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Let us now discuss the Simple RISC ISA. So, Simple RISC is an assembly language that 

we shall create, you and me shall create from scratch. So, this is supposed to be a very 

very Simple RISC like language, that has a very few instructions, and the instructions 

have a very regular structure. So, as we go through the next few slides we will see what 

it actually takes to build and design an assembly language and we shall look at the 

netegrities of designing one such language. 
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So, let us take a look at Simple RISC. So, Simple RISC is a very simple you know as a 

name suggests, it is a very very simple assembly language one of the easiest to learn. So, 

my thinking is that it is better to learn a very simple assembly language and get an idea 

first. Before moving on to real world assembly languages such as ARM and x 86, 

because they have a lot of other details which might overwhelm the retain at this point of 

time. 

So, we will design an assembly language called Simple RISC and then we will design a 

simple binary encoding for it which means to convert instructions into sequences 0s and 

1s and then in the processor chapter we will create a processor to actually implement the 

Simple RISC instruction set. 
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So, let us have a brief survey of instruction sets say almost every processor vendor has 

created it is own instruction set. So, let us go back to way back to 1997 when the VAX 

instruction set was created. It was a very complex CISC instruction set with a lot of 

instructions, it had 1 6 registers and it used a little Endian format, then we one of the 

more popular instruction sets was a Sun’s SPARC instruction set. So, there were actually 

2 variants of SPARC; the 32 bit variant was introduced in 1986, and the 64 bit variant 

was introduced in 1993. 

So, what 32 bits means? That 1 instruction was 32 bits in SPARC the size of a register 

was 32 bits. So, that is what it means to be a 32 bit instruction set and what it means to 

be a 64 bit instruction set is also the same size of a register is 64 bits, or the size of an 

instruction in the case of a RISC architecture is 64 bits. So, the 64 bit instruction set was 

actually bi Endian means, it could be considered to the either little Endian or big Endian 

and where 32 registers; then we come to the PowerPC instruction set, which was mostly 

used by IBM and later Apple and Motorola, used it. 

So, PowerPC showed a similar revolution, they had a 32 bit instruction set in 1 992 and 

then migrated to a 64 bit instruction set later on and both of them were bi Endian with 32 

bit with 32 registers. Similarly HP had it is own instruction set pa RISC, that is still used 

in high and HP servers and Motorola had it is m 68 k or m 68000 instruction set, that is 

still well that was being used in Motorola processors. So, now, of course, they are not in 



the processor business anymore. Another very popular instruction set is the MIPS 

instruction set, which is also a risk instruction set MIPS has 32 registers. So, now, MIPS 

is used in some small embedded processors, the most of the embedded processors have 

actually migrated to Intel and ARM. Here is one more instruction set which is my 

processors favorite, the reason being that this is the first instruction set that I had learnt; 

is the DEC alpha instruction set, introduced sirca 1 992. So, it started out at the 64 bit 

instruction set with 32 registers; then we come to the x 86 instruction set. So, it is 

actually a family of instruction sets, it is not just one instruction set, but many. So Intel 

started his journey in 1 978 with a 1 6 bit instruction set that had 8 registers. 

So, this x 86 instruction set is now an open standard. So, it is used by AMD it is actually 

used a many other vendors as well, because. So, even since the standard is open, readers 

can implement their own processors with the x 86 instruction set. So around 1 985 Intel 

transition to the 32 bit instruction set, again with 8 registers and then as recently as 2003 

both Intel and AMD together migrated to an x 86, 64 instruction set. Actually AMD was 

the first to migrate and Intel then migrated say AMD came up with a octoroon processor, 

that had a 64 bit instruction set called x 86 64 . 

So, all Intel instruction sets have been brittle endian, and the 64 bit instruction set of Intel 

which we shall also take a look at in the fifth chapter of this book has 1 6 registers. 

Lastly the latest entrant in the world of processors and instruction sets is ARM. So, ARM 

is a very interesting company in the sense that ARM does not makes it is own chips, 

rather ARM makes the design of a processor and sends the design to other companies 

like Texas instruments, or Volcom or Samsung and then they make a chip and embed 

some additional elements if required and then they make an fabricated chip out of it. 

So, ARM is not that new. In fact, ARM used to exist way back in 1 985, when they came 

up with the 32 bit instruction set. But off late ARM processors are gaining in prominence 

and a big reason for that, is that ARM processes are used in mobile phones and mobile 

phones have spread exponentially. Say in 2011 ARM also came up with a 64 bit 

instruction set for larger computing devices, such as tablets and you know possibly 

servers and. So, this 64 bit instruction sets are always targeted for larger devices. 

So, we will see why. So, we will we will have a lot of opportunities to discuss what is the 

advantage of a 64 bit instruction set, but this is not the right point for it. So, ARM is also 



bi endian, little Endian is the default, but it can be considered to be big Endian. So, big 

Endian or little Endian is just a matter of convention. 
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Let us now discuss the basics of Simple RISC instruction set. So, let us Simple RISC has 

1 6 registers, and as is that convention let us number the registers from r 0 till r 1 5. So, 

the 1 4th and the 1 5th register, r 1 4 and r 1 5 let me refer to them with special names. 

So, let us refer to r 1 4 as the stack pointer or s p. Similarly let us refer to r 1 5 as the 

return address register or r a. So, the meaning of the term stack pointer and the return 

address register will be is they actually correspond to pretty complex concepts. So, we 

will discuss what they are in the future slides, but let us just remember for the time being 

that the stack pointer s p is r 1 4, and r 1 5 is we will also be referred towards the return 

address register. So, they have some special meanings. 

So, coming to the view of memory, let us assume a von Neumann model. So, we will 

assume that the memory is 1 larger array of bytes, it contains data as well as the 

program; and a program assumes the entire memory is for it is own personal 

consumption and run over their programs. So, let us play with some very very simplistic 

assumptions for the time being. So, let us also have a special flags register, which 

contains the result of the last comparison. So, let me give an example. So, this register is 

not visible to the assembly programmer. 



However it will be visible to the hardware designer and that is very important. So, let us 

do let me show an example here. So, the example is let us have a compare in Simple 

RISC assembly, where we compare the contents of register r 1 and r 2. If the contents are 

equal, what the hardware would do is that it would set the e bit inside the flags register, 

say if let us say you know r 1 is equal to let me put a c style equal to. If this is the case 

then you set the hardware sets, flags dot E equal to 1. If r 1 is greater than r 2, well then 

flags dot e. So, the default e and g t 0, so I am not mentioning that is the e v a field in this 

case is clearly 0. 

So, we set flags dot G T greater than as 1. If r 1 is less than r 2, so clearly the quality flag 

flags dot E is 0, and flags dot GT is 0. So, we can thus make out what is the result of the 

last comparison we are taking a look at these 2 flags: flags dot E and flags dot GT. So, 

this is the broad idea, but we will get a chance to discuss the meaning of these 2 flags in 

great detail. So, when we look at the compare instruction. 
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Now, it is time to take look at our first assembly instruction. So, let us introduce our first 

basic assembly instruction, it is called the mov instruction. The job of the mov 

instruction is very simple. So, it comes in 2 flavors. So, in one flavor we transfer the 

contents of a register into one more register, and in the second flavor we transfer an 

immediate a constant to a register right. So, these are the only 2 variants of the mov 

instructions that are possible, and the way that we actually write an assembly statement is 



like this that we first. So, in Simple RISC, what we do is that we first write the name of 

the assembly opcode which in this case is mov. 

Then we write the destination, and then we give a comma, and then we write the name of 

the source. So, for example, if we write mov r 1 comma 3, which essentially means set r 

1 equal to 3, that is what it means right. Let me also put comment sign to indicate that 

you know this is not a valid assembly statement. So, what we are doing here is that we 

are taking the value 3 and setting it to register r 1. So, you can think of this as similar to 

any statement in c or java, where we write something e on the form x equals 3. So, in this 

case x is the variable and we are setting the value of the variable 2 3 or 4 or 5 or any 

immediate value, also we can have statement x equals y. So, in this case this is same as 

mov r 1 r 2, but the contents of r 2 are mov to r 1.  

So, the value of the immediate in this case is actually embedded inside the instruction. 

So, Simple RISC supports 16 bit immediate and the range of an immediate is. So, this is 

the twos complement number and the range of an immediate is from minus 2 raise to the 

power 15, to 2 to the power 15 minus 1. So, this is the standard twos complement range 

for a 16 bit number. 
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So, now let us look at another family of instruction, since the entire family is very similar 

I have listed all 6 together in the same place. 



So, Simple RISC has 6 arithmetic instructions and as the name suggests their addition, 

let me just change the pointer; addition, subtraction, add sub, mul for multiplication, div 

for division, mod for getting the remainder right. So, this is basically getting the modulo 

or the remainder, and cmp is for compare. So, the compare instruction is slightly special, 

but the rest are very straight forward. 

So, let us take a look at the add instruction first. So, the add instruction is actually a 3 

address format instruction, what this essentially means is that it takes 3 arguments. So, 

the destination always has to be a register, the second argument has to be a register and 

so basically if you want me to write this slightly formally so the destination which comes 

first has to be a register. The second operand which is actually the first source operand 

has to be a register. The third operand can either be a register or an immediate. So, that is 

a constraint also on the third operand which can either be a register or an immediate. So, 

here as if we write add r 1, r 2, r 3 essentially what we are instructing machine to do is 

take the contents of r 2, take the contents of r 3 add them and save the result in r 1. 

Similarly, if I say r 2 and 10, I can say r 2 plus 10. So, this is the simple add instruction 

which has a nice analogue with traditional programming languages, where if you write 

you know say c function of a form x equals, y plus z, we can directly translate it to an 

assembly instruction of this form fine. So, after the addition instruction the rest 3 the rest 

4 instructions sub, mul, div and mod have exactly the same format. So, I have not shown 

the immediate values over here, but I will explain with examples. So, these 4 instructions 

over here as the name suggests the subtract instruction subtracts the contents of r 3 from 

r 2; so it sets r 1 equal to r 2 minus r 3.  

So, in this case it is possible to write the subtract instruction with the third operand being 

an immediate as well, but mind you only the third operand can be an immediate not the 

other 1s. So, I can write very well r 1, r 2 and 10. So, what this will essentially do is that 

it will set r 1 to r 2, the contents of r 2 minus 10. So, I have not shown this case for lack 

of space, but the third operand can either be a register or it can be an immediate any 

register or it can be a immediate. Same is the case for multiplication exactly the same 

format. 

So, let me write a multiplication instruction with the third operand as an immediate. So, 

we shall see that the way of specifying the format is the same. So, I can very well write 



mul r 1, r 2 and 10. So, this would set r 1 equal to r 2 multiplied with 10. So, divisional 

mod have also the same format where we divide r 2 by r 3 to get the quotient and we take 

r 2 mod r 3 to get the remainder. So, these are the 5 adds or mul div and mod other 5 

arithmetic operator operating instructions, and as we can see there are very similar to 

their high level programming equivalence. So, it is just that, they written slightly 

differently. 

So, one thing that is common is that even in a high level language such as you know the 

statement over here, the destination comes first subsequently the arguments come later. 

This is a same case in assembly as well where the destination comes first and the 

operands or arguments come later. So, this is one similarity. The other similarities are 

that we also you know we clearly mention what is the operation that we want to perform. 

So, either it is an add or subtract or multiplication, division whatever is the operation that 

is you know that is placed at a different point. So, plus is over here, but in assembly we 

first mention what is the operation. but you know other than this small difference this 

statements like add r 1, r 2 r 10 is pretty similar to what we would actually write in a high 

level programming language, assuming r 1 and r 2 are variables we would write r 1 

equals r 2 plus 10. 

So, now let us take a look at the compare instruction which is actually very interesting 

because it is different. So, we typically do not write compare instructions of this type in a 

high level language. So, in this case what we do is that we pretty much subtract r 1 minus 

r 2. If the result is equal to 0 then we can infer an equality. So, we set flags dot E, which 

is the equality flag to 1. If r 1 minus r 2 is greater than 0, then we can set flags dot GT 

equal to 1 which basically means that r 1 is greater than r 2, it indicates the fact that the 

greater than flag is 1. 

Similarly, if r 1 minus r 2 is less than 0, then both the equality flag and the greater than 

flag both will be set to 0. So, we can infer a less than condition. So, it is important to 

note that in Simple RISC, the only instruction that sets the flags is the compare 

instruction and the flags remain in their state till the next compare instructions. So, let me 

explain with an example assume we have a compare instruction. So, the compare 

instruction is essentially go and set the flags. After that we can have many many other 

instructions, but till the next compare instructions the flags maintain their value and they 

can be used by other instructions as we shall see later. 
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Now, let us take a look at very simple program, and let us try to convert it into assembly 

language. So, let us outline a generic method. So, assume that we have this codes that are 

here in a high level language, the question is how do we convert it to assembly language. 

So, the first thing that we do is that we assign the variables here to registers that is the 

first thing that is always what we do that is the first thing that we assign the variables to 

registers. So, let us assume that variable a is assigned to r 0, b to r 1, c to r 2 and d to r 3 

right. So, this is the assignment of variables to registers. So, now, what we do is that a 

equals 3 just becomes mov 3 to r 0, b equals 5 becomes mov 5 to r 1, c equals a plus b 

this essentially means add r 0 and r 1, and less assign it to r 2 because r 2, and c are when 

r 2 and c are r 2 is supposed to contain the value of c. 

Then to subtract c minus 5 again take r 2, subtract 5 from it and save the result in r 3 

which is essentially map to d. So, here we have 4 high level statements and 4 assembly 

statements, because it is a simple program. But in general the number of assembly 

statements will typically be more sometimes much more, but the important thing to note 

that it is fairly simple to map a high level program to assembly, what essentially needs to 

be done is that the first. So, there are 2 steps: first is assign the variables to registers that 

is step 1, step 2 is that after the assignment each and every high level statements gets 

converted to assembly. 



So, the important point that the all of you need to know that writing assembly programs 

is pretty much similar to writing high level programs, and irrespective of how many 

books you read and how many online courses you take such as this one, the only way 

that a student will actually is the ability to write high level assembly code, is to you 

know physically go and write as many assembly programs as possible, practice makes 

perfect. 

So, only by writing more and more and more programs, would a student actually get 

some expertise of how to write assembly programs, and would get the confidence of 

writing assembly programs. So, the codes and books and other material is fine to at least 

introduce the concepts, but the real knowledge will be gained only by writing and by 

practice. So, if we go to the website of this book you will find simple disk emulators, 

which allow you to write assembly programs and subsequently the emulator will run the 

assembly program instruction by instruction and finally, print the result. 
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So, let us now take a look at one more example, a equals 3 b equals 5 multiply a and b 

and compute c mod 5. So, again the first stage is assign the variables to registers, say a 

you know r 0 is mapped to a, r 1 is mapped to b, r 2 to c, and r 3 to d. So, the first 2 

statements are the same as what they were in the previous example, then we multiply r 0 

and r 1 and we save the result in r 2. So, r 2 is c and then again we do r 2 mod 5. So, I am 



putting the percentage because that is what it is in c, and we do r 2 mod 5 and save the 

result in r 3. 
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Now, let us take a look at the compare instruction; the compare instruction is different it 

is a different concept, it is not there in high level languages. So, let us see we want to 

compare 3 and 5 and then you know the idea compare 3 and 5 and then we want to print 

the value of the flags not in assembly, but at least as a part of the answer. So, you should 

actually we write the value of the flags. So, assume a is 3, and b is 5; so we first to a 

register assignment, we mov 3 to r 0, 5 to r 1 and compare r 0 and r 1. 

Since 3 is less than 5 we will have the less than condition right. So, what we have is that 

3 is less than 5, so there is no equality and there is no greater than; so the equal flag will 

be 0 and the greater than flag will be 0. 
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Now let us compare 5 and 3. So, in this case they get reversed. So, we can clearly see 

that 5 is greater than 3. So, in this case the flag for equality is 0 with the flag for greater 

than flags dot GT is equal to 1. So, this essentially means that the comparison yielded a 

result and the result was that the first operand is greater than the second operand. So, that 

is the reason the GT flag flags, dot GT is equal to 1. 
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Lastly let us compare 2 numbers with the same value 5 and 5, a is 5 and b is 5, let us 

compare a and b. So, mov 5 to r 0 we mov 5 to r 1, we compare r 0 and r 1. So, flags dot 



E in this case is equal to 1, and flags dot GT is equal to 0. The flags dot E is equal to 1 

because there is an equality, we clearly see that 5. So, I am writing the equal to the same 

way that is written in c equal to equal to. So, we clearly see that 5 is equal to equal to 5, 

there is equality there is no greater than. So, the greater than flag is 0 the equality flag is 

1. 
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Now, let us show some more examples. So, let us say right assembly code is Simple 

RISC to compute 31 divided by 29 minus 50 and save the result in r 4. No problem, so 

mind you this is the integer division, so 31 divided by 29 the answer will be 1. So, let us 

map them let us map 31 to r 1, let us put 29 in r 2, as can be seen in these 2 statements, 

then let us divide r 1 divided by r 2 and the result will get saved in r 3 and from r 3 we 

subtract 50, so we compute r 3 minus 50 is equal to r 4. And r 4 contains the final result 

as mentioned in the question. So, this is how we write assembly programs, but these are 

very simple examples of assembly programs. 

So, my advice to the student of the reader would be, to actually go and write as many 

assembly programs as possible and I would say that by the end of this course the student 

should have written at least 3000 lines of assembly programs, 1000 each in Simple RISC 

ARM x 86 that would at least give the student a basic understanding of how assembly 

programs are to be written. 
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Now, let us move ahead in our journey of introducing instruction, so the introduced 3 

more. So, these are logical instructions which compute a bitwise and an or, or a not. So, 

let us look at some of these. So, the and or operations are exactly in the same way in the 

3 address format, as the add, subtract, multiply operations. So, in this so the first 2 

operands have to be registers and the third operand has to be either a register or an 

immediate. So, the and operand computes r 1, is equal to r 2 and r 3, where this is a 

bitwise and. So, let me give an example of a bitwise and, in just case people have 

forgotten. So, let us say 1 1 0 0 in a bitwise and it with 0 1 0 1. 

So, 1 and 0 is 0, 0 and 0 is 0 1 and 1 is 1, 0 and 1 is 0. Similarly we have bitwise or 

which can do r 2 or r 3 and. So, we have a bitwise or over here, which is exactly the 

same, but we replace the and sign by an or sign; then we have the not operand which is 

actually a 2 address format operands, we have only one source, we have only one source 

operand which can be either a register or an immediate. So, in this case what we do is 

that sorry. So in this case, if if there is a single source operand, so what we can see as a 

general rule that only one source operand is allowed to be an immediate, but both the 

source operands are not allowed to be immediate. 

So, when we say not r 1, r 2 what this essentially means is that let us say the value of r 2 

is 0 0 1 0. We take a not of it, once we take a not of it this becomes 1 1 0 1. So, the 

second argument in this case can either be a register or an immediate, the second source 



argument. So, now, let us compute a or b so. So, now, let us consider an example, say in 

this example we compute a or b. So, assume that a is stored in r 0, and b is stored in r 1. 

So, let us store the result in r 2. So, it is very simple we do it the same way as our add, 

subtract, multiply instructions we compute or r 2, which is essentially equal to r 0 or r 1. 

So, this is similar to r 0 or r 1. 
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So, let us move ahead and introduce some more instructions that are required. So, let us 

discuss the shift operations. So, shift operations are something like this that let us first 

discuss the left shift operation. So, consider the number 0 0 1 0, see we left shift it by 2 

which means that every bit moves 2 positions to the left. So, in this case if 0 0 1 0 is 

being left shifted by 2 positions, so what will we have? What we will essentially have is 

that the 1 will come over here, 0 will come over here and the 2 new positions will be 

created in this case we just add 2 more 0s. So, 0 0 1 0 left shifted by 2 is equal to 1 0 0. 

So, we can clearly see that this number is equal to 2, and this number is equal to 8 in 

decimal; so left shifting by n positions basically means, that it is the same as multiplying 

a number by 2 to the power n. 

So, why is this the case? So, we shall see in some time. So, let me just give one more 

example of left shifting, let us assume that the number is 1 0 1 0 and we left shift it by let 

say 1 position right. So, we left shift the number by shifted to the left by 1 position. Say 

in this case 0 will come over here, 1 will come over here and a new position will be 



created we put a 0 over here, assuming the number is remaining within this 4 bits. Say 

the reason that this is equivalent to multiplying it by 2 to the power n, is can be found out 

there are many arguments. So, may be let us starts with the couple of examples. So, let us 

take a look at this example, this number is 2 in decimal and this number is 8 in decimal. 

So, what we are essentially doing is that we have left shifted it by 2 positions, which is 

equivalent to multiplying this number by 2 square. So, the multiplication argument is 

actually interesting and the reason that you know this holds is that any number in a 

binary expansion can be thought of as. We will so let us start counting from 1, because 

we in general we have done that in other places as well. So, assume I goes from 1 to n 

any binary numbers can be expressed in this form. 

Now, if we let say left shift the number by you know k positions. So, what this number 

essentially becomes? You know that is the most important thing, either this number 

essentially becomes right. So, basically the number remains the same and it is left shifted 

by k positions. So, what it essentially becomes is that it is pretty much the same number, 

but each of these coefficients, if the coefficients remain exactly the same that the set of 

coefficient set, because it is getting shifted to the left, but these exponents over here 

pretty much get multiplied get offset by a factors. 

So, actually what I can do over here is that I can you know replace this again as it was. 

So, for those who followed the map over here, what we have done is that we have taken 

number and we have left shifted it by k positions, but we have not gotten rid off any 

digits say, then what we have done is this is exactly the same as instead of. So, the first k 

positions are 0 so we do not count them, then from k plus 1 till n plus k, from k plus 1 till 

k plus n pretty much we have the same set of coefficients which we had earlier and, but 

the thing is that the powers of 2, pretty much get shifted or get multiplied by 2 the power 

k. So, what we do is that we sort of do a little bit of algebra and so we separate the 2 to 

the power k from the equations and so what we are left with this that this becomes the 

original number n, multiplied by 2 to the power k. So, what we see is that this is a nice 

way in unless there are overflows, right we are exceeding the range of the number 

system, then it is a separate issue; but it that is not happening this is a nice way of 

actually multiplying a number by any power of 2, multiplying a number by 2 to the 

power k. 



So, let me may be consider let say one more for example, consider 0 01 1; we then left 

shift it by 1 position. So, this becomes 0 1 1 0; in decimal this number is 3 and this 

number is 6. So, this is equivalent to multiplying 3 with I am sorry multiplying 3 with 2 

to the power 1 so we get 6 all right. So, given that left shifting actually works, let us see 

if left shifting holds for you know negative twos compliment numbers, here again we 

assume that the there are no overflows.  
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So, let us so instead of cluttering of this power point slide, let me actually move to 

another software. So now, let us see that whether left shifting actually holds a negative 

numbers. So, in this case let us consider a negative number minus 2 in a 4 bit system. So, 

minus 2 is 1 1 0 fine. So, let us take this number and let us left shift it by 1 position. So, 

then this becomes 1 1 0 0. So, 1 1 0 0 what is it is minus 4 so we see that it holds. 

Let us consider a one more example minus 3. So, minus 3 is representation in twos 

complement notation is actually plus 13. So, which is 1 1 0 1; no problem now let us left 

shift it by 1 position. So, then what do we get 1 0 1 0. So, what is this? So, this is 8 plus 2 

is 10. So, in decimal it is 10 minus 16 the minus 6. So, what we see is that left shifting 

holds for even positive number as well as negative twos complement numbers.  
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So, now, that we have discussed left shifting, let us discuss what is right shifting; so let 

us go back to the slides and discuss what is right shifting. So, in right shifting what we 

do is there are 2 kinds of right shifting; there is arithmetic right shifting and logical right 

shifting. So, in arithmetic right shifting which is represented by another operator, if we 

right shift this number by 1 position, what we do is that all the bits move 1 position to the 

right, but the important point is the sign bit. So, the sign bit in this case is replicated. So, 

the sign bit was originally 0 we just replicate the sign bit and have one more 0 and in the 

sign bit was originally 1 we just replicate the sign bit and have a 1. 

So, what my claim is that right shifting is similar to dividing a sign number by 2 to the 

power n, and the proof will exactly be the same as the way we proved for the left shift 

and is just that instead of 2 to the power plus k, it will become 2 to the power minus k. 

But let us consider a examples that is will be lot of fun. So, let us again consider a 4 bit 

system now let us consider a 0 1 0 0; so this is equal to 4. Now let us right shift it by 2 

positions we will get 0 0 0 1. So, this number was 4 and this number is 1 so we see that 

division holds. 

Now, let us consider negative numbers. So, let us say consider minus 6, which is 1 0 1 0; 

so let us right shift it by 1 position. In this case if we right shift it by 1 position, this is 

how all the bits will actually move. So, no problem let us write 1 0 1 and we replicate the 

sign bit. So, this number is 8 plus 4 12, plus 1 13. So, in twos complement this is13 



minus 16 or this number is minus 3. So, we clearly see that right shifting a number by n 

positions, can be a positive number or can be a twos complement negative number is 

same as dividing a sign number by 2 to the power n. So, a logical left shift and in 

arithmetic right shift, essentially are very useful operations and they help us in 

multiplying or dividing numbers by 2 raise to the power n, by any power of 2 all right. 
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So, now let us consider a logical shift right, which is actually represented by the 3 greater 

than operators right, is the terminology has come from java. So, in this case the sign bit 

is always set to 0. So, this is as same as dividing the unsigned representation by 2 to the 

power n right that is it is connotation. So, in this case we just move all bits 2 steps I mean 

n steps to the right and msbs are filled with 0s. So, the food for thought question our here 

is that why do not we have an arithmetic shift left? Well the reason is that the sign bit 

always gets over written a numbers from the left. So, there is no meaning of an 

arithmetic shift left, you only have 1 shift left, but 2 shift rights. 

So, we have a couple of Simple RISC instructions, which we will you know 3 to be pre 

size and their format is exactly the same as the add sub, multiply instructions. So, the 

logical shift left instruction the destination comes first which is the register, the first 

source operand is a register and a second source operand can either be a register or an 

immediate, reg slash m write either a register or an immediate, and the name of the 

instruction is the lsl logical shift left. 



Similarly, we have a logical shift right operator which is called lsr, exactly same notation 

and we have an asr an arithmetic shift right operator, which is called asr. So, what are the 

3 new instructions that we are introducing? The 3 new instructions are lsl, lsr and asr 

logical shift left, logical shift right and arithmetic shift right. 
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So, let us give some in a neat examples with shift based instructions, let us assume we 

want to compute 101, 1 0 1 multiplied with 6 with just shift based operators. So, the first 

task is register assignments, so we mov 101 to register r 0. So, we shift r 0 by one 

position which is essentially equal to r 1 is equal to 101 multiplied with 2, because we 

are shifting it by one position and in this case now then again we compute r 2, which is 

shifting 101 by 2 positions and multiplying it by 4. 

Then we add r 1 plus r 2 and we set the result equal to r 3. So, essentially r 3 becomes 

101 multiplied by 6. So, you know skeptic would ask that why did we do this, we should 

have simply loaded 101 into r 0, and you know written an instruction of this form, as 

simple as this we should taken r 0, multiplied it with 6 and save the result in r 0 or r 3 or 

any other register right, why did we have to shifts? Here is the answer. So, typically in 

hardware multiplication and division right multiplication and division are very very 

expensive operations; expensive in the sense that they take a lot of time right. So, I can 

say you know plus plus in terms of time right, they take a lot of time. 



So, lot of compilers actually you know lot of compilers and good programmers 

encourage the user, not to use very expensive multiplication, division, instructions and 

use shifts instead which are very fast right. So, shift instructions are ultra fast. So, the 

shift instructions are ultra ultra fast and they are extremely fast. So, that is the reason it is 

a good idea to use shift instructions in a place of expansion, multiplication and division 

instructions wherever it is possible. 

(Refer Slide Time: 49:28) 

 

So, let us consider one more example which is not that difficult once you know the 

answer. So, let us compute 102 times 7.5 with the help of shift operators. So, what we 

can do? The first thing is assign 102 to a register r 0. So, then we shift it to the left by 3 

positions, which means r 1 is equal to 102 multiplied by 2 to the power 3, which is 8 and 

then we shift it to the right. 

So, since 102 is positive logical and arithmetic shift are the same. So, we shift it to the 

right by one position, which means multiply 102 with 0.5, well then it is very straight 

forward we subtract r 1 minus r 2. So, r 3 becomes equal to well this is exactly what we 

wanted to do. So, you see this is very easy and instead of we have avoided the costly 

expensive time consuming division instruction and in the place of that, what we have 

done is that we have a very very nimble and efficient solution with shift instructions ok. 
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Now, let us introduce some of the real the instructions that help us write big and scalable 

programs. So, let us intros introduce load store instruction. So, load store instructions job 

it is essentially a load instructions job is to take a value from memory and bring it into a 

register. So, this is a load instruction and a store instruction job is to take a value from a 

register, and put it in memory right. So, what does a load instruction do? It takes a piece 

of data from memory and puts it in a register; and similarly a store instruction takes data 

from a register and puts it in memory. 

So, let us take a look at the format of a load instructions; so in a load instruction the 

register which needs to be loaded or is a destination right. So, this is the destination, in 

this 2 address format the first is the destination and the other uses base index I am sorry 

not base index it is base offset addressing; it should be base offset addressing. So, in this 

case what we do is that the base address is specified in register r 2. So, we take register r 

2 we add 10 to it, we get a new memory address. We access the memory using this 

address read the contents and put it in r 1. So, in this 2 address format instruction the 

second operand is always points to a certain memory location a value and a memory 

location, the hardware’s job is to read this value that is there in the memory location to 

read this value and put it in a register. 

So, store instruction has exactly the same format right, but the store instruction if you 

think about it does not actually have a destination, the destination is memory. It does not 



have a register destination. So, what the store instruction does is that the register that 

needs to be read right the register that is actually read is specified first, and then the 

memory location is specified after this using exactly same addressing mode or base 

offset addressing mode.  
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So, let us show this thing graphically. So, graphically what we do is that in the case of 

load, we take the value of r 2. One second; we take the value in of r 2 from the register 

file we add 10, we get the address. This address is used to access memory; in a 32 bit 

system we read 4 bytes from memory, which is the data, the data comes back and it is 

fed into the register r 1. So, instead of 4 bytes it can be in a 64 bit system it can be 8 

bytes that does not matter. 

So, in this case in a 32 bit system we read 4 bytes from memory and put it in the register. 

So, store actually does the reverse. So, in this case also we compute the address, but 

instead of the flow of the data being from memory to a register, the flow of data is 

actually reverse it is from a register to memory. 
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So, let us give an example of a load store list. So, let us consider an example with arrays. 

So, let us assume that an arrays base address is stored in r 0. So, the way that an array 

would actually look like in memory is something like this, that an array with 10 integers 

where 1 integer is 4 bytes is a contiguous region of 40 bytes. So, in this let us assume 

that the base address of the array is r 0, which means the first integer is stored in the 

locations that r 0. So, let us assume that the contents of r 0 are v. So, the first integer is 

stored in the locations v 2, v plus 3. The second integer is stored in the location v plus 4 

v plus 7 and so on. 

So, we can say that may be the starting address of the array in this case array 0s starting 

address is actually v, the starting address of the first entry is v plus 4 and so on. So, 

similarly the starting address of the 9th entry, the 9th and the last entry in the array, 

where we start counting from 0, is essentially v plus 36. So, given the simple argument 

which I am sure most of you would have learnt in your basic C or C++ or java 

programming class, let us try to implement this small program in assembly language. 

So, we have an array of 10 integers, where we have assume the base of the array is saved 

in register r 0, we set the third element of 5 array 3. Now the element at index 3 to 5, the 

element at index 4 to 8 and we set r 5 is equal to r 4 plus r 3. So, now, let us do some 

amount of register assignments. So, let us move the constraint 5 to r 1, and let us save the 

value r 1 in actually the location array 3. 



So, what is this starting address of array 3?  Well the starting address of array 3 is pretty 

much r 0 plus 12, the reason being let us go back to this discussion over here. So, the 

starting address of array 0 is the contents of r 0, starting address of r 1 is contents of r 0 

plus 4, similarly starting address of array n is r 0 plus 4 times n minus 1 sorry r 0 plus 4 

times n. So, in this case it is r 0 plus 12. So, we write it as 12 r 0. So, this is the very very 

important point to understand and I want to ensure that all of you have more or less 

understood it. 

So, the idea is that what is the content of r 0? R 0 pretty much points to a memory 

address in memory that contains 40 contiguous bytes. So, the first 4 bytes are r 0, the 

next 4 bytes rr 1 and so on. So, what is the starting address of r 0? It is of array is 0. So, 

starting address of array 0 is r 0 right let us say the starting address. Let us starting 

address of array 1, r 1 is r 0 plus 4. 4 bytes if the size of one integer is 4 bytes, similarly 

the starting address of r n is r 0 plus 4 m. So, that is the reason the starting address of r 3 

is 12, r 0. 

So, we saved the values, we do the same. So, we do what we have done here we do the 

same for r 4, where we save 8 and r 2 and then we store the value of r 2 in 16 r 0, which 

is essentially the same as setting r 4 array 4 is equal to 8 finally, we add r 1 plus r 2 

because they contain the values that were stored and we save it in r 3 and the value of r 3 

is again saved in 20; 20 is the offset and r 0 is the base. So, this is essentially equal to the 

fifth memory address of the fifth element. So, here we save r 3 which is r 1 plus r 2 or in 

a sense the same as. So, by this time the advantage of using of base offset addressing 

mode should be clear, that it allows us to implement arrays. 

So, what we can do is that we can save the base address in an array and then we can use 

the offset to actually access different elements of the array right. So, we have the always 

need to be mind full of the size of an element. So, in this case the element is an integer 

and the size of each element is 4 bytes that is the reason to go to the n th element, where 

we start counting from 0 is the starting address plus 4 m. So, once that is clear, we can 

write programs of this type to load and store values from memory from you know 

different data structures in memory the array being 1 to read them into registers work on 

them and write them back. 
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Now, it is time to actually get to the real fun part of assembly instructions; and so what 

have we covered up till now? We have covered arithmetic logical instructions and we 

have covered load store instructions right. So, it is now you know the apt time to actually 

get into the real fun part of assembly programming, which is to add branching. When we 

add branching we will be able to implement high level concepts, such as if statements for 

loops while loops and so on. So, as I have mentioned in some of the early slides, that an 

assembly statement can be associated with a label and this label can be used to uniquely 

indicate a assembly statement. 

What we can later on do is that we can have this statement b dot foo, where the branch 

statement would essentially transfer the control of the program, from this particular line 

over here to this line here. So, the program counter would initially be pointing to this line 

and subsequently it will start pointing, to this line and this statement will get executed. 

So, the branch statement in assembly is very simple we just do b, and then the name of 

the label. So, the format in this case is b and the name of the label. 
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So, there are some conditional branch instructions as well, where we will actually see the 

power of having the flags register right. 

So, let us have a beq instruction branch if equal. So, what this means is that look? We 

have first introduced we first have a compare instruction, we have many more 

instructions that are not compares and then we have a beq instruction. So, this instruction 

first takes look at a flags dot e, if flags dot e is equal to 1 means that this compare over 

here had resulted in equality, it will go jump to foo very much branch to foo. The same is 

true with the b g t instructions which takes a look at flags dot GT and if flags dot GT had 

been set to 1 by the last compare instruction; the b g t instruction would jump or branch 

to dot foo. 

Essentially the statement which is there at the dot foo label and these flags mind your 

only set by compare instructions and who are they meant for? They are meant for later 

branch instructions like b e q and b g t to take a look at them and jump. 
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So, now it is time to write slightly difficult programs and realize the power of assembly 

language. So, let us try to write this program if r 1 is greater than r 2, then let us say 4 in 

r 3 else we say 5 in r 3. So, well that is easy the first thing that we do is that we compare 

r 1 and r 2. So, if r 1 is greater than r 2 then. So, we always come one statement down, if 

it is greater than r 2 the flags dot GT bit would be set to 1. So, if it is greater than we 

jump to g t label, which is over here and we save 4 in r 3. 

Otherwise we do not jump and by default we come to the next statement, where we save 

5 in r 3. So, this is a simple program which shows us the power of the b g t instruction 

that if that element condition is true in the flags register, then we jump to the target; in 

this case the target is dot g t label, otherwise we just go to the next or the subsequent 

instruction. 
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Now, let us move on to a more complicated example and this is a genuine assembly 

program in the sense it has it is most of it is features. So, let us compute the factorial of 

the variable called num right. So, which is as specified in the c program over here. So, to 

write a program in assembly language, let us may be add a step 0. If the program is 

complicated, it might actually make a lot of sense, to first write it in a high level 

language such a such as C or java. The reason for that is that it will help us in a 

visualized all the parts, and it will become fairly easy for us to actually code it. So, we 

will follow this approach over here. 

So, to compute a factorial first we define the product variable, which is initialized to 1 

then we define an index that starts at num and we assume you know for all practical 

purposes num is a large enough number, so we do not have to check for special cases. 

So, here if i d x is equal to we start the index for loop equal to num, and we keep going 

till num reaches 1 and the moment reaches 1 we jump out of the loop and we subtract the 

index; I am sorry we keep going till i d x reaches 1 and we subtract the index by 1 in 

each step, and this is the multiplicative step prod equals prod multiplied by i d x. So, this 

code is enough to compute the factorial of a number. So, recall that the factorial of a 

number n factorial is 1 multiplied by 2 all the way till n right. 

So, let us now try to convert this program to Simple RISC. So, in this case the first thing 

that we do step 1 is register assignment. So, r 1 is assigned to prod and. So, we set prod 



equal to 1 and we set. So, this is i d x. So, r 2 is assigned to i d x, and we initialize it with 

num. So, as the assumption here is that num is assigned to r 0. So, r 0 contains num. So, 

that is the assumption that is the assumption that we begin with. So, sometimes if 

assumption is not specified in the question, users can make their assumption as we have 

done over here that the num variables whose factorial needs to be computed is there in r 

0 and so what we do is that the variable i d x in the c program, we assign it to r 2 and we 

initialize we set r 2 equal to r 0 where r 0 contains num. 

So, essentially the starting value of i d x is equal to num. Subsequently we add the dot 

loop label over here, to signify the fact that later on we might want to jump to this point, 

then what we do is that we multiply r 1 with r 2; recall that r 1 is mapped to prod r 2 is 

mapped to i d x. So, we set r 1 equal to r 1 times r 2, which is equivalent to prod equals 

the product is equal to product times i d x. So, this is the multiplicative step; then what 

we do is that we subtract the index we subtract 1 from the index, which is essentially this 

step over here, we subtract 1 from the index i d x equals i d x minus 1. 

So, when do we actually stop the loop we stop the loop, when the index becomes equal 

to 1, because there is no point multiplying a number by 1. So, we compare r 2 with 1 all 

right. So, we compare r 2 with 1 in this step, and we see if r 2 contains i d x, if i d x is 

greater than 1 or not. If i d x is greater than 1, then the flags dot g t bit would have been 

saved. So, in this case the b g t condition would evaluate to true and we would jump to 

loop, which is essentially we will jump back like this. 

So, what we have done, we have actually these 6 lines. I would advise the reader or the 

student the listener of this video, take a look at this example 5 times, 10 times, 100 times 

if required and understand each and every line of this program, because the program 

might be 6 lines, but it is 10 to the power 6 times difficult. It is difficult basically because 

you are looking at an assembly program for the first time and an assembly program 

which is fairly complicated for the first time, so let me look at the 3 steps that we had in 

this exercise. 

The first step is we realize that the problem is difficult. So, we wrote our small program 

in c that is the first thing we did. In the program in c we had a product variable and an 

index that goes down from the number till 1 and at each point we multiplied. So, we are 

doing exactly the same in assembly nothing different. So, the first is that we do a register 



assignment, so num is assigned to r 0 prod to r 1, i d x to r 2. We start the iteration the 

same way as it is in the for loop with i d x equal to num in pretty much this statement 

over here. So, then we do the multiplicative step we multiply and as I said am making 

some simplistic assumptions over that num is actually large enough so I am not doing 

some checks.  

So, then the next step is once you do the multiply let us reduce the index by 1. So, let us 

have i d x equals i d x minus 1, with a subtract instruction and then we compare. So, if 

you have reached the exit condition, which is if r 2 is equal to 1 then we can exit the 

loop. So, we do not have to anything that b g t instruction over here will evaluate to falls. 

So, we will just simply fall down and evaluate the next instruction. Otherwise if the 

index is still not equal to 1 we need to do another iteration of the loop. So, we will jump 

to dot loop. 

So, similarly the loop will continue for num minus 1 times till the factorial computation 

is over. So, I would request once again the reader to take a look at this several times may 

be work it out with the paper and pencil, and only when the reader is convinced we 

actually move to slide number 54. 
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So, here is a food thought for burger question, write a Simple RISC assembly program to 

actually find the Ramanujan numbers. This is difficult, but can be done it is a fair amount 

of work, but with the emulators that are there on the websites can be done. So, the 



Ramanujan number is a very interesting number and so basically the story goes like this 

that once Srinivas Ramanujan was very sick and his guide personally had come to meet 

him. 

So, number 1729 was written on his taxi. So, he asked Ramanujan do you know, what is 

the significance of this number, can you find something special with this number? 

Ramanujan brilliant as he was said yes, so 1729 is actually the smallest number that is a 

sum of 2 cubes in 2 different ways, it is 10 cube plus 9 cube, which is also 12 cube plus 1 

cube. So, it is a sum of 2 cubes in 2 different ways. So, the question was can you write an 

assembly program to actually compute the Ramanujan number? Well the answer is very 

simple first write the program in c, after writing the program in c gradually convert it to 

assembly. 

So, the approach would be that we take all the numbers starting from let us say 2 till you 

know infinity right and we stop at the Ramanujan number. For 2 you essentially find out 

is it possible to write it as sum of cubes, well yes 1 cube plus 1 cube, but any other 

combination of cubes? No. So, you go to the next, go to the next keep going, going, 

going you will have multiple for loops, but the trick is first write and see then do a 

register assignment and then write it in assembly language that is a trick. If you are able 

to do this our objectives are satisfied. 
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Now, let us discuss our last important concept in this sub section of the lecture called 

modifiers. So, if you would recall we had discussed that Simple RISC, support 16 bit 

immediates. So, it does not support larger immediates. So, the question is that let us say I 

have an instruction of the form mov r 0, and minus 3. So, what is it that would happen? 

So, if we consider what is minus 3 in a 4 bit system? Minus 3 in a 4 bit system is plus 13 

or 1 1 0 1; what is minus 3 in a 16 bit system? Nothing just performs sign extension it 

remains the same. 

So, now the question is that when this is being moved to r 0, which is actually a 32 bit 

register what should be the default behavior if I do this? What should be the default 

behavior is that we have the contents of the immediate mov to the lower 16 bits and the 

upper 16 bits is just a simple sign extension, so it preserves the sign of the immediate. 

So, this is the default behavior which all of us expect should be happening, that is the 

sign extension will happen. So, essentially we are treating the 16 bit immediate as a sign 

number, and there is automatic sign extension happening. So, this ensures that if we have 

represented minus 3 in assembly, minus 3 is also what gets stored in the register r 0, but 

of course, since r 0 is 32 bits relevant sign extension is being done. 

Now, let us define 2 variants of this same instruction and these variants hold for other 

instructions as well, but let us only discuss this instruction. So, let us define the mov u 

instruction. So, in the mov u instruction we treat the 16 bit immediate as an unsigned 

number, so essentially what happens is that in the 32 bit field, the first 16 bits is when the 

is where the immediate comes in and the remaining 16 bits are all 0s. So, we treated as 

an unsigned number; and in mov h what is done it is actually have 1 graph over here 1 

diagram over here but let me never the less explain it over here. 

So, mov h what is typically done is that again if we consider a 32 bit register with 2 16 

bit parts. So, what happens is that the immediate actually gets loaded to the upper 16 bits, 

the most significant 16 bits and the lower 16 bits are set to all 0s. So, you can think of 

left shifting the immediate and then loading it to the upper 16, to the lower 16 are all 0s. 

So, the u and h are generic modifiers, so the default is always to treat the immediate as a 

fine number, but or we can use the u and h modifiers. So, the u treats it as an unsigned 

number, and the h actually left shifts the immediate by 16 positions. 
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So, what is the mechanism the mechanism is that when an immediate is specified in an 

assembly instruction, the processor will take the immediate and put it in an internal 

register which is not visible and convert it into a 32 bit number right? So, essentially the 

immediate is part of the assembly instructions, it is somewhere inside, this immediate in 

taken by the CPU, and it is converted to a 32 bit immediate right and this 32 bit 

immediate is used in the computations. So, for all arithmetic logical computations this 32 

bit immediate would be used. 

So, we can control the generation of this 32 bit number internally. So, the default is sign 

extension that we can treat the 16 bit number as unsigned with the u suffix or load it in 

the upper 2 bytes, right the most significant 2 bytes with the x suffix. 
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So, let us take a look at some examples. So, let us first take a look at the default behavior 

of AB 1 2 whether the msb is equal to 1. So, in this case we load AB 1 2 in the lower 2 

bytes, and the upper bytes upper 2 bytes consist of the sign bit right. So, this is sign bit 

here is 1 so all these 2 16 bits are 1. 

If we consider the unsigned so then again the byte AB is loaded into this byte and so AB 

and 1 2 are loaded into lower 2 bytes, but the upper 2 bytes are set to 0s right, 8 0s and 8 

eight 0s, 16 0s. If we consider the same thing mov h r 1, 0 x AB 1 2; so AB 1 2 are 

actually move to the 2 msb byte positions, upper byte positions and the lower positions 

are set to 0.  
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So, let us take a look at some examples; so the main advantage of having modifiers right 

why have them? The main advantage of having modifiers is that it is possible to load all 

kinds of constants into registers; we will load meaning not from memory, but you know 

sort of store immediates and registers, all kinds of immediates and registers with a 

minimal number of instructions for example, if we want to save FF FF A 3 2 B in r 0; all 

that we do is that we actually move in A 3 2 B into r 0. So, it will load A 3 2 B in a lower 

positions and upper positions will replicate the sign bit; since the sign bit is 1 the upper 2 

bytes will become FF and FF. If we want to have set the upper 2 bytes as all 0s right in 

this case all that we need to do is we need to have the u modifier, which will ensure that 

the most significant 2 bytes are 0s. 

Likewise if we want A 3 and 2 B to be in the 2 upper positions most significant 

positions, then what we do is that we will use the h modifier, to move them to the most 

significant positions and set the rest of the bits or bytes as 0. 
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So, now let us look at our simple example; let us assume that this complicated constant 

over here needs to be loaded sorry I mean saved into r 0. So, this if we dint have the 

modifier it will actually take us a lot of instructions it is complicated. 

So, let us now break down this problem into 2 simple problems and solve the problems 

in parts. So, the first problem is that we need to take 1 2 AB and load them in the 2 upper 

bytes that is very easy. So, we consider 0 x 1 2 AB right in the hex form, we use the h 

modifier to actually move this, the 2 upper bytes. Then we need to move A 9 2 D to the 

lower bytes. So, this is also easy. So, basically what do we have what is the status of the 

register at the moment, just before the second instruction we have 1 2 and AB and then 

we have 0 0 and 0 0 in the 2 lower bytes. 

So, what we can do is that we can add this with 0 0 A 9 and 2 D. So, this will give us the 

final result which is this result. So, that is the reason we have an add instruction, we have 

r 0 and we have A9 2 D, but here is the cache if A 9 2 D goes into the machine, it will be 

expanded into a 32 bit value and in the 32 bit value the lower 2 will be A 9 2 D, the 

lower 2 bytes, but the upper bytes will just replicate the sign of A which is F F F F, 

which is not something we want to do. So, that is the reason we specify the u modifier 

with the add instruction. 

So, essentially the modifiers can be used with any arithmetic logical instructions and the 

move instruction right. So, let me say this again, the u and h modifiers can be used with 



any instruction that uses immediates namely the arithmetic logical instructions and the 

move instruction. So, in this case in the second instructions this is instruction 1 and it is 

instruction 2. So, in the second instruction we use the u modifier, to actually expand A 9 

2 D internally into A 9 2 D and the upper 2 bytes are 0 0 and 0 0, which is exactly what 

we want. Have we not given the modifier, we would have gotten the wrong answer; to 

get the right answer we add the u modifier to ensure that these 2 upper bytes are 0 and 0 

and then we do the addition, so we get 1 2 AB, A9 and 2 D, which is exactly the answer 

that we wanted. 

So, one thing that this example shows what is the take home point of this example? The 

take home point of this example is that to load a constant, I am sorry I use the word load, 

but the word should be taken in the context, in the connotation if you want to save an 

immediate into a register. Say it would have otherwise been difficult had the modifiers 

not been there to actually put a constant in to a register given r i s a, but with the 

modifiers it is actually become easy. So, we use the h and u modifiers and with just 2 

instructions we are able to put in 32 bits, into a register which is great. 


