
Computer Architecture

Prof. Smruthi Ranjan Sarangi

Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

Lecture - 08

ARM Assembly Language Part – I

Welcome to the chapter on the ARM assembly language. ARM assembly language are

some of the most popular and most exiting assembly language as to learn. So, in this

chapter we will have a lot of fun. So, this chapter is the part of the book computer

organization and architecture, publish by myself, Doctor Smruthi Sarangi. It was publish

by Mc Graw Hill in the year 2015 and should be available in almost all book stores and

online in a both normal book stores and online book stores.

(Refer Slide Time: 01:37)

So, why study the ARM instruction set and so let us first look at why study and then

what is the background required. So, ARM is very popular instruction set. So, almost all

the phones today as of 2016 tablet us and all kinds of small computing devices, which

are not desktop are laptops run on ARM processors. So, they use the ARM instruction

set.

So, ARM is company located in Cambridge UK. So, they actually licensed their designs

and then the designs are used by other manufacturers to you know incorporate them in

silicon chips. So, before actually we start this chapter I would like to make a point that,

readers should already have a good understanding assembly language, in the sense that

they should have read the previous chapter which is chapter 3 and understood lot of

things about how assembly programs are written, how they instructions, how assembly

instructions work are the notion of function notion of the stack the notion of encoding.

So, all of this needs to be there and the reason that the book has been designed in such a

way is basically that, is you know it is not possible at list in my view to give an

introduction to assembly language and teach an advanced assembly language at the same

time. It is better to separate the concerns. So, it is better to first teach what an assembly

language is like a very simple one and then mov to teaching in advanced assembly

language which is used in commercial processors. Because than a student would have the

right amount of understanding, to actually understand what state of the art assembly

instruction set looks like.

So, keeping this in mind I will actually start this chapter at a slightly higher level because

my assumption is that readers are already coming after at chapter 3. So, they understand

the basics of assembly languages, and they also understand how to write simple

programs with assembly languages, and have a basic understanding of how to implement

is statements loops functions using stacks using assembly language. So these are some

other concepts will take for given in this particular chapter, coming back to ARM. So,

ARM has a lot of licensees all over the world. So, what ARM produces is they create the

design of a processor and then the sell the design. The design can be incorporated by a

third party with other component. So, for example, if ARM sells a processor to a phone

company, then they can incorporate the ARM processor and also have other smaller

circuit surround it. For example, a circuit to process inputs on the camera, or a circuit to

inter face with the accelerometer in the phone. So, all of these additional circuits can be

added.

So, the ARM instruction set as such is very versatile. So, along with lot of integer

instructions, is suppose floating point instructions. And it has what are called vector

extensions. So, will discuss more about vector instructions in chapter 11, but vector

instructions allow was to do multiple additions at the same time in the same cycle. So,

will not be discussing these extensions also ARM has a very popular I was say in

assembly sub language or in a extension is called the thumb instruction set. And a lot of

ARM programs actually use the thumb instruction set which is the slightly simpler set

off instructions, and what we present here in you know in this chapter cycle referred to it

has the thumb ISA are the thumb assembly languages. So basically the thumb instruction

set is similar to this it is slightly simpler will not discuss this in this chapter. We will

discuss the generic ARM instruction set for integer only in this chapter.

(Refer Slide Time: 06:12)

So, will have 5 separate sections here will first start with basic instructions. Mov to

advanced instructions, then look at branch instructions, memory instructions, low store

kind of instructions, and finally, considered instruction encoding.

(Refer Slide Time: 06:33)

So, similar to simple RISC ARM has 16 registered their number from r0 to r15 and

unlike simple RISC can many other assembly languages the problem counted the

explicitly visible, and the program counted can be use 2 effect branches and so on.

 So, this is expose to software is a expose to the assembly language. The memory is

standard Von Neumann architecture what this mean is the instruction memory and the

data memory is fuse to 1. So, this is you know typical facet of the Von Neumann

architecture there is Von view of memory it is not separate. So, out of the 16 register at

ARM has some of them a reserve for special purposes. So, let us take a look at them. So,

r15 is the program counter. So, I am starting in a back words ARM r15 is the program

counter it is refers to was either r15 or the pc r14 is the link registered. It is you can also

think of it does the return address register. R13 is reserved for keeping the stack pointer

or sp r11 and r12 have will r11 and r12 can be assigned a special connotation on times.

So, r12 is an intra procedure calls scratch register which basically means it can explicitly

be use to safe temporary values inside a function call, but other registered can be use as

well. And r11 is called a frame pointer will discuss what is a frame pointer actually

towards the end of these chapter, and, but will discuss more about a frame pointer and an

next chapter on x86 assembly.

(Refer Slide Time: 08:32)

So, we will be using a slightly different kind of semantics in this chapter. So, we will

every single instruction will be explained with the help of a table. So, in the table the first

column, will look at the semantics which is something that we introduced towards the

end of the last chapter. So, it will basically show what are the different modes of the

instructions. Then will give a example and then will talk about the explanation and the

registered transfer notation that we have introduced. So, the simplest of simple

instructions in the ARM ISA is the mov instruction. So, what does the mov instruction

do the mov instruction transfers the value into a registered? So, let us say may be mov r1

r1. So, it essentially transfers the valley of r2 to r1. Alternatively, the mov instructions

can transfer the valley of a immediate into a registered. So, the first operand is always

register. The second operand can either be a registered or an immediate, let us considered

the second example mov r1. So here is the, you know idiosyncrasy of the ARM ISA.

They are all immediate are preceded with the hash.

So, the moment we add this hash characters over here. So, you can see the hash character

will be above 3 on your keyboard, all immediate and ARM need to be preceded or prefix

to the hash. So, when we say mov r1 hash 3, what this essentially moves is that I take

register r1 and I move 3 into it. So this is the simplest instruction in the ARM ISA. So,

mov has variant it is called mvn, mvn is move not. So, this is similar to the not

instruction in simple RISC. So, what we do is that, when we do mvn r1 comma r2

essentially the ones complement or every single bit flipped is transferred from r2 to r1.

So, this tilde sign is a once complement. So, just to recapitulate the ones complement of

1 0 0 0 in Boolean is 0 1 1 1. So, every single bit is replaced with it is complement one is

replaced with 0 and 0 is replaced with 1. So, the mvn instruction is essentially the same

as a mov instruction, but instead of moving the register all the immediate it moves in the

complement of the register or immediate.

(Refer Slide Time: 11:35)

So, now let us take a look at arithmetic instructions, the arithmetic instructions are

almost you know add and sub are exactly the same as simple RISC. So, in this case the

add and sub instructions, similar to simple RISC the first operand is the destination the

second operand is the first registered source which is rs 1 recall chapter 3, and the second

operand can either be a register or an immediate. So, examples would be r1 r2 r3. So, in

this case we add r2 plus r3 and save the result in r1. So, a again you know I would like to

mention that I am deliberately going slightly fast, because my assumption is that students

have already picked up a certain amount of background in the previous chapter. So, they

will find covering this chapter slightly easier right, but if you let us a take a look at this

chapter from scratch you will find a slightly difficulty, I would then ask you to look at

the lectures or read the book for the previous chapter which is chapter 3.

So, coming back to the add instruction I can alternatively right add r1 r2 and hash 3. So,

what this would do is that in r1 it would save r2 plus 3 similarly we are the subtract

instruction which is exactly the same as it was in the simple RISC instruction set. So, we

have the register destination first. So, the first operand over here is the register

destination then we have to source operands one of them is registered source and the

other is the source slash immediate source or an immediate. So, when I write sub r1 r2

r3. Essentially inside r1 we are having a placing r2 minus r3. So, similar to subtract there

is another instruction is called rsb or reverse subtract.

So, in reverse subtract instead of subtracting r2 and r3 instead of doing r2 minus r3 we

actually do r3 minus r1. So, here reader can ask you know if you have the sub

instruction, why you need a reverse subtract instruction right, well the answer is simple

in the sense, let us say that you want to compute 3 minus r1 not r1 minus 3, 3 minus r1.

We cannot write an instruction of the form. So, let us say you want to set these two, r2

we cannot write an instruction are the form r2 right. So, this is not allowed because the

second operand has to be a register. So, this is not allowed, but what we can write is rsb a

reverse subtract oops sorry there should be a comma here r2 r1 and 3. So, what this

would do is this would set r2 to 3 minus r1, which is exactly what we needed. Since

simple RISC this doing this would actually require 2 instructions because we would first

subtract 3 from r1. So, compute r1 minus 3 and then multiplied with minus 1. So, the

designers in ARM a very smart instead of you know having this 2 instruction solution

they created a new instruction call rsp reverse subtract which allows us to compute 3

minus r1 in a single instruction, all right.

(Refer Slide Time: 15:52)

So, now let us take a look at some examples. So, the first example is write an ARM

assembly program to compute 4 plus 5 minus 19 and save the result in r1. So, here is the

simple solution which is simple, but it is not optimal, but nevertheless less to call let us

take a look at it. So, we first say 4 in r1 which save 5 in r2 using the mov instruction,

then we add r1 plus r2 save at an r3. We move 19 to r4 then we subtract 19 from r3

which is r1 plus r2 save the result in r1. Slightly modes are there better solution which is

optimal we put 4 in r1, then we do r1 equals r1 plus 5 in the sense r1 will become 9, then

we do r1 we set r1 to r1 minus 19 and a previous value of r1 is 4 plus 5 9. So, we

compute 9 minus 19 has minus 10 which is the final answer. So, this was a slower

solution easy to understand this is slightly difficult to understand, but not very difficult

because in the first line we set r1 to 4. In a second line we do r1 is r1 plus 5. Which all of

you can verify is what is exactly in the mentioned in the statement of the problem. Then

we subtract a 19 from the sum and we get the right answer.

(Refer Slide Time: 17:37)

Now, let us take a look at logical instructions. So, logical instructions are also very

similar to the arithmetic instructions. So, the first 3 instructions are somewhat easy the

4th instruction it is slightly difficult. So, the first instruction is the and instruction, which

is very similar to what we had with simple RISC. So, in the and instruction is the same

idea that the first. So, in all of these instructions the first operand is the destination then

we are the first source and the second source. The second source operand can either be

can either be a register or an immediate. So, one example would be and r1 r2 r3. So, we

set r1 has r2 and r3. So, eor is actually exclusive or xor as we call it. So, in eor r 1 r2 r3

we have r1 which is being set to r2 xor r3 orr is logical or. So, in a logical or what we do,

is that this is similar to the or instruction in simple RISC. So, we just compute a logical

or a r2 and r3.

So, the important point to note is that in all of these instructions, the instruction per say is

only 3 letters. Since simple RISC we had some to letter instructions like so on. So, that is

on the case and l d and s t. So, that is not the case in ARM. So, in ARM they have tried

to maintain the length of the instruction the same. So, that is the reason or they have

replaced with orr. So, the bic the bit clear instruction is slightly unclear at the moment.

So, what this is this is basically r1 is r2 and not of r3. So, let us may be consider simple

example and see a what is these is. So let us considered r2 being, let us may be just

considered 4 bits to make are like easy and rest of the bits are also easy.

And similarly let r3 b. So, not of this quantity would be 1 1 0 1. This number and this

number is equal to one and 0 is 0 1 and 1 is 1. 1 and 0 is 0, 1 and 1 is 1. See if you see

what is happening over here is that all the bits that are set in r3. So, all the bits that r1 in

r3 in knot of r3 those bits become 0. And when that is added with some other quantity all

the bits are those bit positions become 0, these that is why the name bit clear comes

from, or alternatively if I want to explain if this is let says the first operand, which in this

example is r2, and is the second operand which is r3. All the bits that are set at different

points at similar bit positions in a final result if we have 0s, it is like those bits are those

bits positions are getting cleared. So, this is called a bit clear instruction or a bic a

instruction.

(Refer Slide Time: 21:19)

So, let us again considered an example this time with Boolean variables. So, write an

ARM assembly program to compute A not B sorry A or B the entire thing not where A

and B are 1 bit Boolean values assume that A is 0 and B is 1. Save the result in r0. So, to

compute the not of A or B what we do is that so, basically ARM accept hexadecimal

numbers as well. So, the format is a same first have a hash to signify in immediate. And

then you write 0 x to signify that it is an hex. So, what we do is that we load the value of

0 into r0. And we load, so I am sorry we or this with 1. So, the value of A or B at the

moment is saved in r0. Subsequently what we do is we compute the knot of r0 using the

mvn instruction. So, we set r0 as the knot of r0.

So, in this case, what we are doing is that we are loading to Boolean variables, a with

constant were computing their or and then finally, taking the logical compliment.

(Refer Slide Time: 22:48)

Let us now look at the multiplication instructions that are there in the ARM ISA. So, the

simplest variant of the multiplication instruction that we have in ARM is mul m u l. So,

the mul instruction is very similar to the add and subtract instructions, where the first

operand is a destination register henceforth we have 2 operands. The first source operand

is always a registered and the second one can be unregister immediate. So, this is straight

forward r1 is r2 times r3. So, even the ARM is a RISC instruction set it has some slightly

complicated instructions, and so you know there is a basic trade off.

The trade office is do we always preferred simplicity, or occasionally can we make are

instruction set slightly complicated, such that you know some commonly executing

patterns and programs can be accommodated. So, once has commonly executing pattern

which is there in a lot of programs in a particularly coach that use linear algebra and

matrix operations is the mla operation multiply an accumulate.

So, this actually takes 4 registers as operands. The other first register is the destination in

this example r1 is the is the destination. So, out of the 3 source operand that we have

what we compute is r2 times r3 plus r4. So, we have a multiplication operation where the

first and second source operand have been multiplied, and we adding this this with r4.

So, this is a typically required in the lot of linear algebra kind of competition that is a

reason this instruction is supported. The other interesting aspect of multiplying 2

numbers is like this consider a 32-bit instruction set. So, the range of the number system

is pretty much between minus 2 to the power 31 to 2 raise to the power 31 minus 1. So,

let us say we multiply minus 2 to the power 31 with minus 2 to the power 31; the answer

will be 2 to the power 62, which is well outside the range of a 32-bit number system.

Answer as a result will have an overflow, but let us say we do not want to have an

overflow and we want to have some mechanism, by which we can store the store the

product without an overflow.

So, for this let us do a little bit of math here. So, as you see the largest number that we

can get by multiplying 2 sign numbers 2 32-bit sign numbers 2 raise to the power 62. If I

considered to unsigned number, so basically the largest number that I can get. So in a

unsigned number system with 32 bits the largest number is 2 raise power 32 minus 1. If I

sort of squared these then this will be 2 to the power 64 minus 2 times plus 1, we shall

see that in both these cases. So, this is sign multiplication will be consider them to be

sign number this is unsigned. So, in any case beat either signed or unsigned 64 bits are

sufficient to keep the product, 64 bits in the sensor sufficient.

So, for this purpose ARM is 2 instructions smull and umull. So, smull is a sign

multiplication, where we actually multiply the third and 4th operand you multiply r2

times r3. We do a sign multiplication we assume that r2 and r3 are sign and the final

result is a sign. So, the 64-bit product is actually it cannot be saved in one register

because it is a 32-bit register, but can saved in 2 register. So, the lower 32 bits can be

saved in r0 and the more significant 32 bits can be saved in r1, together will have a 64-bit

quantity.

So, this is the smull instruction does this with 4 operands where we multiply the third

and 4th operand. And the first and second operand together store one number, where r0

stores the lower 32 bits and r1 stores the upper 32 bits. So, we have a similar instruction

called umull which is an unsigned multiplication. So, this is if you would see this

instruction and the upper instructional lower instruction are exactly the same. Only

difference is inside of a signed multiplication it is an unsigned multiplication. So, we

treat r2 and r3 also an unsigned quantities and you perform in unsigned multiplication.

So, the final result will fit within 64 bits. So, lower 32 bits can be saved in r0 and the

upper 32 bits can be saved it r1. So, the only difference between smull and umull is smull

does a sign multiplication and umull does than unsigned multiplication.

(Refer Slide Time: 28:51)

Now, let us consider examples. So, let as compute 12 cube plus 1 and save the result in

r3. So, let us do one thing, let us load the values. So, load the values basically means

transfer the values. So, let us transfer 12 to r0 and let us transfer 1 to r1. So, now, let us

perform the logical competition in ARM ISA, at symbol, is used to specify that what lies

after it is a comment.

So, let us first multiply r0 with r0 which is let us compute 12 square and save it an r4. So,

r4 will contain 12 square now here is the greatness of the mla instruction multiply and

accumulate. So, here we compute r3 is r4 times r0, plus r1. R4 is already 12 squares and

r0 is 12. So, this is 12 cube plus the value in r1 is 1. So, we get 12 cube plus 1. So, what

we can see is that using the mla instruction computing 12 cube plus 1 actually became

very simple and we could actually do it in 2 assembly instructions after we had the

values in there in the registers loaded. So, this is actually you know very cheap and very

fast. So, the user should keep this in mind that occasionally you should take a look at

some of the advance instructions that ARM provide such as mla smull and umull to make

the competition easier, and also reduce the lines of code. Because in assembly language

lower is the lines of code more efficient is the program.

(Refer Slide Time: 30:57)

Now, let us take a look at some of ARMs advanced instructions. So, ARM has a notation

of a shifter operand. So let us see what it is, so considered a register. So, we can

optionally specify after a register id a shift amount. So, there are 4 ways that we can

actually shift a register in ARM. So, it is lsl. So, let me first explain what is there in this

table. So, lsl means logical shift left. So, let me just write or maybe I can write here lsl is

shift left, lsl is logical shift right. So, this is similar to simple RISC, asr is arithmetic shift

right. So, there is no arithmetic shift left. So, that is the reason we have not defined it. So,

lsl is the same as the lsl in simple RISC a logical shift left. And so then there are 2 kinds

of right shift. So, in the logical shift right we add 0s to the MSB and in the arithmetic

shift right we replicate the sign bit. So, given a register we can add these 3 kinds of shifts

to it and also we have this ror kind of shift.

So, will discuss what an ror is when we come to this part of the figure, the lower part of

the figure. And then we can shift a register either by a certain shift amount which can be

between in anywhere between 0 one 31, or we can shift it by the amount written in a

register return in a another register. So, basically we can put in a registered over here, or

we can consider this immediate which encroach the shift amount. How much we should

shifted by? So, let us consider a simple 5 bit example and let see we want to logically

shifted left by one position. So, in this case 0 will come here. So, will have 0 1 1 0 which

is essentially you know this part has come over here 0 1 1 0. And we shift in a 0 in a LSB

position. So, this a logical shift left.

So, in ARM we will see in the next few slide that it is possible to actually fold in the shift

information as a part of the operand specification. So, we do not need a separate shift

instruction, but let us first appreciate the types of shifts in ARM first subsequently we

have an lsr. So, in lsr if u have 1 0 1 1, so 1 0 1 1 will again get replicated over here in 1

0 1 1 and in the MSB position we will shift in a 0. Similarly, for the arithmetic shift right

the bits 1 0 1 1 will get shifted to the right, and in the MSB position will shift in a 1 the

reason being that we are replicating the sign bit the sign bit here is 1. So, we are just

replicating it is arithmetic shift right.

Now, let us introduce the rotate right instructions. So, ror is rotate right. So, what we do

in this case you want to rotated right by one position. So rotate right is basically a right

shift with the values that is falling off the least significant position they come and sit in

the most significant position. So, let us see. Let us consider 1 0 1 1 if you rotated right

the first thing that we do is we shifted to the right by one position. So, 1 0 1 1 over here

gets reflected over here. Subsequently what do we write in the MSB.

We write in the MSB whatever was shifted out of the least significant positions in this

case 0 were shifted out these are the felt to the right. So, essential 0 comes and it is put in

the MSB. So, essentially we are taking a set of bits and we are just is rotating them. So,

another important point is that in the shifting operations in lsl lsr and asr, we are actually

introducing new bits which were not originally there in the set of bits right. At either the

left position or the right position, in comparison in the case of a rotate instruction we are

not doing that so, whatever bits fall out of the least significant position are added to the

most significant position; now, the given that these 4 shift operations are clear.

(Refer Slide Time: 36:54)

Let us actually take a look at an example of these. So, let us without an example it will

not have been cleared.

So, let us consider the following example. So, right ARM assembly code to compute r1

equals r2 by 4. So, essentially dividing a number by 4 as was discussed in chapter 2 as

same as right shifting it by 2 positions, by this not a logical right shift this is an

arithmetic right shift will call it an asr. And we shifted by 2 positions. So, in the case of

the ARM ISA we actually do not have shift instructions. So basically in the previous

slide what we have seen lsl lsr asr ror their essentially shift directives, but they are not.

So, the important distinction that needs to be made is a these are not you know separate

instructions in their own right.

So, what we essentially do is that we use the mov instruction and we are treating this

entire new expression that you are not seen before as actually one operand. It is true that

there is a comma in the middle, but this is actually being treated as one operand. And this

is being moved over here. So, what is this doing, what this is doing is that this expression

is taking the value of r2, and right shifting it. So, maybe I can write the right shift right

shifting it by 2 positions. So, these I am using the standard right shift operator. So, we

are right shifting it by 2 positions which is tantamount to equivalent to dividing the

number by 4. And then this entire the result of this is being transferred to r1.

So, as I said let me just you know reemphasis that ARM in the most variant. So, of ARM

assembly at least most of the simple variance, do not have dedicated shift instructions.

Rather the shift is folded into the definition of the source operand itself. So, in the source

operand, we can specify the source operand as a register. And you know this is not

possible to do with an immediate, but as a registered we can specify the source operand

and optionally specify a shift amount and the type of shift. So, there will be a comma

between the source register and the type of shift in the shift amount by the entire

ensemble is treated as a single operand, and what the hardware would do is it would first

evaluate the value of this expression which basically mean shift r2 by 2 positions to the

right and then transfer it to r1.

So, let us now take a look at a slightly more complicated example. So, let us compute r1

equals r2 plus r3 times 4. So, multiplying a number by 4 is a same as shifting it to the left

by 2 position. So, what we will do is will write add r1. So, since the first operand is the

destination. So, we will have r1 is being set 2. So, here the entire operand is actually just

one source operand right. So, we can treat this as a single source operand so will add r1

as r2 plus r3 left shift it by 2 positions or multiplied by 4 it is a same thing. So, will have

r1 is r2 plus 4 times r3 which has been folded into one single assembly statement. And

this will make the execution of the assembly statement extremely efficient. So, the

important point to note is that ARM does not have separate shift instructions; rather a

shift is folded in to the definition of the operand itself, to the specification of the operand

itself.

(Refer Slide Time: 41:38)

Now, let us take a look at compare instruction. So, they worked very you know you

know very similar fashion as simple RISC. So, compare instruction at does the job of

comparing and then it is sets the flags. So, let us first take a look at a simple compare

instruction the cmp instruction we are a cmp simple RISC as well, and the format was

the same the first operand was the register, the second operand was either a registered or

an immediate. So, we are comparing r1 and r2 and after this. So, what is comparing r1

and r2 mean it essentially means that we subtract r2 from r1. So, we compute r1 minus r2

and we set the flags after computing r1 minus r2. So, in simple RISC we are a flags

register in ARM it is called the cpsr register is the same as what was flag sensible RISC.

So, this is cpsr register cpsr register is called the current program status register, which

does not a 1 flag it has 4 flags. So, the first flag is negative. So, negative indicate that

when I did r1 minus r2, r1 was less than r2.

So, in this case the negative flag will be equal to 1. Then we are the 0 flag which means

if r1 was equal to, equal to you know same as r2 in a 0 flag will be equal to 1 and the

negative flag will be equal to 0. In the carry flag is basically done to indicate that I did

not addition and after that I carry was generated. And similarly the overflow flag is set to

indicate that the result acceded the range of the number system. As a result it cannot be

saved and so the programmer should be told that look the addition or multiplication that

you are trying to do acceded the range other number system and as a result there has

been an overflow. So, here is an important point that we should need to note it is slightly

known intuitive. So, that is the reason I am putting a big arrow to it is left. If we need to

borrow a bit in a subtraction, carry is mainly used in the context of addition, but we need

to borrow a bit as is in the case of subtraction, then we set the carry flag to 0 rights. So,

the moment we need to borrow we said the carry flag to 0 and if you do not need to

borrow a bit we set it to 1.

So, this is slightly tricky and non-intuitive, let me repeat it once again what I just said.

What I said is that if we need to borrow a bit in a subtraction. So, a subtract 2 numbers as

necessary to borrow, we will set the carry flag to 0. For example, if we or subtracting 0

minus 5. So, this in if I write in binary it is the since 0 minus right. So, in this case when

I am actually subtracting there is a need to actually borrow bits. So, in this case the carry

flag will be set to 0. Otherwise it will be set to 1. So, similar to the compare instruction

we have a cmn which is actually called compare negative format is the same, but instead

of actually ga setting the flags after computing r1 minus r2, we compute r1 plus r2 or this

is the same as we can think of this cmn r1 r2 is essentially equivalent to compare r1 with

minus 1 times r2 right. So, that is a reason it is called compare negative were instead of

comparing r1 with r2, we are comparing r1 with minus 1 times r2. Similarly, we have the

test tst instructions. So, we set the flags after computing r1 and r1. So, if r1 and r2 give

the final result is 0 will set the 0 flag or will essentially take a look at the final result and

based on that will set the flags.

So, let us say the final result MSB is 1 will set the negative plans and so on. So, teq

basically tests if. So what we do is we compute and xor or of r1 and r1. So, we set the

flags after computing r1 xor or r2. And we take a look at the result, is a result is all 0s

will set the 0 flag otherwise if the if the result has a positive sign bit will set the negative

flag. So tsp teq and cmn that typically not very commonly use even you can use them

whether situation for demands, and if you feel let we can reduce the number of

instructions by using these flags. So the ultimate reference for any kind of ARM

instruction is the ARM instruction reference manual, which we can get on ARMs

website. So they are will find the lot of these concepts explain in great detail. So, the

reason that I am not going into more depth is basically because some of them have many

cases and sub cases.

So, this is better dealt with in a manual which describes all the cases in great detail. So, v

for most of our work will only strict to the compare flag. I am sorry the compare

instructions and the compare instructions will tell as using the negative and 0 flags,

which is very similar to what we had in simple RISC to basically the 0 flag was the

equality flag, and if r1 is greater than r2 were setting the g t flag. So, in this case the flags

are different with a connotation is similar. So, we will use mainly the compare

instructions to do our job.

(Refer Slide Time: 48:20)

So, know ARM has some more interesting instructions. So, the compare instruction are

not the only instructions that set the flags rights, in simple RISC cmp was the only

instruction that was setting the flags per in ARM that is not the case you can add an s

suffix to regular alu instructions such that they will set the flag.

So, in the instructions with the s suffix will set the flags in the cpsr register. For example,

if I let us the add 2 numbers. So, I can replace the add instructions with the add s

instructions. So, the add s or the sub s instructions will actually set the flags. So, they

will perform the addition or the subtraction. Subsequently based on the result they will

set the flags whether number is negative or 0 or if the addition let to an over flow. So, all

of this condition can be set.

(Refer Slide Time: 49:22)

Now, let us take look at set of very interesting instructions and actually use the flags. So,

the first instructions that will look at is adc the adc is an add with carry instruction. So, in

this case we do add with carry is r1 equals r2 plus r3 plus the carry flag rights. If there

are some previous carries. So, this adc instruction we shall will find an example in the

book that uses it, but essentially the idea is that if previously a carry was generated then

we can sort of use the carry. So, basically we will add r2 and r3 similar to the add

instruction and also add the carry. Similarly, we have sbc instruction subtract with carry.

Which first subtract r2 minus r3 and then it subtracts it with the knot of the carry flag.

So, this is slightly tricky. So, what did we say let us go back to the slide that talked about

the borrow bit. So, if a need to borrow a bit in a subtraction reset carry to 0 otherwise we

set it to 1. So, in this case in the previous subtraction effect let to a borrow the carry flag

is 0. So, knot of the carry flag is actually 1.

So, we what we do is that this is sort of giving effect to a borrower implementing

borrow. If do the regular subtraction and then we subtract a knot of the carry flag and

knot of the carry bit can be considered the borrow bit, because their connotation are

exactly rewards. So, you will find an example in the book for we use the adc and sbc

instructions to actually subtract large 64 bit or even larger quantities. The rsc instruction

is similar to rsb were we do a reverse subtract, but in this case we do a reverse subtract

which is r3 minus r2 r3 minus r1, but we also subtract the borrow bit which is the knot of

the carry flag from this.

(Refer Slide Time: 51:47)

So, here is one example, that will show you the power of what the carry flag and the add

s and adc instructions do. So, this typically I used to set as an exam question and I ask to

use students to do this is simple RISC. So, this was very difficult and is used to take a lot

of lines, because you know simple RISC did not have the support to do it. So, what do

you want to do you want to do 64-bit addition using 32 bit integers. So, consider the

smull and the umull instructions. So, they save the result in a pair of registers. So, let us

assume this is the case let us assume that is 64-bit value which is called also called a long

value is stored in registers r2 and r1. So, r1 contains the lower 32 bits and r2 contains the

upper 32 bits. Similarly, we have another register pair r4 and r3 were r3 contains the

lower 32 bits and r4 contains the upper 32 bits. And together they make a large 64-bit

number. So, we want to add this pair of numbers this long numbers and also save them in

2 registers r5 and r6. So, what we do is first.

So, let us say the number are of this form r2 r1 and r4 r3 you want to add them. So, the

first thing that can be done is we can add r1 and r3 and save the result in r5. This is

exactly being done over here, but note the s suffix with the add instruction. The s suffix

is basically telling the add instruction that look you go and set the flags. So, here which

flag are interested in we are interested in only a single flag which is actually the carry

flag. So, what is happening is that if the carry bit is set, we need to record this fact in this

is being recorded in the flags, that if there is a one bit carry this needs to be recorded.

Subsequently we add r2 and r4, but we use the adc instruction because this add r2 and r4

plus the carry. So, that is a very important thing is also takes the carry into account which

might have been generated, it adds r2 r4 and they carry and saves the result in r6 right.

So, what is written is the add s instruction as the values in r1 r3. Adc add with carry as r2

r4 and the value of the carry flag, which is exactly the same as normal addition had. Add

s and adc not been there it would have been fairly difficult for us to achieve this task and

so considered a program that has a lot of you know smull or umull instructions. And they

produce 64 bit outputs. To manage the 64 bit outputs with you know to manage them and

add and subtract them would have been very difficult had we not had this particular

mechanism, given the fact that we have seen this actually.

Let me go back to the previous slide given the fact that you have taken a look at 64 bit,

addition I would request the readers to also look at 64-bit subtraction. So, in the case of

64-bit subtraction idea is very simple we do exactly this. So we will have exactly the

same thing and instead of addition will have a subtraction. So, first instead of an add s let

me just give a hint, but I will not tell you the entire solution. So, we can instead of an add

s we can have a sub as you can write something, and subsequently we need to go back to

a set of instructions and use the sbc instruction the sbc instruction will subtract with carry

which will take the borrow into account, and we can do something and achieve also

achieve subtraction in 64-bit subtraction in 2 instructions.

