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Lecture – 30 

Closure Properties of Decidable and Turing recognizable languages 
 

Welcome to lecture 30 of this course. Today, we are going to study Closure Properties of 

Decidable languages and Turing recognizable languages, 
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So, under some of the standard operations such as union, concatenation, star, intersection 

and compliment, let us create a summary table of the operations and the corresponding 

class of languages and then we will see the proof of which have these classes closed 

under which operations. Let me create a table. So, we have operation when we have 

decidable languages and let us say we have Turing recognizable languages. So, T R 

stands for Turing recognizable. 

The first operation that we will see is union. So, our decidable languages and Turing 

recognizable languages closed under union. Let us try to see. Let us take two languages L 

1 and L 2, which are decidable. So, L 1 and L 2 are decidable via halting Turing 



machines M 1 and let say M 2 respectively. So, what can we say about L 1 union L 2 is L 

1 and union L 2 also decidable. The answer is yes, L 1 union L 2 is also decidable. And 

to prove this observes that what we can do is that. So, we can first given an input so 

given x, so let say we have input x. 

So, what we can first do is simulate M 1 on x, if it accepts then accept, else simulate M 2 

on x; if M 2 accepts then accept, else reject. So, because both M 1 and M 2 are halting 

Turing machine the design that we are giving here. So, this is let say design of a 

machine, let us call it M. So, this is let us say - Turing machine M. So, what will happen 

is that by this argument the language of M would be equal to the language L 1 union L 2, 

because M 1 and M 2 are halting Turing machines, M will always halt. If x belongs to 

either the language of M 1 or the language of M 2, then M would accept it; otherwise, it 

would reject. So, this proves that decidable languages are closed under union. 

Now, what about Turing recognizable languages, so can we do the same thing for Turing 

recognizable. So, suppose if x belong to the language of M 1, then we were fine, but 

consider the following case what if x is in L 2 that is x belongs to the language of M 2 

and on M 1 x loops forever it never stops. What happens, then if we actually try to do 

this kind of a simulation they run into a problem, because when I simulate M 1 on x it 

goes on forever, it never stops, all though x actually belongs to L 1 union L 2 because it 

belongs to the language L 2. So, actually we are never able to accept x using this 

machine M, if you do this kind of simulation. So, what is the idea? How can we modify 

the construction of the machine M, so that it would accept every string that belongs to 

either L 1 or L 2? 
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So, what we do is we modify the machine M in the following manner. So, given input x, 

what we will do is we will simultaneously run M 1 and M 2 on the input x. In other 

words, we will run M 1 for one step on x, then we will run M 2 for one step, then we 

again run M 2 for one step then again M 2 for another step and so on. We do not allow 

one machine to take control of x at a time. So, it is just that the simultaneously run the 

input x and if one of the machines ever accept, then we accept. If none of the machines 

accept for both the machines go and infinite loop then of course, we will go into an 

infinite loop, but it does not matter because then what it implies is that x does not belong 

to L 1 union L 2. 

So, what we do is we simultaneously simulate M 1 and M 2 on x. In other words, if I 

write it in bracket, so run M 1 for one step on x, and then run M 2 for one step on x and 

so on. If either M 1 or M 2 accepts x, then accept; if both reject then reject. And if both 

of them go into an infinite loop; or, if one rejects, and the other goes in to an infinite loop 

even then we do not do anything, we just go into an infinite, does not matter. So, in this 

manner, basically if we do this then what we can say is that if L 1 and L 2 instead of 

being decidable, if they are Turing recognizable by halting machines M 1 and M 2 

respectively then this construction of machine M ensure that L of M is equal to L 1 union 

L 2. So, this proves that Turing recognizable languages are also closed under union. 
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Now, let us look at the second property. The second property will be the concatenation 

operation. So, suppose L 1 and L 2. Now, what I will do is that for concatenation, I will 

only prove it for Turing recognizable languages. The case of decidable languages is 

actually similar. So, suppose L 1 and L 2 is Turing recognizable via Turing machines M 

and M 2 respectively.  

Then what we have is that we have that L 1 is L of M 1 and L 2 is L of M 2. Now given 

input x, I want to design a machine, which would accept x if x a concatenation of two 

strings one belonging to L 1, and the other belonging to L 2. The idea is how do I guess 

this concatenation, how do I guess this dividing point of the string x, where x get divided 

into two parts let say x 1 and x 2, such that x 1 belongs to L 1 and x 2 belongs to L 2. 

So, to do this, what we do is that we will use non determinism I mean of course, we can 

do this deterministically also there are other algorithms also that one can design, but I a 

this going to give application of non-determinism here. So, non-deterministically 

partition x as x equals x 1 x 2. So, what do we mean by doing this non-deterministically, 

how do we write a nondeterministic algorithm that does this.  



So, what the nondeterministic algorithm will essentially do is that, if you look at the 

length of x lets say the length of x is may be 85, what it will do is that it will just guess a 

number between 0 and 85. By guessing a number, it just basically guesses a sequence of 

binary symbols such that the symbols basically give a number that is not more than 85; if 

it is more than 85, we can always discard. 

It will guess a number between 0 and the length of the x whatever it is. And then what it 

will do is that it will set x 1 to be the string which is the first that many number of bits. 

Let us say the guest number is L. So, if we look at the first L bits of x and it will set x 1 

to be L, it will set x 1 to be the string come consisting of the first L bits of x and it will 

set x 2 to be the reminder part of the string. Now, once this is done, you simulate M 1 on 

x 1. If M 1 rejects, then reject; if M 1 accepts then simulate M 2 on x 2. If M 2 accepts 

then accept, else reject. 

Let us analyze this algorithm, when does this algorithm accept x. So, observe that this 

algorithm will accept x only in this step. So, only in this particular point, it is accepting; 

no other place it is accepting. So, when does it accept? So, it is accepting first of all if M 

1 accepts the string x 1 and secondly, if M 2 accepts that string x 2, so that means, if x 1 

belongs to L 1 and if x 2 belongs to L 2 that is the only case in which it is accepting so 

that is one side. Now, what if it is not, so on the other side, if M 1 rejects x 1, then 

anywhere we have directly rejecting, we are not even going into the third step. Or if M 2 

is rejecting x 2, even then we are rejecting so that means, if one of these two does not 

belong to L 1 or L 2, even then we are rejecting. 

Thirds case can occur if let say one of them goes into an infinite loop on the 

corresponding string that is M 1 goes into an infinite loop on x 1, even then we do not 

reach the third step which means we actually do not accept x. Or if M 2 goes into an 

infinite loop on x 2 even then we do not accept which means that x is not accepted. The 

only case in which x is accepted is if there exist a point say if that can be divided into 

two parts, there both belongs to the corresponding languages.  

And in a similar manner, you can show if L 1 and L 2 are decidable then L 1 

concatenated with L 2 is decidable. So, what this shows is that L of the machine M, 



where M is this machine that we have designed. So, L of M is equal to L 1 concatenated 

with L 2. So, this shows that if I look at the concatenation operation decidable and Turing 

recognizable languages are closed under it. 
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Now, let us move on to the third operation, that is star. 
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The star operation is also very similar to concatenation; it is basically concatenation of 

multiple strings from the same language. So, suppose if L 1 is Turing recognizable then 

via a Turing machine M 1, what we do is that given input x, we first we non-

deterministically guess a number k, guess k partition of x as x equals x 1 x 2 up to x k. 

So, this is the same. So, we just have one additional step here, where we guess a number 

k and then we choose basically we do the same as concatenation. But instead of just 

guessing a partition consisting of two strings, we guess a partition consisting of k strings.  

Now accept x if and the let me not if and only I will accept x. So let me (Refer Time: 

18:52) sentence here. So, simulate M 1, so this machine M 1 on the strings x 1, x 2 up to 

x k in sequence. And accept x, if M 1 accepts all the strings x 1 through x k, so that is the 

only case where you accept. So, once again, this is the design of the machine M and what 

this gives is that L of M in this case is L 1 star. So, this shows that under the star 

operation also decidable and Turing recognizable language is closed. 
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So, once again all though for the star operation, we showed the case of only Turing 

recognizable language, but the case of decidable language is actually similar it is not any 

different. 



(Refer Slide Time: 20:42) 

 

Let us look at the fourth operation that is intersection. So, what happens to intersection? 

So, remember that of course, regular languages are closed under intersection, but context 

free languages where not closed under intersection with context free languages. You only 

know that context free languages are closed under intersection with regular languages. 

So, what happens in the case of decidable and Turing recognizable languages? Let us 

look at Turing recognizable.  

So, here actually that is the scenario is much better. So, suppose L 1 and L 2 is Turing 

recognizable via Turing machines M 1 and M 2 respectively. What we do is that we so 

given an input x we first simulate M 1 an x if M 1 rejects then reject. Next, if M 1 

accepts, we simulate M 2 on x; if M 2 accepts then accept, else reject. So, once again 

observe that the only place where we accept the string x is over here. So, this is the only 

place where we accept. So, this is our design of a machine M. 

And suppose if M 1 goes into an infinite loop. So, if M 1 goes into an infinite loop what 

it means is that x does not belong to L 1, which means that it should not belong to the 

intersection of L 1 intersection L 2. Hence, we do not care it just means that M 1 the 

machine M also does not accept L x, it goes into infinite loop on x.  



So, in the cases of intersection, actually we can afford to run the computation in series in 

sequence, so one after the other. Because here what is necessary is that if x has to be 

accepted by M, it must first be accepted by M 1, and then it must be accepted by M 2 any 

other case x is basically either rejected or it goes into an infinite loop. So, this ensures 

that the language of M is L 1 intersection L 2. Of course for decidable, it is the same 

argument and it is much easier because both M 1 and M 2 are halting Turing machine. 
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So, if we look at the intersection operation both decidable and Turing recognizable 

languages are closed under them. 
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Now we look at the last operation for today that is the compliment operation and here 

things get a little interesting. So, suppose if L is decidable via a halting Turing machine 

M, how we can decide L compliment. So, here we are assuming that it is here we are 

only showing if for the class of decidable languages.  

So, suppose if L is decidable then there is a halting Turing machine which accepts L, 

because we are assuming it is a deterministic Turing machine, there is a unique 

computation path. So, to accept L compliment, we just have to flip the answer in the end; 

if M accepts, we reject; if M rejects, we accept. So, we just design a Turing machine 

which does the following. So, given input x, if so simulate M on x, if M accepts then 

reject, else accept. 

Let us give this machine a name let us say M prime. So, what this imply is that the 

language of M prime is nothing but L compliment. But what we crucially use in this 

argument is that the machine M always halts, because if M halts an accept then we are 

rejecting; if M halts an reject then we are accepting, but that is only through for 

decidable languages, a halting Turing machines. What if L is a Turing recognizable 

language? 
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So, for complement decidable languages are certainly closed under complement, but as it 

turns out that Turing recognizable languages are not closed under complement. So, this is 

an exception. So in fact, we can say a little more, we can say something more about 

compliment and Turing recognizable languages. So, I will state it as a theorem. 
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So, L is decidable if and only if L is Turing recognizable, and L compliment is Turing 

recognizable case. Let me put it this way. So, L and L complement are Turing 

recognizable. So, what is the proof? So, suppose one direction is easy; if L is decidable 

then of course, L is Turing recognizable. And if L is decidable, we just prove that L 

complement is decidable, which proves that L complement is Turing recognizable. So, 

hence the forward direction is easy.  

Now what about the reverse direction? Suppose, L and L complement at Turing 

recognizable, how does that imply that L is decidable. So, to do this, actually we 

construct a Turing machine a halting Turing machine for L which is along the similar 

lines of the construction of Turing machine for the union case, union of two Turing 

recognizable languages. 

So, what we do is that let say that L is Turing recognizable via M, and L complement is 

Turing recognizable via M prime. We construct a machine which does the following. So, 

simulate M on x, if M accepts, so you simulate M on x and M prime on x simultaneously. 

So, again this is similar to the union as I said. So, you do one step of you simulate x on 

M for one step, and then you simulate x on M prime for one step, and again you go back 

to M again you come to M prime and so on. If M accepts then accept if M prime rejects 

if M is M prime is for L complement. So, if M prime accepts, then reject.  

Now, observe that for every string, either M will accept or M prime will accept because 

every string either belongs to the language or its complement. So, either this guy accept 

or this guy accept, so you will either be accepting or rejecting. So, on every string, you 

always halt. So, hence this is a halting Turing machine. So, this is the halting Turing 

machine for L actually. So, I will stop here. 

Thank you. 


