
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 18 

Database Indexing: Hashing 

We will start on the next topic which is on Database Indexing. 

(Refer Slide Time: 00:15) 

 

So, we will first try to understand what does the word indexing mean and you all have 

probably seen examples of indexing is in a book towards the end of the book, there is a 

word is written on the page number 2, where the book is found is written and that is 

called an index. So, what does indexing help one do is to make the search faster. 

So, imagine that a book has no index and you want to find a particular word. What is the 

way to do it? You have to go through the book probably page by page, word by word to 

find that particular word. If the index is there, you essentially just go to the index, find 

the word that you are looking for and just simply go to the page number. Now, also 

important in the index is that the words are stored in an alphabetical manner. So, that 

finding the word inside the index is also faster, so that is the whole concept of indexing 

that is the whole idea of indexing and databases use index very heavily, so that the 

queries can be fast. 



So, what are the kinds of queries that we are talking about? Think of this select query, 

select all branches or select all loans whose amount is greater than 300, etcetera. Now, 

how do you find out all such loans? The naive way of doing it, that the simplest way of 

doing it is to go through all the loans and select whichever is larger than 300. But, 

suppose an index is built and we will see exactly how the indexes are built, suppose the 

index is built which tells you all loans that are greater than 200 and all loans that are less 

than 400 very easily, then all one needs to do is to find it inside this bucket of the loans 

and not the other one, so that makes it much faster, so that is called the indexing. 

So, what is being done in an indexing is a search key is used. So, we are talking about 

searching, so there is a search key that is being used. So, we want to find this particular 

key and how is this done. So, an index file is maintained, there is an index file which 

contains multiple index entries, so each index entry 1, index entry 2, etcetera, so the 

multiple index entries are maintained. So, what is a look index entry? It contains a 

particular search key and a corresponding object to it. 

So, as soon as I make this kind of design, the first thing that comes to one’s mind is we 

have seen this and this is exactly what is being done in hashing, hashing does something 

similar. There is a search key and then there is a actual object corresponding to the 

search key, corresponding to the hash key. Before we go into the types of indexing, let us 

just see that how does one evaluate an index. So, evaluating... 

So, there can be different types of indexing schemes, evaluating an indexing scheme 

requires the following thing is that on what are the ground that we will index, it is the 

search time of course,. So, the whole point of indexing is to reduce the search time, so it 

must be able to do so, then the modification overhead. So, what is meant by the 

modification overhead is that, suppose the data in the original database has changed. 

Now, how much time does it require to change the corresponding index or the entire 

index file that is the modification overhead and the space overhead. 

So, suppose the original data is one gigabyte, so how much extra space does the index 

needs, because you see the index is different from the original data. So, there will be 

some extra space, so what is that space overhead that we are talking about. So, these are 

the three criteria for evaluating an index. 



(Refer Slide Time: 04:22) 

 

Then, there are two basic types of index schemes, the first is called an ordered indexing 

scheme and the second one is a hash index. So, in the ordered indexing schemes, the 

search keys are ordered, the search keys are stored in an ordered manner and this is what 

we see in the index of a book. The search keys are stored in an ordered manner in the 

index and in the hash key, the search keys are in some hash order or according to 

hashing. So, there is essentially no order or you can, one can say that there is a hashing 

order, so it depends on the hash function. So, let us go to the indexing that we all know 

about which is the hashing. 

(Refer Slide Time: 05:10) 

 



So, we will talk about hashing, hashing there are two main types of hashing. So, before 

that what is a hash function does, the hash function does the following is that there is a 

key k, then a hash function is applied on that, hash function h is applied on that. So, that 

gives a location, where the object is stored or where the contents corresponding to the 

key, contents corresponding to k. So, that can be in the object, that can be the actual 

some other else, whatever if corresponding to key can be found, so that is the whole 

point of hashing. 

Now, what does it mean in the context of a database? The key is the search key and the 

hash key, there is a sector or in the disk sector in disk, where the contents corresponding 

to the search key are stored. So, that is the context in the database, so that is the hashing 

and then there are different kinds of hashing, the first one is called the static hashing. So, 

what are the ways of static hashing? The first one is chaining. 

So, static hashing by the way static hashing essentially says that there are m hash 

locations. So, everything that needs to be hashed is one out of this m, so very common 

example of hashing is that if there are h locations, there is a k mod m. So, any key gives 

you a number, once you take a module as according to m, gives you a number between 0 

to m minus 1 which is what, where the key is stored or the contents corresponding to the 

key are stored. 

Now, what is in the context of chaining? Chaining is also sometimes called open 

hashing. What does chaining mean is that, before we go into the chaining, let us go back 

to the database context and in the context of hashing, what is being done is the following 

is that in the database, the objects are stored according to buckets or pages in the disk. 

So, a single page can contain multiple search keys, so this can contain multiple search 

keys. 

So, once a search key is given the point of the hashing is to find the bucket, where it is 

stored and a bucket or a page can contain multiple search keys. So, in normal hashing in 

the whole sense what we termed as collision, what does a collision mean is that when 

two hash keys have the same location. So, h k 1 is equal to h k 2 then they collide, 

because they are both trying to store in the particular position. In the context of database, 

there is no concept of collision, because multiple search keys can be stored in a bucket. 



So, the collision does not make sense what makes sense is overflow, the concept of 

overflow. The overflow is the following is that when there are so many search keys, so 

suppose in a particular bucket three search keys can be stored. Now, overflow may 

happen when more than three, suppose four hash keys are trying to go to the same 

bucket, then the bucket is said to overflow. Because, the bucket or the page or the sector 

or whatever does not have enough space to contain these four things, it can only contain 

three, so anything greater than three is a problem and that is what this the overflow is 

about. 

(Refer Slide Time: 08:56) 

 

Let us talk about what the static hashing means, so there are static hashing and the first 

scheme there is called the chaining. So, chaining is that when... So, all these static 

hashing, etcetera what we are trying to do is something called an overflow resolution 

mechanism. So, as opposed to a collision resolution mechanism, this is called an 

overflow resolution mechanism. So, chaining, what does chaining or open hashing does 

is that when there are multiple keys that are going to the same bucket, so this suppose 

this is the bucket and then there are multiple keys going to it, another bucket is lynched 

to it, chained to it. 

So, the next key that falls to the same bucket is sent to the bucket that is chained to it. So, 

that is called a chaining. So, these are the overflow buckets, this is the primary bucket, 

where a particular hash function finds it is way and if it is full, it goes to an overflow 



bucket, so that is chaining. As compared to chaining, the next one is called open 

addressing or closed hashing, so it does not employ overflow buckets. 

So, overflow buckets are not employed, what it does is that it probes, it uses a something 

called a probe, it probes for another location, another bucket and it probes according to a 

probe sequence and then there are multiple ways of doing the probe sequence and let us 

just list them, the first one is called a linear probing. So, the intervals of this probe 

sequence remain fixed. So, suppose this is h k i, so what does i is the i'th attempt to... 

So, this is the key and this is the i'th attempt, so whenever there is some problem with the 

bucket. So, whenever the bucket is full, it takes another attempt at hashing it. So, this is 

the i'th attempt to find another hash position, so this h k i is simply h k plus some 

constant c times i and of course, this is all module i assuming this is anything, so this is a 

constant and this is a linear. Why it is called a linear thing? Because, the position 

corresponding to the original position is changed linearly that is why this is called a 

linear probing. 

(Refer Slide Time: 11:44) 

 

Then one can understand there is a quadratic probing, where this function changes to i 

square. So, it depends on the this is why it is called the quadratic probing and then the 

third one is called a double hashing, where instead of using the i'th attempt a completely 

new function is evaluated. So, it is h k plus some completely new function h dash k that 

is being done, so instead of a constant this is h k i which is of mod m. 



So, one thing to notice that everywhere there is this i function, but for linear probing this 

is a constant for quadratic probing this is c times i, this is essentially you can write this as 

c times i times i and for double hashing this is the completely new function double that is 

the double hashing. So, this is the, these are the three different ways of static hashing. 

Static hashing; however, has the following problem is that suppose one has allocated m 

buckets to start off with and the data really does not fit into any of this m buckets. So, the 

data for is much more than m buckets, then what can happen is this static hashing 

performance degrades. So, the problem of static hashing is that it starts off with the idea 

of how much data is going to be hashed, but it cannot adopt automatically if the data is 

much more than what it has guessed or much less than what it has guessed. 

(Refer Slide Time: 13:37) 

 

So, that is the problem with static hashing and to handle that there is something called a 

dynamic hashing. So, the dynamic hashing tries to attempt to rectify the situation by 

dynamically adopting the hashing function itself. So, it changes the hash function itself, 

the hash function is not static anymore automatically to adjust to the volume of data that 

is coming. We will not talk about many methods of dynamic hashing that we will talk 

about one very simple way of dynamic hashing that is called, it was originally just called 

dynamic hashing. 

Suppose, this is the primary page that one goes to primary page or primary bucket, 

whatever one can call, so this goes to and suppose it has overflow, then what happens is 



that this is produced by some function. Let us say h 0 of k. So, this is the 0'th function, 

then there is a series of function, which is g k there is series of function that is h 1 k, h 2 

k, etcetera, etcetera, there is a series of function that can be done whenever the data 

overflow, so all data that overflows from a primary bucket. The next function in the 

series is applied, so this goes to h 1 k 1 and this is h 1 k 2. 

So, the even though h 0 k 1 and h 0 k 2 is the same that goes to the same thing, it goes to 

different bucket after that and that is the dynamic and even if one of them fails then it 

utilizes h 2 and so on, so forth. So, that is how it keeps on growing and that is how it 

keeps on automatically adjusting, because you see that between k 1 and k 2 it is not just h 

0 that is the function it is h 1, because h 0 has over flown whereas, for other k 3 it is 

simply h 0, because that bucket has not over flown. 

Now, one very useful way of what getting this h 1, h 2 is just the bits. So, if a key is 

represented by it is bit stream, then one can simply apply the bits in order to get the 

different branch branches in this hash tree, one can call this a hash three. So, if this is the 

bit is 0, it can go here if the bit is 1 it can go here and so on, so forth that is a very simple 

example. But, the whole point is that this is does what is called a dynamic hashing, 

because this adopts dynamically to the situation and if the data is reduced it can collapse 

back in the same manner. 

So, this is all about dynamic hashing and the next important thing that we will cover is 

called a... So, this is called about this is a hash index, because the data is arranged in a 

hashing manner, the next in that we will cover about is the ordered index. 



(Refer Slide Time: 16:46) 

 

So, little bit of the ordered index that we will do, so the ordered index file, there is an 

index sequential file corresponding to this and then there is a primary index, this by the 

way is the ordered sequential file with the index. Then, there is a primary index, this is 

also called the clustering index, this attribute determines the attribute that determines the 

order in the file and then there can be secondary index or the non clustering index which 

is any other attribute. 

So, the file is ordered according to the primary index and any other attribute on which 

the index is done is called a secondary index, this can be one way of doing it then there is 

other way called a dense index, this is a different terms that is one needs to know dense 

index is that there is an index record, index corresponding to every key. So, that is a 

dense index as opposed to a sparse index, where there are index records corresponding to 

only certain keys. 

Now, how does this sparse index works? If there are index records corresponding to only 

certain keys, keys must be sequential here; otherwise, it cannot happen one cannot find a 

particular key, if there is no record corresponding to it and the keys are not sequential 

then it cannot be happened. So, that is a thing about sparse index, so this is another way 

of classifying the indexes, then one more important way is called the multi level index. 

So, multi level index means there are two indexes, so this may happen if the primary 

index is too large and the entire index does not fit into memory. So, that can happen 



when a multi level index and then this can be broken into an outer index and an inner 

index. So, the outer index is the sparse, because it does not fit into any main memory, so 

not everything can be indexed. So, that is why it uses sparse and this must be a primary 

index. While the inner index can be a dense primary index, this is the way a multi level 

index was this is very important that this has to be sparse and this is called the outer 

index. So, that is about the ordered index. Next we will cover one very important topic in 

this indexing which is on the tree based indexing. 


