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There principal component analysis which we like to cover today that will be very useful 

for us, while we will be designing the biometric system. That physical component 

analysis, it has the two major roles. First role is that you know it gives you the indication 

about the patterns of the data, and second thing that sometimes some information or the 

patterns of the data, they are not useful. They are close related, so why to consider those 

patterns? You can easily suppress them. 

So basically, a principal component analysis will be useful, when you want to reduce the 

dimension, and by the word reduce the dimension it means that number of feature 

elements, you like to consider will be less. So, that is the basic. 
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So generally, what to do by seeing the data, you like to see what is the pattern in that 

right. Are they maintaining certain relation or there is no relation exists randomly 

distributed. So these patterns you need to know. 

Now, once you need to know these patterns, you want to highlight these patterns; 

highlight the pattern means that how much similarity there exists and how much 

dissimilarity there exist that is the issue. If there exist too much dissimilarity along a 

pattern that means that will give you some features, because our aim is to get certain 

unique features against an object. 

So, to get the unique features against the object that means, you want to know how much 

variability you have within a particular pattern, so that is the aim. So, the first one is that 

you want to find out whether there exist a pattern or not, second part is that if there exist 

a pattern then how much similarity or how much dissimilarity is there. If the similarity is 

too much similarity exists in one pattern that means that pattern is not useful parameter 

or characteristics to consider as a feature element. 

Now, this pattern you can visualize if you plot it. Now plotting is possible when you 

have one-dimensional, two-dimensional or three-dimensional, but more than that you 

will not be able to visualize whether there exist a pattern or not. So that the main 

problem is that you can think what for I should use the PCA, once I know the pattern, but 

pattern is visible only for the smaller dimension for larger dimension for this you have to 

take the help of PCA. PCA also as I told you, also help you that I want to reduce my 

dimension by discarding those features, which are having the most similar behavior in a 

pattern. 
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So, suppose I have the data of n elements each element containing the P variables of P 

variables, P variables means that P characteristics, P dimensions. So you have the P 

dimensions and you have the n observations, so this is your data set. Now through the 

PCA, you can reduce the data set into n cross K, where K contains top most patterns 

having the larger variance or variability that is the idea. So, what you can see that you 

have the original matrix A. Now a of size n cross P, I am reducing into K obviously you 

are losing something. 
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So, the term is residual variation. It is the information in A but that is not in your n cross 

K area that is known as residual variation. These residual variation should be as 

minimum as possible that is the aim now that gives you the indication that existed trade 

of relationship between the clarity of representation and oversimplification by the term. 

Clarity of representation means that whatever data you have you must be able to get 

proper representation. 

So, if I have the matrix A is such n cross P obviously we will get the same matrix what 

about original a everything will be there now. if I reduce to n into K so, the information 

will be lost but you are simplifying by the process of oversimplification. You may lose 

certain information so there exist a trade of relationship between these two. So you have 

to choose such a K so that you get the maximum information but maximum reduction of 

size also that is the problem. 
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Now this is very well known method in statistics where you need to reduce the 

dimension to analyze it, because they have the multi dimensional things so need to 

reduce. Same thing will happen in our case also well, we will be covering our biometric 

system so it takes the data of size n cross p dimensions you have and they are correlated. 

That if you have one x 1 corresponding value will be there x 1 1 x 1 2 x 1 3 x 1 so 

corresponding values will be there but what we express it into the uncorrelated 

dimensions which is we want to plot it in the direction of principal axis and that has to be 



expressed in the form of linear combination of those variables, how to do it we will 

discuss this. And then we want to pick up the top k elements. Top k principal 

components those principal components you are selecting and having the largest variance 

k top variances. 
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So, this is about the definition of principal components. This is the data you will have 

and what happens that you have the point cloud data. Point cloud data means that you 

have the point which is represented by p variables or p dimensions and here one is 

variable X 1 another is variable X 2 like that p dimensions are there this points are there. 
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And the term centroid by now in statistics you have heard centroid. Centroid is nothing 

but the mean of the variables each objects in all dimensions. So X i bar is equal to 1 upon 

summation. 
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So x i bar is equals to 1 upon n summation over x ij j is 1 to p. So, centroid of the points 

defined by the mean of these variables and similarly. The term variance, variance is 

nothing but that sums of square of deviation of each variable from mean and then you are 

taking the average. You should have taken one by n but to get it why it is 1 by n minus 1 



that n-eth term is degrees of freedom is n minus 1. So, we are dividing by n minus 1 sum 

of square and degrees of freedom are n minus 1 that is why we are normalizing by n 

minus 1. 
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Then next term you will be using the covariance. Covariance is nothing but you want to 

find out the degree of relation, correlation-ship in the linearly. Correlation-ship between 

the two variables so it is equals summation X im X i bar X jm minus X j bar and 1 by n 

minus 1. This C ij is the covariance variable relationship between i and j and this m is 

sum over all n objects and value of variables object. X i this is the average of this and 

similarly, the average with respect to the variable j. 
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So, now the term, what is the term? Term is Eigen vectors and Eigen values and its 

application you cannot forget, you may forget the formula remember that why I need 

that. This is required not only for biometric; you may require this thing for future also. 

These Eigen vectors and Eigen values are basically depend on the some certain 

transformation or it will give you certain another vector that is the thing. 

Suppose, you have n cross n observation matrix that whatever we have considered and 

we have n cross that n variables and n dimension. You have n cross n and you have a 

vector say a it is also n cross 1. So, if I perform this operation what I will get another 

vector. Some symbol is there no vector arrow mark and I assume that this is vector, 

because generally we write in bold letter but here there is no scope of writing. So, this is 

another vector. Now these two vectors are parallel when I can express, this is 

multiplication of some scalar multiplication of a. So, these two are parallel when this can 

be expressed as a scalar multiplication of a or one can be expressed in terms of the other 

one by multiplying by something some real number. 

So, that means what X a can be expressed as lambda a then you can tell these two vectors 

are parallel and if you can express this where lambda is some real then this a is known as 

Eigen vector, what it means basically a point is here and this is origin and it gives the 

direction like this. Now lambda is a scalar so it will give you the increase form or here, it 

is giving only the direction of elements with respect to the origin. That is the vector and 



what is this lambda? Lambda gives you what it means once you transform this a to this 

bigger one what is the deviation? What is the dispersion? What is the variance? Once 

you move this one to another transformation then there will be a dispersion variation. 

What is the variance with reference to that pattern? That will give you the lambda. 

So, we will be looking for the larger value of lambda for our principal components. 

Largest value of lambda will help us to detect that yes. This is the principal axis so this 

can be written as you will be writing this is determinant of X minus a I lambda I equals 

to 0. That is the thing you have to do. Now you solve it you will be getting the values of 

lambda. 
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Let us consider two three small example so A dot a is a 2 1 1 2 0 1 and so it will become 

what 1 2 so this is observed that these two cannot be expressed in terms of this. So, this 

is not a this is not an Eigen vector. 
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But if I consider three minus three so this becomes lambda is one and this x can be 

expressed a in the form of a so it is an Eigen vector. 
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Now, tell me what should be a so that a is an Eigen vector. So, one possible could be 3 2, 

is it correct 1? So, we come later on how to find out or first this is a just trial and error 

method we are using. So, lambda is 4 and so 3 2 is your Eigen vector and now how to 

find out this, see here. I have just putted the value and I have told you that this is an 

Eigen vector. 
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Now in order to find it, you have to find out what is your X X is 2 3 2 1 and so you have 

to find out X minus lambda I is nothing but 2 minus lambda 3 2 1 minus lambda, because 

I is the identity matrix so you will be writing this. So, determinant of X minus lambda I 2 

minus 3 lambda plus lambda square minus X, this has to be 0 lambda square minus 3 

lambda minus 4 equals to 0. Lambda minus 4 lambda plus 1 will be equals to 0. So, this 

gives you lambda 1 equals to 4 and lambda 2 equals to minus 1 so you got the two Eigen 

values. 
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Now you have to find out what is your Eigen vector. Now you have 2 3 2 1 and x y is 

equals to 4 times of x y, see this is the things you have to find out. This Eigen you have 

obtained only this part lambda but not the Eigen vector you have to find out what is your 

Eigen vector. 

So, this gives you 2x plus 3y is equals to 4x and 2x plus y equals to 4 y and this gives 3y 

equals to 2x. So, once you want to find out the principal axis so it will be a straight line. 

Y equals to x forms so this will be possible only when it is 3 and 2, 3 into 2 is 6 and 2 

into 3. So, this is the only way you will be getting this line so this is your x y that is your 

Eigen vector. 
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Suppose, I have X 5 2 4 minus 3 6 2 3 minus 3 1 and now can you find out what is this 

Eigen values and Eigen vectors. It is not essential that matrix should be square matrix but 

after multiplication you must get the square matrix and the minimum dimension will give 

you that many number of Eigen values. That means this size of this will give you the 

number of Eigen values. That means number of dimensions will give you the number of 

Eigen values. Here we have considered is the 3 cross 3 and now can you find out the first 

you find out the Eigen values and then you find what Eigen vectors are. 

How many lambdas, you will be getting. First you tell me three so one of those should be 

at least correct. If one is correct remaining, two will be correct. We can assure you, is it 

this line first you check. This line if it is correct then you expand that is 5 minus lambda 



it will be 6 minus 7 lambda plus lambda square plus 6 so it becomes 12 plus 3 times. 

What is the final equation, so you are getting lambda cube minus. What minus 12 lambda 

square then plus 41 lambda 42 and this will give you lambda 1 equals to 2 lambda 2 

equals to 3 is it 2 3 and 7 you told lambda 3 is equals to 7. Hopefully it is correct. 
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Now what is the Eigen vector? Find out one Eigen vector you take 3 lambda 2 equals to 

3 and then you tell me the Eigen vector 5 2 4 6 2 was it 5 or 3 is this what about relation 

between x 1 x 3 or x 2 and x 3 3 3 x 1 plus x 3 2 x 3 2 4 minus 3 2 4 minus 3. 

What is two x 1 2 x 2 4 how did you get 2 4. 

Minus 3. 

So, that 2 4 2 4 minus 3 so if you put this value you can find out the result is coming. 
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So, this is your background of Eigen values and Eigen vectors and that Eigen vector 

gives you the direction with respect to the principal axis and Eigen values will give you 

the variance with respect to the that pattern that principal axis has given the n 

dimensional, p dimensional elements of n observations. Your aim is to rotate the axis 

point to a new axis point that axis point is termed as which satisfies the following 

properties. 
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First one is that it should be ordered in such way that the principal axis has the maximum 

variance then the axis two. Which is the next maximum variance and you will be getting 

since it is a p dimension so you will be getting the p principal components. P principal 

axis but you will have to arrange in certain order increasing or decreasing order. Highest 

one will be your principal axis, one then next one and so on and also you have to select 

this axis in such a way that they are perpendicular to each other. The principal 

component I is perpendicular to principal component one two three and so one. 
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So principal axis should be perpendicular to so that is they are 0. 

Now PC 2 to calculation competition is the important thing that PC 2 is also similar to 

whatever you obtain in the case of variance here also this is a user distance but its 

distance the measure of dissimilarity. How much it is deviating and based on this 

dissimilarity, you decide whether this component is getting the higher preference with 

the other one because the variable gives you the unit characteristics. 

So, more the variance more the dissimilarity and you will be choosing it first and 

suppose you assume that it is a p dimensional and you observe that all p dimensional 

activities may not be there. Some case you will find that very closely similar you do not 

have to consider that one but you have to select in such a way that total dissimilarity 

values should be near 100 or some of the coverage some of the information’s 

characteristics of the image, whatever you are considering within the k dimension should 



be as nearer as possible to the original image. That is the closely close representation or 

you have to have the original representation. You may not get the exact representation 

but as nearer as possible keeping as many as dimension reduces you can do on your 

image. 
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So, if we have the two variables and nobody does the PCA, just you find out the 

correlation coefficient. You can easily find out what is the pattern. You do not have to do 

that proper more than two dimension pattern for pattern re-cognize. Pattern analysis you 

need to do the principal component and as that principal means the direction of 

maximum variance to the p dimension and then you consider the PC 2 with the condition 

that this a perpendicular to PC 1 and so on. 
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So, in this image first you will be getting the direction this one and then with preference 

to PC 2 and then you rotate the image. So, it will maintain the property of all the things. 

How to obtain the corresponding coordinate of this value with preference to PC 1 We 

will be discussing later on. 
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So, what is the formula? Or what is the algorithm? First let us find out how to find the 

maximum principal that is the first one then the second one third one and so on. Suppose 

you have the n observations X x 1 x 2 p dimensions this is a vector. 



So first principal component is defined by z 1 equals to a 1 p transpose of a 1 X and 

which is nothing but summation over i 1 to p x 1 I a i. Now what is not known this you 

have to find out this Eigen vector? You have to find out such that the variance is 

maximum variance of z is maximum that is the problem. Your aim is to obtain the vector 

a in such way that variance of z 1 is maximum now can you recollect here. It was the 

three dimensional that is why we could solve this one but if it is a n dimensional how 

you could have been solve determinant finding is a very difficult problem. In n 

dimension what will be how can you solve and moreover do you know that PCA and 

other thing there readymade routines are available. 

So, only thing conceptually it should be clear and other part is that if you just call PCA 

and you will get the results. So, tell me can you recollect how to find the determinant or 

find the values of solution of x minus lambda a equals to that 1 I want to find out the 

Eigen values. How can I find them, x minus lambda a equals to 0 we want to find the 

solution of that, there is no term singular value decomposition s v d. So, please and try to 

understand what s v d is? that is the only thing you do yourself because. 

(Refer Slide Time: 36:42) 

 

Now what happen the next if I want to find out the k-eth principal component? I will 

finding the z k same way a k T X, now you have vector and you have to select this vector 

with the condition that variance of z k is maximum but of course, must be less than z 1 z 

2 z 3 z k minus 1 also the covariance between the z k and with the z 1 z 2 z 3 each of 



them that should be 0, because I told you that it should be perpendicular to every other 

axis and this is the condition of orthogonality so that should be maintained. 
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So, this part already I indirectly told that you are not selecting all the p value dimensional 

variables. We are selecting k of the k best of them on the hyper plane and these k piece 

parts of principal components 1 to k represents the maximum possible variations in the 

data and that is definition of nothing but we are considering the Euclidean distance. 
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So, you could have used the simple covariance matrix on your data but there is a little 

problem, because their units the variables the p dimension units may not be the same. So, 

that is the issue if you know that the unit is same then directly you can obtain the 

covariance matrix. 

Another thing is that you must ensure that the there is not too much dispersion not too 

much variance is not that high because the high variance will create or will have the 

positive impact towards the principal component. I have principal component so best 

way is that you normalize how to normalize it just X minus X bar divided by sigma. 

So, in that case X minus X bar divided by sigma if you do it then all the dimension your 

mean will be 0 and standard deviation will be one. 
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If you have the variable X and X bar is the mean and sigma is the standard deviation then 

X minus X bar by sigma obviously the normal distribution with 0 mean obviously the 

distribute the 0 mean and standard distribution one. So that is the thing so we generally 

normalize it to 0 mean and unit variance. 
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Now if you have the normalized elements or of subjects or objects of n dimension p 

dimensions then your covariance will directly and covariance will directly give you the 

correlation. Covariance because it is a normalized one X minus X bar divided by sigma 

so if I just covariance matrix will give you the information about whether there exists a 

correlation between any two variables and also that standard deviation, also each variable 

will have the standard variance one, because you have already divided by this sigma so 

variance will be always one. 

Now if I have the covariance matrix that is C ij is the covariance between i and j then and 

if my variance is not normal that is not lying is not one then correlation matrix r ij 

correlation between i and j becomes C ij divided by square root of V i and V j . 
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Now, this can be written that first you obtain the cross product of matrix of variance and 

covariance and if you have that cross cross product, what happen the diagonal elements. 

It will be the always variance and this will give you the correlation ship or variance 

covariance between X 1 and X 2. This is covariance between X 2 and X 1 and so on. 

And this will become always a square matrix, because you are making x and x t the 

diagonal elements will give you the variance, and this will give you covariance and these 

are symmetry is there everything else clear. 
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So, this can be in matrix form notation and this can be written as prime X, because that 

will give you the covariance matrix. Here X is a normalized elements and your size n 

cross p, otherwise you could have written x prime minus mu divided by sigma into. They 

could have written but this is normalized variables so you do not write those things. 
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Now remember that trace one trace of a matrix is sum of the diagonals elements. 
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In that case it is a very useful property here or the relationship with the value of Eigen 

values. Now you have the here your notation x, and there you have written x that there is 



the determinant. You have to find out the solution of this characteristic equation and will 

be use the similar value technique to obtain the values of lambda. 
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And these Eigen values for this, one that Eigen values that will be coming lambda 1 

equals to this and lambda 2 equal 0 3. That sum of these lambda values is equals to sum 

of the standard variables that this trace of this equals to trace of. 
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Now, what happen that you got Eigen vectors from these Eigen values? Now, each Eigen 

vector consist of how many variables, it represents the consist of p values. P values will 



be there and it also gives you the contribution of each variable to the principal 

component, because that will provide you the principal axis and this for with reference to 

the original x y values; x values, it has certain contribution on it so Eigen vector consist 

of p values which represent the contribution of each variables to the principal axis and 

they are uncorrelated as their cross product. This into this plus, this into this will be 0 

because they are uncorrelated. 
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Now this x is given to you, the whole matrix original matrix and u is just now you 

obtained that Eigen. So, you need to know that what will be the mapping function for 

each x values into the principal axis. This is known as scope, so coordinates of each 

object on the k-eth principal component, which is known as the scope on PC k-eth 

principal component, which can be computed as z k i equals to this is known one k into x 

1 I. These are also known u 2 k, because this is the vector Eigen vector and this is your 

original matrix. 

Now, Eigen vector it has given you the p cross k matrix of vectors. How are you getting 

that one vector is of size p? There are k such vectors so the whole all this p, you have one 

vector of size. P then another vector of size and p like that there are k such vectors this 

form a matrix that is your Eigen matrix. So, you have X is of size n cross p and U is of 

size p cross k; so you will be getting z k i the corresponding value of on the with 

reference to the principal components. 
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Now you know the lambda values, lambda is nothing but the eigen values lambda 1 and 

lambda 2. The trace is nothing but summation over lambda 1 plus and lambda 2, now 

what is the information you are getting with reference to PC 1. That is nothing but the 

difference or dispersion or variance or with respect to the first component. Eigen values 

divided by sum of all the lambda values that is the coverage or information you are 

getting with reference to the first principal component. That means that 9.8783 divided 

by 12 point this is 76.5 percent information are being carried out with respect to the first 

principal component. 

Now if I consider and second principal component, here since you have the two principal 

components. So, second will be the remaining of this element. It may so happen that 

there is a three principal components, and now you find out how much information, you 

are getting through lambda 1 divided by lambda 1 plus lambda 2 plus lambda 3, then 

lambda 2 by lambda 1 plus lambda 2 plus lambda 3. If you take the sum and you are 

finding that they are coming 99 percent that means the 99 percent of information you 

will be getting. If you consider only these two components and if you reduce the you do 

not consider the third one. 
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So, there is also again another correct all of them, because of this design problem. If I 

have that variance covariance matrix with respect to the principal component since they 

are orthogonal, they are uncorrelated. So, this diagonal these elements will be 0 only the 

diagonal elements will contain the variance and covariance part will be 0, because they 

are called not correlated. 
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So, this is your variance covariance matrix. Now have to know the Eigen vectors you 

have to project it with reference to the principal axis. How it looks so you have these 

Eigen vector matrix of size P cross P with each row contain the Eigen vectors. 

So, first row contain all the Eigen elements and the entire first row contains the large 

Eigen vector of the largest dispersion largest lambda value. Second row contains the all 

the Eigen values. Eigen all the elements of the Eigen vector having the second largest 

lambda values and so on V k is the sub part top k element top k rows. V k is the top k 

rows because do not want to consider the remaining ones. So, V k is the top k rows and a 

is your original matrix. N cross P so original matrix and V k transpose is your the top k 

rows of the Eigen matrix. So, if I multiply these two will be getting x which is the 

projected pattern. 
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Now, suppose I have the projected (( )) matrix and I want to see whether I can regenerate 

back or I can get back my A. So, of course you will be writing X V k transpose inverse 

should be equals to A. So V k transpose inverse is also V k, because V k v, it is relation 

is like this. That is the thing that you can always tell that this can be replaced by V. So, 

whatever value you are getting that need not be exactly a, because you have suppressed 

some of the information, but it is nearer to A. So your aim is to obtain such a V, such that 

after projection after regeneration I should get the near value of A. So, that k is 

important, that k is the require value. 
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Now, what assumptions you made? The most important assumption a is the relationship 

among the variables must be linear; otherwise, you cannot have this principal axis 

concept, because if it is non-linear, then this axis, principal axis, you cannot determine 

and everything has gone, whole idea will be gone. So, you must be able to express in 

terms of that something is equals to a into lambda plus something into lambda 2 plus 

something into like that. 

So, this is the assumption in the principal relationship must be linear among the 

variables. So, any anything you want to ask on this. So we will be show, we will consider 

one example where face of once the way it has been used. PCA have been used 

intensively so we will consider that one while we will be considering that face 

biometrics. 

 


