
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture - 04 

Relational Algebra: Composition of Operators 

Welcome, today we will talk about Composition of Operators. So, in the last time we 

saw some of the basic operators and today too we understand how more than one 

operators can be used in the single query and we will also see certain queries for that. 

(Refer Slide Time: 00:25) 

 

So, this is called a composition of operators, so the operators can be applied one after 

another and it has to be defined in what way the composition can take place. So, it 

essentially uses multiple operations. So, for example, so suppose r is A, B and 1 1, 1 2 

this is the same example that we saw earlier and s is C, D, E with 1 2 7, 2 6 8 and 5 7 9. 

Now, suppose the operation that we are working on is this sigma of A equal to C on r 

Cartesian product s, now this is has to be understood in which way it is happening. 

So, this happens first this one is being done, this is number 1 operation then after that this 

is done, so this is number 2 operation. So, essentially what is being done is, initially r 

cross s is produced. So, A, B, C, D, E that is being produced and that is the entire 1 1 let 

me just write it down to make it complete 2 6 8, 1 1 5 7 9, 1 2 1 2 7, 1 2 2 6 8, 1 2 5 7 9. 



So, this is the r cross s that is produced then the sigma of A dot C is produced on the 

same thing. 

So, the first one the first r cross s changes the schema, the second one does not change 

the schema and the second one produces the answer which is on A equal to C has to the 

first one is correct, this one is right, this one is wrong, this one is wrong, this one is again 

right. So, 1 2 1 2 7 this is wrong, this is wrong that is it, this is the final answer for the 

query of r. So, well that completes the set of basic operators, so we will go over the 

examples next. So, let us work on with some of the examples for the six basic operators 

that we just saw. 

(Refer Slide Time: 02:57) 

 

So, here is a banking example that we will use many, many times, so let me just explain 

the example. So, there are six different relations in this, the first one is the branch, so the 

branch has the attributes, branch name, branch city. So, where is the branch name and 

which city it is in, the second one is the customer relationship, so all the customer. So, 

the customer name and let us say the customer city, so which city the customer it is in 

and by the way. 

So, I am underlining primary keys, so branch name is the primary key and customer 

name is the primary key, then there is an account. So, the account is about all the 

accounts that is there, so it is the account name is the primary key and which branch it is 

in. So, the branch name, so branch name as you can see is a foreign key, so balance, so 



the foreign key let me highlight it using the blue color and then let us go to the next thing 

which is loan. 

Now, loan is about a same kind of thing like an account, but it is a loan number and 

branch name and the amount of the loan. Once more, this is the primary key and this is 

the foreign key finally, there are two things which is depositor has who is the customer 

that took this customer name and which account number that is it. So, both are primary 

keys together both are primary keys and both are actually also foreign keys, we will 

come to ((Refer Time: 04:49)) of this later. 

But, suppose and the last one is the borrower, borrower has a customer name. So, who 

borrowed what and which loan that is borrowed, so once more these are both primary 

keys as well as foreign keys. So, with these things let us try to solve certain types of 

queries, so let me use this part to use this thing. So, the first query that we will try to 

solve is find all loans of rupees 100 or over. So, how do we solve it? So, this is first of all 

we need to understand that this is a query about a loan, so this is the loan table that we 

need to look into. 

And essentially there is a amount attribute that we need to use and using that we can 

simply do a this thing. So, select all tuples from loan, where this amount is greater than 

equal to 100 that is it, so that solves this query, so find all loans of rupees 400 or over. 

So, these returns everything loan numbers, so find all loan numbers of loans which has 

got rupees 100 or over. So, it is kind of the same thing, but except now what needs to be 

done, so it has to be the same kind of thing. 

So, you first find out all loans that are greater than 100 or over, but we only need the loan 

number. So, you project it on the loan number that is it, this is the important part we just 

project it on the loan number. So, this is the important part that is the change from the 

previous query. 



(Refer Slide Time: 06:47) 

 

So, let us now move on to a little complicated query, so the query is the following find 

names of all customers, so having a loan at let us say A, B, C branch, so the branch name 

is A, B, C. So, now, the important part is to do that we need to find the names of all 

customers, so the first thing that we need to use is this table, the customer table. But, 

unfortunately the customer table by itself does not contain any information about the 

loan. So, for the loan we need to use this table, where the branch name is there, but again 

what happens is that. 

So, the loan table will contain the branch name, etcetera and we only need to find out the 

names of all the customers. So, instead of this table we may use this table, the borrower 

because that contains the customer name. So, we can simply use instead of this table, we 

can use this table and we need to do whatever borrower and loan, so this is the Cartesian 

product that we need to take. So, if we take the borrower Cartesian product of loan we 

get the information of customer name, loan number, loan number, branch name and 

amount for all the possible loans. 

But, have this will generate some what is called a spurious tuple, if we just do this 

Cartesian product this will generate what is called a spurious tuple, because what will 

happen is that. So, there will be some customer name corresponding to some loan 

number, let us say customer name C 1, corresponding to loan number L 1 and then there 

is a loan number L 2 here with some let us say B 2 and A 2 this will generate tuples of 



the form C 1, L 1, L 2, B 2 and A 2 which is not useful, because the loan numbers are 

different. 

So, what we need to do is to ensure that this is the same loan number. So, for that what 

we will do is, if instead of just doing this what we will do is that we will select from this 

table everything, where the borrower dot loan number. So, let me just write it short hand 

borrower dot loan number is equal to loan dot loan number, so this we need to select it 

on this table. So, this will then get rid of tuples like this and it will essentially only select 

tuples of the following form. 

So, this is what we require and this essentially means the customer C 1 has the loan L 1 

and corresponding to the loan L 1 this is in this branch B 2 and has the amount A 2. 

Now, we only need to find out the loans, where this is at A, B, C branch, so what we 

need to do is to do another selection on top of this. So, this is one part, this is another 

part, so then we need to do sigma over. So, everything where the branch name is A, B, C, 

so this you have to select on branch name is equal to A, B, C and that is applied over this 

entire thing, so this is what it is done, so this is the entire answer to this query. 

So, if we now want to find names of all customers, then this is still not complete then we 

need to put in some more level here and let me just try to do it here. So, this is another 

there are three brackets here, so this will be somewhere here, this we use to do a pi of c 

name, because we only need to do the customer name. So, essentially if we go down a 

little bit, this is a way to write down the entire query, this is pi of c name of sigma branch 

name is equal to A B C which is sigma borrower dot loan number is equal to loan dot 

loan number and let us complete that borrower cross loan. So, this is the answer to the 

entire query that we were doing. 

So, this is an example that shows you how we quite a complicated query, like find names 

of all customers having a loans there are many, many things here can be broken down 

into small, small parts and then solve one at a time and we can do many more such 

queries. So, for example, we can use this to say well instead of having a loan at A B C 

branch find me all customers having a loan at A B C branch, but not any account. 

So, what you then need to do is, you need to ensure that the customer does not have an 

account. So, you need to take the set difference from these depositors, so the depositor 

needs to be set difference done with that. So, we will leave this as an exercise to you, but 



the basic idea is to how to use only this six of these operators, the basic operators to 

solve different queries. So, if that is all done, so in the next module we will move into the 

additional operators. 


