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Fine, so let us then move to an another important topic of Query Optimization, which is 

the join order down. What we mean by that join order is the following, suppose the 

following join, following natural join needs to be computed. So, there are n relations and 

the natural join of r 1 joined r with 2 and so on so forth with r n needs to be evaluated. 

The question is which is the best way of doing these joins, clearly r 1 can be first join 

with r 2, the result can be then join with r 3 and so on and so forth or r n can be first join 

with r n minus 1 and that can be join with r n minus 2 and so on and so forth, so there are 

many possible ways. 

So, what is the best way of doing it? Now before that, the first important question is, 

what are the number of possible ways. First thing is, if the order of the relations cannot 

change, so that means, the r 1 and r 2; the order of these joins cannot change. So, r 1 

cannot be join with r 3 and that cannot join with r 2, etcetera. So, r 1 must be join with r 

2 or r 2 must be join with r 3 and that is need to be join with r 1 that is, so if these cannot 

change, then the total possible ways of competing this join is the Catalan number, this 

the n minus 1th Catalan number. 



The definition of a Catalan number is precisely this, this is the number of ways of 

bracketing this expression up. So, one way of bracketing this expression up is r 1 join 

with r 2; that is then join with r 3; that is then joined and so on and so forth up to r n. And 

one can see that there are multiple ways of bracketing this up and this is precisely what 

we want to find out and that is precisely the definition of the Catalan number of the order 

of n minus 1th, because one of them is already done. 

So, there is n minus ways or n minus 1 ways of doing it, the n minus 1th Catalan number 

can be simply written as, so this is j n minus 1 can be simply written as the following 

way is choosing n minus 1 out of 2 n minus 2 options and all n of them is equivalent. So, 

this is divided by n. So, this, the equivalent expression of this is the factorial of 2 n minus 

2 divided by the factorial of n and the factorial of n minus 1. 

So, that is the number of ways as one can see that, this is quite large for large n’s, but for 

example, for small n, this is not very large. So, for example, if n is equal to 3, then your J 

n minus 1 is only 2. One can evaluate this expression, why is that, because there are only 

two ways of doing it, either it is r 1 join with r 2; that is join with r 3 or it is r 2 join with 

r 3 and that is join with r 1. But, in general this is the very, very large number with large 

n’s, so it is not very easy to evaluate this expression. 
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Now, this is when the order of relations cannot change, another way of doing it is that, 

when the commutativity is considered different, what does that mean is that, when r 1 



joined r 2 is different, is considered different from r 2 joined r 1; that way. And r 1 joined 

r 2 joined r 3 is different from r 3 joined r 2 joined r 1 is considered different, then the 

total number of ways of evaluating this is C n, which is your 2 n minus 2 factorial 

divided by n minus 1 factorial. 

Now, if you remember, what, that the connection between C n and J n minus 1 or the n 

minus 1th Catalan number is that, this is factorial n times J n minus 1. So, what does it 

mean? Because, it is considered different, so all these factorial n combinations are 

different, so where each of these there are factorial n combinations, which are all 

different, so the C n is essentially factorial times the Catalan number. 

So, again we can see that the n equal to 2 here, C n is equal to only 2, because and the 

example is simply r 1 joined r 2 and r 2 is joined with r 1, but for large n, if for n’s, this is 

even larger than the previous one, so this is again much more difficult, so that is the other 

way of thinking about these problem. When commutativity is not considered to be 

different, so when r 1 joined r 2 is the same as r 2 joined r 1 is not different, then this 

number comes down to be, we can write it down simply. 

This can be written down as N n simply 2 n minus 2 factorial divided by 2 to the power 

of n minus 1 of n minus 1 factorial. So, again the connection between N n and C n is 

obvious that N n is C n divided by 2 to the power n minus 1. 
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The reason is, once you fix the one thing, the other n minus 1 relation can go anywhere 

and for n equal to 3, N n is equal to 3 and examples, the three things are r 1, for example 

r 1 r 2 that is joined with r 3; that is one. The next one is r 1 can be joined with r 2 and r 3 

or r 1 can be joined with r 3, which can be then joined with r 2. So, essentially first r 1 

and r 3 can be joined or r 2 and r 3 can be joined or r 1 and r 3 can be joined and since 

connectivity is not different, it does not matter how you write r 1, r 2 or which order 

((Refer Time: 06:10)). 

So, that is fine; that is the number of join orders, now the question is, why each of these 

cases the number of join orders to evaluate this too many. And one, the algorithm or 

whatever system that is trying to evaluate which algorithm to use cannot really look at all 

of these possibilities. Because, I mean this is exponentially growing with n and for say n 

equal to 4 or 5, this is just the two larger number to evaluate and it does not make sense. 
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So, what the database engines actually do is that, they employs certain heuristics, so in 

case you are not familiar with the term heuristics, heuristics is a way of approximation of 

doing an algorithm in an approximate manner. In the sense that, we are not trying to get 

the correct answer always, it is not the optimal answer that one wants to looks for, but it 

is an efficient way of doing it; that is roughly correct. 

The heuristics is the concept of join tree, now what exactly is the join tree is the way of 

writing it down, which we order the things are done. So, if considered this example of 



data three relations r 1, r 2, r 3 and suppose r 1 r 2 is done fast and then, that is joined 

with r 3. The corresponding join tree is the following, so r 1 is joined with r 2 and then, 

that is joined with r 3. 

So, it is obvious on the join tree that how the, which joins are done in which order, so it 

gives me this one whatever written. So, the question of evaluating all the join orders is 

the question of enumerating all the join trees. Now, all the join trees as we have already 

argued can be too many, so the heuristics that tries to do is to do shorten join trees. It 

does not try to enumerate joins trees of every manner; but it tries to do only of shorten 

type join tree. 

So, first one is called a left deep join tree. So, a left deep join tree essentially the right 

side for every internal node, the right side is the single relation and the left tree can be 

anything, can be a single relation or can be a join. So, essentially the tree looks in the 

following, it is just the tree looks the, takes the following set, this is r 1, then r 2, this is 

then joined with r 3, this is then joined with r 4 and so on and so forth. Note that, all 

these right sides are at the single relations and the left side is either a single relation or a 

intermediate join. So, this is a left deep join tree. 
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And similar to a left deep join tree, a right deep join tree can also be thought about, 

where the depth is only on the right side, the left side is only a single relation; that is why 

it is called a right deep join tree fine. Then, the third one in this space is called a zigzag 



tree, where it is not specified which side is a single relation, but at least one of the sides 

must be a single relation. 

So, at least one child of an internal node is a single relation; that is called a zigzag tree 

and an example of a zigzag tree may be the following is that, this is fine and then, let us 

say, this is on the right side and then, let us say, this is on the left side. So, this is a zigzag 

tree, now note that, for every join at least one child is a single relation, so that is a zigzag 

tree. 

And finally, there is a bushy tree, it is called a bushy tree, where there is no such 

restriction and that is essentially the generalized form of a join tree and the number of 

bushy tree is essentially the all the join orders, so that is the question. So, that is what we 

have been trying to have, so bushy tree is a most general form, but we will not be 

evaluating. 
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Now, let us try to analyze the number of join trees for each of these kinds of four trees 

that we are seen. So, number of join trees for the left tree deep or the right deep, it is the 

same thing, it not any different. For the left deep and join the right deep, the number of 

possibilities only is 1, because for left deep, there is only one way, you can do it, only the 

right side is a single relation and for the right deep, there is only the left side is single 

relation. 



For a zigzag tree, the number of configuration that is possible is 2 to the power n minus 

2. Now, let us past for moment to see, why this is 2 to the power of N n minus 2, the 

reason why this is 2 to the power of n minus 2 is that, so the first two leaves r 1 and r 2 

can be placed here and then, for any of the upper joins, the single relation can be placed 

either on the left side or on the right side. 

So, for any of these n minus 2 single relations, it can have two choices left and right. So, 

that is why, these comes out to be 2 to the power of n minus 2 and for bushy trees, this 

way we've already seen and this is essentially the n minus 1th Catalan number that we 

have earlier see. This, the number of join tree configurations, join tree configurations that 

we can see and the question, then is that, this is just a number of shapes that the join tree 

can take. 
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And the other question, related question is the number of ways leaves can be placed. So, 

if the order matters, so r 1, then r 2, then r 3, there is suppose the number of ways is only 

1, because order matters. If the order does not matter, so if order matter, this is 1, if order 

does not matter, then need does not matter, vary r 1 and r 2 is placed, etcetera. So, the r 1 

to r n can be placed in any permutation; that is why the total number of ways leaves can 

be placed is factorial n. 
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So, if we solve these two, the total number of trees is essentially total number of tree 

configurations, these are the ways the trees can be generated, times the number of ways, 

leaves can be placed. So, now, if we say it is a bushy tree with order matters, we know 

what is the way, if is a left deep tree with the order does not matter, then we know how 

many trees can be done etcetera, etcetera. So, that is the way of evaluating the join order. 

So, now, this is all fine. So, this is just the way of finding the total number of trees and in 

general, what is being done is that only left deep tree, the practical systems only evaluate 

left deep trees or right deep trees and may sometimes evaluates zigzag tree is if n is not 

very large. 
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And what is an algorithm for doing it, is that, consider the join of n things to be done, so 

r 1 up to r n. So, how to actually do it, it has the dynamic programming solution, there is 

the dynamic programming solution; that is being employed. The dynamic programming 

solution does the following thing. Consider this is your S now, S can be broken up into 

the following manner, S can be written down as S 1 join with S minus S 1. 

So, this is the set of all relation is that needs to be join, which is S, S 1 is a set of all 

relation some partition of S. So, the partition is S 1 and S minus S 1. So, these can be 

written in best way. Now, the question is, what is the best way of evaluating S, the best 

way of evaluating S is to minimized is over the S 1. So, choose that S 1 that minimize is 

this configuration. 

How is that being done, so how do we find out, what is the best way of doing S 1, S 1 

can be again broke down into S 1 1 and S 1 minus S 1 1. Now, what is the best way of 

finding out S 11 is the minimum way of doing S 1 1 and so on and so forth. So, that is 

this lend itself to a dynamic programming solution and that is how, this is being done and 

solutions of each of these sub sets essentially S 1 and S 1 1 etcetera are stored in a table 

like manner, here is the dynamic programming solution. And then, compute any one of 

them, it uses everything will surrounded it. So, it uses all the previous computations, 

fine. So, that is the algorithm for these join order and these as one can see, this is 

exponential and so on and so forth. 
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So, the dynamic programming solution, even though, it is faster, but it still there are 

many, many ways one can do it. There is a related concept called then interesting sort 

order. So, interesting sort order is that, one can do the certain in any way, but the 

interesting sort order is that the records are sorted in particular manner; that is going to 

be useful later. 

So, suppose there is an operation after which there is a selection on the particular 

attribute a. Now, in that old operation, after which the solution is going to be applied, in 

the old operation, if the output is produced in a manner, where the records are sorted 

according to a, then the subsequent selection becomes much faster. So, that is an 

interesting sort order, because it is useful later. And note that the previous operation can 

be outputting it in any order, but it makes it useful later, if that interesting sort order, 

where it is sorted by a is produced. 


