of ISAs. So, clearly all of them have different format, sometimes very

different formats. We will discuss the assembly structure of the GNU assembler, which

is very common in Linux and macros. Even other assembly files in diverse operating

systems; such as windows, have a roughly similar structure, even though there are

differences, but we only want to discuss the generic parts in this lecture.

So, if I consider a certain assembly file, the first part of the assembly file contains Meta

information; like the name of the original program that you know, that this assembly file

corresponds to. The dot text section corresponds to all the instructions, and the dot data

section corresponds to all the data that is accessed by the program all the constants,

particularly that are accessed by the program. So, the important point to note over here is

that an assembly file is divided into different sections, and each such section is

demarcated with identifiers. In the GNU assembly case these identifiers are dot file dot

text and dot data.

(Refer Slide Time: 23:54)

As mentioned in the previous slide dot file refers to the name of the source file, dot text

section, the text section contains the list of instructions, and the data section contains the

values of read only variables and constants.

(Refer Slide Time: 24:15)

So, the structure of an assembly statement is typically like this, that we have an

instruction, and then we have a list of operands, which are the arguments of the

instruction. Each instruction as described before corresponds to typically one machine

instruction, and the operands can be of different types; for example, they can be a

constant. So, a constant is also known as an immediate a constant, examples of a

constant are 3 4 5 in a numeric constants, character constants, string constants. So, in

assembly language parlance, they are typically referred to as immediate. The operands

can also be registers, and the operands can also be memory locations.

So, we will look at more of how to specify different kinds of operands.

(Refer Slide Time: 25:12)

So, let us take a look at examples of instructions. So, the first one is a sub instruction a

subtract instruction. What is achieves is, that it is subtracts the contents of r2 from r1 and

says the result in r3. So, if you want to write we can write this in this form. So, this is

similar to. Similarly the next assembly instruction is similar to r3 is equal to r1 multiply

by r2. Say in this sense, this is like a high level programming language; l bit the syntax is

slightly different. So, the destination always comes first. So, the first operand is typically

the destination, and the next two operands are the source operands. So, source operands

in this case as specified using registers with, that need not be the case. So, we will take a

look at that in the next few slides.

(Refer Slide Time: 26:42)

So, generic, but this is one kind of the previous these two assembly statements are only

one kind of assembly statements, that can be many other kinds as well. Let us take a look

at some. So, we can have a generic assembly instruction, followed by comments. So,

there are two ways of commenting, that we will look at in this chapter. The first

comment starts an, say anything after an at is a comment, or we can have generic C style

comments with a slash star, and then a trailing star slash. So, the comments can always

come at the end of a statement or you can have an entire line with the comment. The

assembly statement itself can be an assembly instruction, or we can define a constant, or

we can have an assembler directive, which is essentially an instruction to the assembler

to do something special.

So, we will discuss that later, and the entire assembly statement inclusive of the

comment can be preceded by a label. So, label can be thought of as. See it is similar to a

label that is used in a go to statement in c. It uniquely points to the assembly statement

that is after it. So, we can have a label and then a colon, and then specified assembly

instruction. Later on if you want to come back to this label, we just need to have

something to the effect go to label, and the control will jump back to this particular label.

So, label is an optional argument, it is not required all the time, but whenever you want

to jump to this particular statement from anywhere else in the program, we can use the

label to indicate this particular line. So, a label is essentially the identifier of a statement,

and as I told you before a directive, tells the assembler to do something, in a maybe like

say declare a function or declare, the fact that a new section is starting in the file. So,

there are many kinds of directors, we will discuss that gradually.

(Refer Slide Time: 29:02)

So, in the generic statement structure, we have already looked at the assembly instruction

part, and the comment part. So, we can have many kinds of instructions.

(Refer Slide Time: 29:10)

So, primarily four kinds: we can have data processing instructions. So, these instructions

are typically arithmetic and logical instructions. They can be used to add, subtract,

multiply, divide; numbers perform arithmetic operations on them. Also they can be used

to compare two numbers and store the result somewhere else. We will we will discuss

where that somewhere else is. Also do Boolean operations between the value stored in

registers are; namely a logical or a logical and a logical or not. So these are all Boolean

operations that can be done, by this family of instructions called data processing

instructions. Similarly, we can have data transfer instructions. These instructions transfer

values between registers and memory locations.

So, these are also very useful to bring in data from memory to registers, and also to move

data between registers, as well as move data from resistance to memory locations back.

Then we of course, need branch instructions to implement for loops, while loops, if

statements. So, branch instruction is typically like this that we branch to a given label.

For the label is what we looked at in the previous slide, it uniquely identifies an

instruction and assembly statement, along with data processing, data transfer and branch

instructions, we can have special instructions, to interact with peripheral devises, and

other programs offset machines, specific parameters, or essentially access special parts of

the computer system, that are otherwise not accessible to high level program. So, these

are special instructions that are not discussed in nature of operands.

(Refer Slide Time: 31:15)

So, let us begin by classifying instructions and defining some basic terms. So, if an

instruction takes n operands as a input, then we say that it is in the n address format. For

example, this instruction over here, the add instruction, takes three operands as input. So,

we say that it is in the three address format. So, similarly we can have instructions, in the

1 address, 2 address. We can even have 4 address format instructions. So, an address

format basically refers to the number of operands that an instruction takes.

Let us then look at the addressing mode. So, the method of specifying in accessing an

operand in an assembly statement is known as the addressing mode. So, we will see there

are many kinds of addressing modes. For example, in this assembly statement over here,

each operand is a register based operand. So, the addressing mode is a register based

addressing mode.

(Refer Slide Time: 32:25)

So, now let us introduce the register transfer notation, we will actually required it, to

specify the semantics, the way that our assembly instructions work. So, the in the register

transfer notation, let us take a look at the most basic notation over here r1, the contents of

r2 being assign to r1. So, this is basically. So, this arrow indicates that the direction of

data transfer is from r2 to r1.

So, this tells the transfer the contents of register r2 to register r1. So, we can have a

slightly more complicated representation as well. So, this representation says, that add 4

to the contents of register r2. Essentially at an immediate to the contents of register r2,

and then transfer the contents to register r1. The last expression is slightly different. So,

what this tells, is that we first access the contents of registrar r2 and then. So, assume that

the contents of register r2 are let us say 8. We access the integers, the 4 byte integer, to

starting address it is 8, and then we subsequently read, subsequently we read 4 bytes,

starting at location 8.

So, essentially we read the bytes at location 8 9 10 and 11. So, these 4 bytes are make

one integer. This integer is transferred to register r1. So, in this case we are actually

accessing a location in memory, the address of the location is specified and registered r2.

Say if we read the definition; that is mentioned over here it tells, we access the memory

location that matches the contents of r2. So, in this case in the example the contents of r2

are 8. So, we start from memory location 8, and read 4 bytes, starting at 8 9 10 and 11.

So, 4 bytes make 1 integer, and then the integer is stored. So, in this case the integer is

the data; that is coming from memory, this is store in register r1. So, this is a memory

load operation. So, this is this operation is called a memory load, because we are loading

data from memory.

(Refer Slide Time: 35:16)

So, let us take a look at some of the very basic addressing modes. So, let v be the value

of an operand, and let r1 and r2 specify a registers. So, the convention is always; that r1,

in any variable starting with r always specify the register. So, let us take a look at the

immediate addressing mode. In immediate addressing mode, the constant itself is the

value. For example, 4 8 or a hexadecimal constant over here which is 0 x 1 3, it is 19 and

decimal or even a negative number, it can be anything, it can be any kind of a constant.

So, when a constant is directly used as is; for example, if I have an instruction of this

form add r1 r2 and 4, this particular operand, is using the immediate addressing mode,

because the constant is specified as is. Similarly we can use the register direct addressing

mode where the value of stored in the register is, what is being used. So, in this case r1 is

using the register direct addressing mode.

Similarly we can use the register indirect addressing mode, something that we had seen

in the previous slide, in this particular point. For example we can. In some assembly

languages we can write a function of this type, add r through r2 r3 and r1. So, in this case

r1 actually contains a memory address. This will be used to access memory. We will read

4 bytes from there the size of an integer, and this will be added to the contents of r3, and

finally, we saved an r2. So, this is called the register indirect addressing mode, because

what the register contains is actually a memory address.

The address is sent to the memory; we get contents from the memory, and then use it in

an instruction. Similarly we can use; we can slightly extend this, to create the base offset

addressing mode. So, in this case, the actual value; that is being used by the program is

actually r1. So, in this case let us consider an example, and then explain the theory part

of it.

So, let us con consider this operand over here, which is using the base offset addressing

mode. So, what is basically, such is that we take the contents of r1. So, let us, let this be

the contents of r1, and then we add it with the constant here 20. So, you will assume that

the contents of r1 were 8. So, you add 8 and 20 and we get 28. We use 28 to access the

28 locations or memory, and then we read 4 bytes from the 28 to the 31st location, and

these 4 bytes are then used by the program. So, this is a base offset addressing mode,

because in this case r1 contains the base address, and the offset is 20. So, we add both of

them, we get a final address is called effective address, which is used to access memory,

and then we get the contents of an integer from memory. We read an integer from

memory and this is used by the program.

So, the same thing is shown over here, that we take the value of r1, we added to the

offset. The squared brackets are indicated to the address, is sent to memory, and we read

the contents from memory, and this is the final value that we use.

(Refer Slide Time: 39:40)

So, let us show that the register indirect mode once again using a set of better pictures.

So, as mentioned over here, we take the value of r1, and whatever is the value of r1, we

first read it from the register file, and then we use the value to access memory. So, let us

assume that. For example, r1 contained the 32. So, we access a 30 second location in

memory and read 4 bytes. So, for simplicity we are not shown four entries, and we

finally read the value out.

(Refer Slide Time: 40:18)

Now, let us discuss the base offset addressing mode. So, this mode will be very useful

for implementing arrays. So, the main idea over here is to actually use a register call the

base register. In this case, in this example it is r1. So, r1 is used to access the register file.

From the register file we read the contents of r1, and we added to the offset. So, we get

an address as the output, and this is called the effective address, but let me just call it as

the address for the time being.

The address is used to access memory, and finally, we read 4 bytes from the memory.

So, the 4 bytes are part of a single cell. This is drawn to enhance readability. So, the 4

bytes are the value of this particular operand. So, what exactly is a base offset addressing

mode again. We have a registered and an offset. We read the contents of the register,

added to the offset, this gives us an address, and we use this address to access memory.

So, for example, let see the address is 28. So, we access the 28 location in memory, and

read 4 bytes, and these 4 bytes are the final value of the instruction.

(Refer Slide Time: 41:43)

So, let us discuss some more addressing modes which are not very frequently used, but

nevertheless they are common enough, that we should you know discuss them, and

especially when we take a look at the x86 instruction set, you would find these

addressing modes to be extremely useful. So, one of them is the base index offset

addressing mode. So, in this case we instead of one register you have two registers. So,

we have a base register, which in this case is r1, we have an index register which is r2 in

this example, and we have an offset which is an immediate. So, we add the contents of

the two registers, and the offset we get an address. This address is used to access

memory, and we read the value out.

So, this is the value of the operand. So, one example would be 100 r1 r2. Here r1 is the

base register, r2 is the index, and 100 is the offset. So, note that this sign of braces, the

square braces, are used to indicate that the contains within the braces refer to an address,

and once we add the braces, we are supposed to access memory with the address, and

treat the locations in memory, as containing a value, as containing the value of the

operand. So, we can again have a memory direct addressing mode, which is not there in

most ISAs, but it is there in x86.

In this case if we know the address of the memory location you can directly specify it.

We do not need to add it in a register; instead we can directly specify it. So, in this case

if this is the address of the memory, we directly specify it, and enclose it and curly. I am

sorry in square brackets sorry in braces, and this indicates that we access memory with

this address, and the subsequent 4 bytes contain the data of the operand.

Lastly let us take a look at a certain variant of a register indirect addressing mode, which

is actually very useful, it is called the PC relative addressing mode, where instead of

using a general purpose data register, we use the program counter, we treat the program

counter as a register. So, in this case, we take the contents of the program counter, add an

offset to it to get an address, and we use the sum of both, to actually access instruction

memory. So, let this be the memory in specific the instruction memory. So, then the next

4 bytes are actually the contents of the operand.

So, next 4 bytes are typically an instruction, in a 32 bit system, which we assume to be

the default in at least in this book. Now this is. So, these 4 bytes from the PC will

typically point to an instruction. So, we will find this addressing mode very useful. This

addressing mode will be found to be useful, especially while implementing the concept

of, a statement for loops and while loops in assembly, that we will be able to change the

PC the program counter, essentially we will be able to change it is value, and jump to

different points within the program, which is exactly what a next statement or a for loop

and while loop do.

So, let us keep it, let us keep this discussion at this point, and when we discuss when we

go into the netigrities or assembly language, we will come back and revisit this part.

(Refer Slide Time: 46:05)

So, let us take a look at the base index offset addressing mode once again with a better

diagram. In this case we have two registers we have r1 and we have r2. So, both the

registers are used to access the register file. We add their contents plus the offset, then

we access memory and we use the value.

