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Lecture – 31 

Decidability Properties of Regular and Context Free Languages 
 

Welcome to lecture 31 of this course. So, today we are going to look at Decidability 

Properties of Regular and Context Free Languages. 
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So, what do mean by decidability properties. So, we want to answer questions like 

whether the following languages decidable or not. So, for example, consider the 

languages A DFA, which is encodings of strings I mean encoding of the following 

nature. So, I have a DFA D, and I have a string w; and I want to answer whether so D is 

a DFA, and w belongs to the language of D. So, what this means is that I mean this 

particular notation here, so what this means is that, so this is an encoding of a DFA D 

and a string w. So, actually we will be looking at encoding of machines encodings of 

automaton grammar in the next couple of lectures. It is very important that you 

understand what we mean by this. 

So, remember that what is a DFA. A DFA is nothing but a 5 tuple, which consists of a 

finite set of states a finite alphabet a transition function again which is a finite function, 

because it goes from q cross sigma to whatever to q, and it has an accept state and a set 



of a start state. Therefore, it has a finite description. So, I can describe a DFA in a finite 

manner basically by a string which has some finite length. And I can look at an encoding 

of that string; I mean I can convert that string to a binary string or so on and so. And of 

course, w by itself is a string. So, I can treat it. 

So, basically I can always look at an encoding of a DFA and a string w in whatever 

suitable format that you want. So, if you want the alphabet to be whatever I mean things 

like open bracket, close bracket, symbols of the alphabet, symbols and numeric symbols 

and so on things like that that will helps us encode. In a similar manner, we can also 

encode things like push down automaton. Again in the case of push down automaton 

although we can have unbounded stack, but recall that the transition function is a finite 

function same thing for Turing machine also. So, Turing machine the transition function 

is always a finite function. Therefore, always when we talk about encodings, encodings 

are finite objects. 

Now suppose we are given an encoding of a DFA, and as string w, can we check if the 

following is can we check whether the following language is decidable or not. Given D 

and w whether w is in the language of D or not or whether D accepts w or not, can we 

write an algorithm to do this. The answer is. The question is A DFA decidable. The 

answer is yes, it is decidable. 
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So, consider the following algorithm. So, we have input some D, w. So, an algorithm is 

just another way of writing a Turing machine because if I can design an algorithm I can 

always translate an algorithm to A Turing machine. So, I will be using the term 

constructing a Turing machine and constructing an algorithm or designing an algorithm 

in a synonyms manner. So, we are given D w. So, what we do basically in this thing is 

that we simulate D on w, if D accepts then accept, else we reject.  

Of course, it must always be the case that either D accepts or D rejects, because once you 

pass through the strings you just have to pass through the string, so think of D as a graph, 

so whenever you read one symbol of w you take one step in D. And in some finite 

number of steps, you will reach the last state; so if the last state is an accept state, you 

accept otherwise reject. So, this shows that a DFA is decidable. So, we want to study 

these kinds of properties of regular and context free languages. 

Now let me just change the context a little bit. So, instead of a DFA if we were given an 

NFA, suppose if you are given an NFA and string w, can we still do the same do the 

same thing we still decide whether w belongs to the language of the NFA. So, once again 

the answer is yes, and here we will use the equivalence of DFA and NFA. So, what we 

will do is that first will convert the NFA to a DFA, and then we check do the same thing. 

So, we have an extra step at the beginning.  

Similarly, instead of a DFA or a NFA if you are given a regular expression and a string 

w, again we can do the same thing, because I can convert the regular expression to an 

NFA first, then I will convert the NFA to a DFA and then I will check whether w 

belongs to the language of the DFA. So, all these things can actually be decided. Now, 

let us look at another problem. Let me just make a remark here. Similarly, A NFA or A 

Re are also decidable, so a NFA and are as I just mentioned. 
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Now, let us look at the second problem that is empty DFA EDFA. So, here in the 

encoding we are only given a DFA D, no string. And what we have to check is whether, 

so D is a DFA and L of D is let say empty it is the empty set how can we check. So, 

when is the language of a DFA an empty set, so the language of a DFA is an empty set if 

there is no path in the DFA from the start state to an accept state. So, what we do is we 

check if there is a path in the DFA from the start state to accept state using any graph 

traversal algorithm, using let say BFS; if no path exists then accept else reject. If there is 

no path, I will just call this second step. 

So, if there is no path then there means that you cannot reach from the start state to the 

accept state on any string which means that the language is empty which means that we 

should accept. But if there is some path then there is some string on which the DFA 

accepts in which case we D does not belong to this language; the encoding of D does not 

belong to this language, hence we reject. So, once again similarly, emptiness of an NFA 

or emptiness of a regular expression can also be checked. So, I can convert both of them 

to a DFA first. So, this is also decidable. Let me remark here. 

Now, let us look at the next language EQ DFA. So, in EQ DFA we are given actually 

encodings of 2 DFA, and we need to check whether their languages are equal or not. So, 

we are given a DFA D 1 and D 2 encoded; and so D 1 and D 2 are DFA; and L of D 1 is 

equal to L of D 2. So, how can we check this? So, instead of designing an algorithm, we 



will actually use closure properties to prove, this closure properties and we will kind of 

reduce this to one of our earlier problems. So, observe the following. So, L of D 1 is 

equal to L of D 2 if and only if I can write it as follows that L of D 1 minus L of D 2 

union with L of D 2 minus L of D 1 is equal to the empty set. 

So, if I think of them as sets, so let us actually draw the diagram. So, suppose this is my 

L of D 1 and this is L of D 2. Let me just for the sake of a convenience; let us just denote 

this as L 1 and this as L 2. So, if I denote this as L 1 and L 2, I can just write this as little 

simpler way L 1 minus L 2 union with L 2 minus L 1 is empty. So, L 1 minus L 2 is 

nothing but this region, and L 2 minus L 1 is nothing but this region. So, observe that L 1 

is equal to L 2. So, in this case, this is my L 1 and this is L 2. So, L 1 is equal to L 2 if 

and only if this shaded region is empty; if the shaded region is not empty then there is 

some string which belongs to one of the two languages, but not the other only if the 

shaded region is totally empty then we can say that these two languages are equal. 

And how can I check this we have seen that regular languages are closed under set 

difference and union operation which therefore, implies that there exist a so regular 

language L such that L is equal to L 1 minus L 2 union with L 2 minus L 1 which is the 

empty set. Now because there exist a language L I can construct the DFA for L. So, 

starting with the DFA for L 1 and L 2, so first what I do is that I construct the DFA for L 

1 minus L 2, then I construct a DFA for L 2 minus L 1, then I construct the DFA for the 

union of these 2 things and that will give me a DFA for L.  

And now using the emptiness of the DFA algorithm I just check whether the language of 

whether the language L is empty or not which means that there exist a DFA D such that 

L equals L of D now check if this D belongs to E DFA, if it belongs then we accept, 

otherwise reject. So, this proves that EQ DFA is also decidable. So, these were three 

decidability properties of regular languages. 
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Now let us look at the corresponding properties of context free languages. Now, instead 

of a DFA, let us say we have A CFG and instead of DFA D, we have a grammar G. So, 

G is a context free grammar, and w belongs to L of G. So, how can we check whether 

some string belongs to the language of a grammar or not? So, to check this, what we first 

do is that we convert G to a grammar in Chomsky normal form. Now once we have a 

grammar in a Chomsky normal form, Chomsky normal form say G prime. So, once we 

have a grammar in a Chomsky normal form what we can say is that if we are given a 

string w, and then if w is not the empty string, then every derivation of w will have twice 

the length of w minus 1 length.  

So, what I mean to say is that, so if w for example, is the empty string, if w is epsilon 

then there exist a derivation of w in with respect to G prime having only one step. Else, if 

w is not the empty string, then there exists derivation of w with respect to G prime 

having twice mode w minus 1 step. So, this is what we will use. So, if G prime is a 

grammar in Chomsky normal form then there is a derivation of the string w that has this 

many number of steps if w is not empty; and if it empty then there is only one step. So, 

from the start variable, you just go to epsilon that is all; otherwise, there are this many. 

Now what we do is that so our algorithm, so let me continue the algorithm. So, first we 

convert G to a grammar in Chomsky normal form then list all derivation of length twice 

w minus 1, if w is generated by one such derivation then accept, else reject. So, you just 



use this property of Chomsky normal form grammar, and we list out all possible 

derivations that can be generated. And if w is generated then we accept; otherwise, we 

reject. Now let us look at this problem. So, this proves that A CFG is decidable. So, once 

again A PDA is also decidable, because I can convert PDA to a context free grammar 

and then I will convert the context free grammar to a grammar in Chomsky normal form. 
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Now consider ECFG, how can we check whether the language of a context free grammar 

is empty or not. So, here the idea is once again to kind of work backward. So, what we 

do is that we will mark variables in an iterative manner. So, first of all, we pick a rule, 

and we look at the right hand side of the rule. If the right hand side consists only of 

terminals, we mark the variable on the left hand side; we do this for all rules.  

Now, again in the second step, I again pick the rules one by one, and I look at the right 

hand side. So, if there is a terminal or variable that is already mark then I will if all the 

terminals and variables are marked, then I will mark the variable on the left hand side 

and I keep on doing this until no new variables can be marked. Now, if the start variable 

gets marked then I say that the grammar generates a string which means that it is not 

empty the language of the grammar, otherwise it is empty. 

The algorithm is as follows. So, first mark all terminals. Next, what you do is repeat the 

following until no new variables can be marked. So, what do you do? So, for a rule, let 

say that A going to A 1, A 2 through A k; mark A, if A 1, A 2 up to A k are marked. So, 



I will mark A, if all of them are marked; otherwise, I do not mark; and I keep on doing 

this process.  

So, finally, if S is not marked then accept, else reject. So, S is the start variable. So, if the 

start variable is not marked which means that you cannot generate string of terminals 

from the start variable which means that the languages is empty then you accept 

otherwise you reject. So, this proves that this language is decidable. 
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Now we come to the last thing. So, we have EQ CFG where we are given two grammar 

G 1 and G 2; and G 1 and G 2 are CFG such that L of G 1 is equal to L of G 2. So, this 

language is actually not decidable. So, observe that we cannot use closure properties in 

the case of context free grammars, because as we had seen earlier context free languages 

are not known to be closed under the set difference operation.  

So, like regular languages, we cannot use that property. And it turns out that we cannot 

use any other approach also. So, this is something which is not decidable. Although, we 

will not be able to prove this in this course I mean we will not be giving prove of this, 

but this is something that you should remember. 

So, an interesting question that one can ask is well it is not decidable this is fine, but this 

EQ CFG Turing recognisable, or if this is not true is the compliment of EQCFG Turing 

recognisable. So, of course, both of these cannot be true, because if both of them are true 



then it would imply that EQ CFG is decidable which is not true. So, is one of the two 

statements true - so this is again something that you can think about. So, I will stop here. 

Thank you. 


