
Fundamentals of Database Systems 

Prof. Arnab Bhattacharya 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kanpur 

 

Lecture – 40 

Concurrency Control: Timestamp Ordering Protocol 

Next we will move on to another Concurrency Control Protocol, which is the Timestamp 

based and very importantly this does not use locks, it is the lock free protocol. 

(Refer Slide Time: 00:19) 

 

So, this protocol is called Timestamp Ordering or the TO protocol. So, timestamp 

ordering protocol, this is very importantly this is lock free, so it does not use any lock on 

the data item. So, first of all what is the timestamp. So, at each transaction is assigned a 

particular timestamp when it starts, so when the transaction starts it is assigned a 

timestamp, so this is called the t s of T is essentially the timestamp of T. 

So, a timestamp is a logical counter, it is a logical time, it can be the actual wall clock 

time or any logical counter; such that, this is ordered, this is… So, the timestamps are 

ordered and it is any logical clock. So, this is an ordered logical clock, so very simply 

every time tick may be given and in which other timestamp want, then two and so on and 

so forth. And it can be anything, as long as it is ordered and ordered meaning, so 

between two timestamps it can be always determine whether the timestamp of the first 



timestamp is lesser than the second timestamp or equal, that can be always done, so that 

is why it is ordered. 

So, that is the timestamp for the transaction, so this when it starts. So, when the 

transaction starts; that is given a timestamp; that is the timestamp of the transaction. 

Now, for every data item x, so there are two timestamps that are maintained. The first 

one is called the write timestamp, which is the largest timestamp of any transaction that 

wrote x. So, that wrote x successfully, but essentially, so what does it meant, that x is the 

data item and suppose transaction 1 wrote it and transaction 2 wrote it both, so it is the 

largest timestamp. 

So, in the transaction if transaction 1 starts before transaction 2, then the timestamp of 

transaction 1 will be less than the timestamp of transaction 2; that is because it is 

ordered, etcetera. And if both of them suppose as written to then x, then this will get the 

largest timestamp, so this is important of this is the largest timestamp of any transaction 

that are successfully written to x. And similar to the write timestamp there is of course, a 

read timestamp, which is the same definition, it is the largest timestamp of a transaction 

T, that successfully read x. So, once more this is the largest timestamp of something that 

has wrote to x and this thing. 

So, the timestamp ordering protocol uses only this timestamp. So, it only uses the 

timestamp and we will see that, but essentially it can be shown that type, so the protocols 

that use timestamps can never deadlock, because it… So, there is always a strict ordering 

between the transaction that has started, so transaction 1 if it starts before transaction 2, it 

must be having a lower timestamp than the ordering 2. 

And, so it can never deadlock, because there is an implicit priority order of the 

transaction based on the timestamp. So, timestamp ordering protocol or for that may be 

any protocol that you can think of that uses timestamps will not deadlock. So, this is the 

very important property of that. 



(Refer Slide Time: 04:03) 

 

So, coming to the actual protocol, what it does is that it the basic idea of that is that, the 

conflicting operations, the basic philosophy of the timestamp ordering things is that, the 

conflicting operations are executed in the timestamp order. So, if there are two 

operations i 1 and i 2 and then, i 1 has a lower timestamp then it is executed in that 

particular order, are executed in timestamp order. So, this is the important part of it, this 

is the of course the intuition or the philosophy of what the timestamp ordering protocol is 

and we will go to the details of it next. 

So, suppose this is the ((Refer Time: 04:49)), so a transaction requests a read. Note that 

this is a request, because it may or may not successfully end doing it, correct. So, it is 

just a request a read on x, now couple of things may happen is that the following things 

may happen is that, if transaction, the timestamp of transaction T is less than the write 

timestamp of x. Then, what is the essentially the meaning is that, the write timestamp of 

x essentially says that, there is a transaction. What is the write transaction ((Refer Time: 

05:28)) if it is a timestamp of a transaction and that is written to x and that transaction is 

greater. 

So, the timestamp of that transaction is greater than the timestamp of this transaction T; 

that means, that write has essentially should not have happened before this read. So, 

essentially this read is late and there is somebody written, some other transaction which 

was supposed to write later has already written and only now the read request for this 



transaction is coming. So, this is not correct, because this is now going to read, if it now 

reads it is going to read, what has been written by the timestamp, the wts of x. 

So, just to elaborate this further, so suppose the write timestamp is essentially the 

timestamp of some other transaction T 1 that has written. So, essentially transaction of 

the timestamp of this T is less than the timestamp of the transaction 1 that is written, so it 

should has read the value before T 1 got a chance to write it. So, it has not done it, so this 

is wrong, so this operation this is not going to be allowed. 

So, what it does is that, this request is rejected and, so this request is rejected and this T 

or T 1, whichever one of them must be rolled back, because they have not done read in 

the order that they were supposed to do. So, T the read of T should have happen before 

the write of T 1, but they have not done, either this happen, so this is not correct. So, 

essentially this is the whole point of this happens, then this is not correct, so then it 

cannot allow, so this request is rejected, this is very, very important, so this request does 

not go through. 

On the other hand, if the timestamp of transaction T is greater than the write timestamp 

of x, which is let us say that some other T 2, then there is no problem. Because, T 2 was 

supposed to write to this x before t s has read, because the timestamp of T 2 is lesser than 

the timestamp of T and that is what is being done, so this is fine. So, this is simply 

request is granted, request is granted meaning the T is allowed to read x, which also 

means that the read timestamp of x may be need to be updated. 

So, the read timestamp of x is then updated to the… So, it is the largest read timestamp, 

so it is either the, whatever it is already there or the timestamp of T. So, essentially the 

timestamp of T is greater than the read timestamp, then it is updated otherwise it remains 

the old thing, so that is the thing. So, this is, very importantly this is granted. So, that is 

the read request; that is what happens when the read is, when a transaction T request the 

read. 



(Refer Slide Time: 08:38) 

 

The next thing is when a transaction T requests are write, so this is again just a request, 

request are write of x. The first thing is that, if the transaction if the timestamp of T is 

less than the read timestamp of x. Suppose this is equal to transform timestamp of T 1, 

this means that again the same problem as in the earlier case. So, the read of timestamp T 

1, T 1 has already read it, now T 1 should have read it before the T has the chance to 

write, because T is earlier, the timestamp of T is lesser than the timestamp of T 1. 

So, T should have written before the read of x by T 1 has done, so again this is wrong, 

this should not be allow, so this write request is rejected, this write is rejected and the 

same thing is that T or T 1, one of them is rolled back that is the same idea, because there 

is a read write conflict and it has not progressed in the correct orders, so this is rejected, 

so this does not go throw. The second one is that if the timestamp T is less than the write 

timestamp of x, so let us say this is the timestamp for T 2. 

Again the problem is T should have written before T 2, because the timestamp of T is 

lesser than the timestamp of T 2. So, the write to x for T should have happen before the 

write of x by T 2, so the same thing, so this write is again rejected. If these are write, 

write conflict, the previous one was read write conflict, so this is again rejected and then, 

the same thing is that T or T 2 is rolled back. So, this is rejected and this operation, this 

has been go through. 



And finally, transaction T is greater than the read timestamp of x and transaction and the 

timestamp is greater than the write timestamp of x. So, which means that there is no 

problem, all the read that should have earlier has gone earlier and all the write that has 

gone earlier that has gone earlier, so this is simply allowed, so write is granted. And 

similar to the previous case, the write timestamp when now need to be updated, so the 

write timestamp of x is needs to be updated, but now you see that the write timestamp is 

just needs to be updated to t, because there cannot be any other timestamp which is 

greater than T. 

So, simply this can be taken as the write timestamp of T, so that is the two things. So, 

these are the two important parts, if that when T request read and write, then what 

happens essentially. So, very simply if a transaction comes after and then, it is in the 

correct order, then it is granted otherwise it is rejected. 

(Refer Slide Time: 12:09) 

 

Now, all this is fine, we now need to argue a little more formally about the correctness. 

Why is this going to be correct? So, the correctness of the timestamp ordering protocol 

can be argued. So, this first of all, this guarantees conflict serializability, so this is 

guarantees conflict serializability; that is not probably very hard to see, because it does 

not allow any conflicting operations to go through that. Hence, the whole idea of the 

protocol, why it rejects this thing is, because it was violating those conflicts, so that is the 

thing. 



So, essentially the idea is that the conflicting operations are executed in correct 

timestamp order, if it is not, then if it appears, so if it is requested in a non, if it appears 

in a non timestamp ordering what it should be, then it is rejected, that is called first thing. 

The other thing is, when I say there cannot be any deadlock, because the transaction that 

started earlier always gets the priority, so all these things the transaction with a smaller 

timestamp is always going to get the priority. 

So, dead lock free, so this is called dead lock free, so but there may be starvation and 

what it happen is the same situation is that. The timestamp there may be other 

transactions with lower timestamp they keep on coming and the particular transaction is 

just that keeps on waiting independent. It is always rejected, rejected, rejected and so on 

and so forth. It may cause starvation and it may not be… So, it is not cascadeless, which 

means that, so essentially it means that cascading roll backs may happen, because the 

particular transaction aborts, the other transaction that is dependent on it may also abort, 

so it not cascadeless. 

Let us in fact it is very interestingly it is not even recoverable, because it has allowed the 

particular a timestamp, it has allowed a particular transaction to go ahead read or write, 

because the other transaction has not yet come and that transaction may be just have 

committed or aborted, so it may have just committed and not aborted, so then it is non 

recoverable. Because, later we find that it should not done then, but by the time it has 

already committed. So, this is very important, but this is not recoverable. So, although it 

is deadlock free and it guarantees conflict serializability, it still has these problems of 

starvation and non recoverability; of course, if it is not recover it is not cascading as well. 



(Refer Slide Time: 14:38) 

 

So, there are sudden modification of course, there are certain modification has done to 

the basic timestamp ordering protocol first of all you can use something called commit 

dependency there is the concept of commit dependency. So, this is the essentially when 

sure it is that the transactions are recovery what is the commit dependency is following if 

T i reads from T j then T i has the commit dependency on T j which is essentially saying 

that. 

So, the dependency of T j; that means, that T i has reads what is the meaning of that T i 

has produce the value of T j has to read then T i has the commit dependency on T j 

which meaning that T i cannot commit unless the T j has to commit. So, unless T j 

commit depends on whether T j commit or not. So, that is called commit dependency. 

So, essentially ensure that ensure T i does not commit before T j does it does not commit 

because it is dependent on T j. 

So, unless T j commit it does not commit that is the ensure that it is recoverable 

transaction otherwise what is recoverable in tid then the T i commit then T j aborts T i 

has already committed T j has wrong commit because T j has value that should not to be 

happened. So, that is what wasting time correct. 



(Refer Slide Time: 16:30) 

 

Now, couple of more thing. So, these things recoverable and cascade less, so this is to 

making this recoverable and cascade less. So, there can be certain modification done to 

this thing making this recoverable and cascade less. What can be done is that all writes 

are performed in the writes are performed in the end atomicity are performed atomically. 

In the end again, what is the atomically in the end means all the writes go through or 

none of write are go through, so write it is done in the end.  

So, essentially we saying that all the writes will be done unless all the writes will be done 

in the end. So, first of all read in the sense then the writes is done. So, it can be that if the 

transaction aborts then what happens if the transaction aborts that just restarts then the 

new timestamps. So, that is higher timestamp and then the commit dependency etc the 

commit the timestamp because it is now starts with higher timestamp all the transaction 

that has started earlier we will get the priority about this and because about this and we 

can try to finish it and so on, so forth. 

So, that is one way of doing the other way of doing of that let me do that write it down 

transaction starts with a new timestamp if it aborts. So, it is new timestamp if it aborts 

this is the two important things the other way of making this is using locks. You can see 

that is going to against the philosophy of why timestamp ordering protocol is needed in 

the timestamp because it needed in the lock free. 



So, to use locks to make it recoverable and cascade less essentially having just locking 

kind of protocol is not a very elegant solution good solution anyway and then there is 

one version of it called strict timestamp ordering protocol which use this essentially try 

to make the protocol strict version of the its Waite for data to be committed. So, this 

essentially waits for data to be committed before it is read or write. So, essentially read 

or write any uncommitted data. 

So, only reads committed. So, that is essentially that meme king the strict schedule. So, it 

will only read or write a particular data for which the transaction is read or write for 

which is committed; that means, that is correct then only it read and write. So, that is all 

serial. 

(Refer Slide Time: 19:31) 

 

So, that is. So, this is about the timestamp ordering protocol there is one extra thing that 

can be done which is called the Thomas’s writing rule. So, Thomas’s writing rule is to 

make it little bit more concurrent. So, it is to allow some more schedules which will be 

not allowed by the timestamp protocol. So, remember what will done for conflict 

serializability, serializability we did not take care of the blind rights. 

So, blind rights, so the same things of absolute rights here the absolute rights is not blind 

rule absolute rights are ignored. So, we says the absolute rights are simply ignored. So, 

what does the absolute rights means remember what happen in the right cases is that if 

the transaction that wants to write timestamp is lesser than the read timestamp of this 



transaction is T 2 in the basic timestamp ordering protocol it was rejected because this is 

because the writes are coming out in this case the Thomas’s write rule then the Thomas’s 

write rule which is allowed. 

Because, the idea is that T is trying to write the absolute value why it is an absolute value 

the reason it trying to write an absolute value. Why this is called an absolute value 

because, T suppose T would have actually written the value of x now the another 

transaction two which would come after that write by T will be overwritten by the write 

by T 1. 

So, this was absolute anyway it is absolute it is not a problem is that when the absolute is 

there, which simply ignored, which simply ignore the absolute right. There was a 

simply… ignore the loss of the absolute right anyway there is an absolute right when the 

protocol just its goes to then essentially means is that, what is that seed conditions of the 

write rule. Two of them does not pass through the one pass the middle condition may 

also to be passed because absolute write. 

So, then the absolute write is ignored. So, this increases the concurrency. So, this 

increases the concurrency of this because it allows some more writes to go through it 

allows some more transactions to go through successfully complete and commit etc it 

increase the concurrency and it also increases the recoverability now what is happen that 

the transaction will not simply aborts it can continue. So, it may be increasing the 

recoverability, so as the note on this. 

So, the allows the sudden view serializable things can allows certain view serializable 

things it otherwise allowed by the basic things because you can see absolutely this is the 

new rule the absolute rule is absolutely difference between the conflict and the view 

serializable things, so here is the small example that will halite this. So, suppose this is r 

one a w 2 a w 1 a and w 3 a now you see that w 2 is the absolute write and this will allow 

to the Thomas’s right rule, but not otherwise this protocol is allowed. So, that is the end 

of the timestamp ordering protocol. 


