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Configuration Graphs 
 

Welcome to lecture 29 of this course. So, today we are going to introduce the formal 

definition of a Configuration.  

So, we have been using this term in several lectures, but we are going to look at the 

formal definition today, and using the definition of a configuration we will define what 

we mean by a configuration graph. Once again, we will see that the concept of a 

configuration graph will allow us to explain many other properties of Turing machines in 

a much more efficient and easy to understand manner. 
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First let us formally define a configuration. So, we know what a configuration of a 

Turing machine is so we have seen that. So, just to recall, so a configuration is a tuple of 

the form state tape contents and position of a tape head. So, this is essentially what is the 

definition of a configuration. So, a configuration graph, so again once again as it is with 



the case of a configuration, so a configuration recall that is only define if we fix a Turing 

machine and an input to the Turing machine.  

Let us say that we have a Turing machine M, so defined for a Turing machine M with 

respect to an input say x. So, this is what we mean, because for different inputs again the 

configurations can be different of course, for different machines the configurations will 

be different. 
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Now, let us look at the definition of a configuration graph. So, a configuration graph of 

M, so this graph is denoted as G M x is a graph whose vertices are the configurations of 

g with respect to x. And there is an edge from configuration c 1 to c 2, if the Turing 

machine M can go from c 1 to c 2 in one step. So, basically it is essentially a graphical 

way of modeling the computation of M on an input x.  
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It is a graphical representation of the computation of M on x. So, basically if you have a 

transition from one configuration to another in the graph, there is an edge between the 

first configurations to the second configuration. So, it is a directed graph. Now, in this 

configuration graph, let us look at this is this definition of a configuration graph. Let us 

look at one more definitions. So, a computation path is a path in G M x from the start 

configuration. So, recall once again from last lecture that there is a unique start 

configuration, so the start configuration is the configuration where the state is q 0, the 

tape contents is the input that is given that is x in this case and the tape head points to the 

left most cell of the tape. So, it is a unique configuration. 

Therefore, there is a unique vertex corresponding to the start configuration in G M x. So, 

any path in G M x that starts at the start configuration is known as a computation path. 

So, there can be computation path that goes from the start state to an accept 

configuration, so that would be a accepting computation path, there can be a path which 

goes to a reject configuration would be a reject rejecting computation path and so on.  

So, therefore, the following proposition is very easy to see M accepts x, if and only f 

there exist a path or there exist a computation path in G M x from the start configuration 

to an accepting configuration, because if there is a path from a start configuration to the 



accepting configuration, I can follow that path and that would accept the input x. If there 

is no such path that is all paths lead to reject configuration, it means that x is not 

accepted. 

Let us look at some properties of the configuration graph, so properties and notations if 

you make also. The first property or I should not call it a property it is more like an 

important observation is that configuration graph is defined with respect to a Turing 

machine and an input. So, this is just emphasizing what I said earlier that we cannot have 

a configuration graph of a Turing machine, so that is something which is incorrect. So, if 

you have a Turing machine, and if we fix and input of the Turing machine only then does 

it make sense a talk of configuration graph. So, it is a function of two quantities the 

Turing machine and then input to it. So, given both these two, I can output the 

configuration graph. 

Now let us talk about, let us try to understand how the structure of the computation 

graphs look like. So, if M is deterministic then out degree of every vertex in G M x is 

utmost 1 cannot be more than one, because essentially what this means is that if 

deterministic is that from every configuration there is utmost 1 configuration that you 

can go to. In the special case, when the configuration is accept or reject configuration, 

there are no edges going out when which case the out degree is 0; otherwise, it is 1. If m 

is non-deterministic then out degree can be arbitrary. 
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Next is what I just say that so out degree of accept and reject configurations are 0, and 

this is actually an if an only if, if the out degree is 0 then it is accept; and reject 

configuration and the other side is what I mentioned. What else, so what about the size of 

us the graph, so technically. Let try to understand this. So, what would be the size of the 

configuration graph of a Turing machine on an input, how large can it be? So, technically 

observe that it can be infinite, because it stores three quantities, it stores the state of 

course which is finite, but it stores the contents of the tape, potentially you can on a 

certain input what you can do is that you can just keep on adding symbols to the tape 

without ever stopping.  

Therefore, you just go into an infinite loop that keeps on increasing the tape at every 

step. The number of configurations can be infinite. So, technically G M x can be infinite. 

But if the size of the tape is bounded then G M x is finite. Suppose, if you say that you 

can only access the first hundred cells of the tape or you can only excess if you have an 

input n, you can only excess the first n square cells of the input of the tape. Then there 

are only finitely possibilities for those n square many cells and hence the size of G M x is 

also bounded becomes a finite graph. 



And the last point is that all though once again by definition every configuration is part 

of G M x, but without loss of generality, we can only look at configurations that are 

reachable from the start configuration. So, all though I mean by definition the graph 

contains all possible configurations of the Turing machine on that input, but there are 

certain configurations which are not reachable from the start configuration.  

In other words, when you are performing the computation of the machine on the input x 

you will never even reach that computation. So, what is the point of keep in the graph? 

So, without loss of generality, we can only focus on the configurations that are reachable 

from the start configuration. So, this we can always assume without loss of generality. 
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Another point that we can assume without loss of generality is that the G M x has a 

unique start and accept configuration. Because suppose G M x, so technically, of course, 

G M x can a multiple start and accept configuration, but we can always add a new 

configuration we can always, for example, in the Turing machine I can add a new state 

for as the start state which has the following property.  

That, if the Turing machine enter the whole start state, what I would do is that I would 

first clear the entire tape, I will erase the entire tape move the cell to the left most cell of 



the tape, and move the tape head to the left most cell of the tape, and then enter this new 

accept state that would be a unique configuration, because the tape contents are empty 

and the head is pointing to the left most cell.  

Similarly, if it enters the reject state I can do the same thing; I can empty the contents, I 

can move the tape head to the left most cell and then I enter the new reject state. 

Essentially, I can have unique without loss of generality I can assume that G M x has a 

unique start and accept configuration. So, these are some properties that are I mean that 

will be used when we talk of configuration graph of a Turing machine. Let us look at so 

we talked about deterministic and non-deterministic Turing machines, but let us just try 

to see an example of how their configuration graphs differ. So, here is what the 

configuration graph of a deterministic Turing machine will look like. So, I have the start 

configuration. So, I will call it C start. Let us call it C start.  

And by its nature, the out degree at every vertex is utmost 1. So, from C start, I can go to 

a unique configuration; and from here, I go another; and then from here may be I go to a 

accept configuration let us say C accept, so therefore, it is one. O f course, I can have a 

loop also I can may be come back to a previously visited configuration that is also fine, 

but I cannot have more than one out going edge. So, this is so let me write it here 

examples of configuration graph. So, this is for a determinism Turing machine. 

In the case of a nondeterministic Turing machine, I have C start. Then may be from here, 

I go to two different configurations; and then I come here, and then I go it some 

configuration over here, here. May be this is C accept and this is C reject. So, there a 

many computation parts; one that goes from start to C accept; there is another going form 

C start to C reject; there is another going from C start to C reject; there is a third 

computation part that is also going from c start to c reject. So, this is the configuration 

graph of a nondeterministic Turing machine.  

In this case, do we accept the input x or not, what do we do. So, observe that, in this 

case, we should accept the input because by definition there is a computation part that 

goes to an accept configuration that is the definition of acceptance of a nondeterministic 

machine. If there is at least one computation path goes to accept configuration, we accept 



it; and we do not care and if we would have rejected x only if all computational paths 

had gone to reject configuration. 
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Let us look a quick application of this idea. So, we will state this as theorem. The class of 

languages accepted by deterministic Turing machines and nondeterministic Turing 

machines are the same. So of course, by definition, nondeterministic Turing machines are 

more powerful though than deterministic Turing machines, or assume some more, but at 

least as powerful as deterministic Turing machine, but what this theorem says is that they 

are not any more powerful. So, there equal in parts. So, whatever we can do with a 

nondeterministic Turing machine, we can do with a deterministic machine as well. 

So, how do we prove this? The proof idea is if I want to just state it one line it is to do B 

F S of G M x. So, suppose we are given a Turing machine and nondeterministic Turing 

machine M and I am given an input x, and I want to decide whether x is accepted by M 

or not, which is non-deterministic. What I do is I compute the computation of tree of G 

M x and I actually do not compute it all together I just compute it as when required.  

First I compute the start configuration, which is of course, easy because it is just the 

input the start state and input head is at the left most cell. Now I look at the transition 



function of the non-deterministic Turing machine, and I keep on computing what are the 

children of the currents state from each state. So, maintain q data structure to store the 

visited configurations of G M coma x. 
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If an accept configuration is encountered then halt and accept; and if the entire G M x is 

scanned without seeing an accept configuration then halt and reject, so that is the idea. 

So, basically what we do is we scan the computation graph level wise, first level, second 

level then this is at the third level and so on. If we ever see a accept computation, we 

know that there is a path from the start configuration to the accept configuration, and we 

halt and accept.  

And if we exhaust the entire graph without ever visiting the start configuration we then 

halt and reject, because we know that there is no path from the start to the accept 

configuration. But what can also happen is that maybe it is an infinite graph, maybe there 

is one computation path with never ends that can very well happen. In which case your 

deterministic simulation would also go forever, it is a deterministic simulation which 

would also gone forever which is still fine. But the point is that if there is an accept 

configuration, it will be at some level and that level will always be encountered.  



So, I will stop here, and we will continue next time again. 


