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Welcome to the 34th lecture of this course. Today, we will talk about the concept of 

Reduction.  

So, what is Reduction? Reduction in computer science means to convert one problem to 

another. In our day-to-day life and also in computer science, often we try to solve one 

problem by reducing it to another problem. For example, if I want to in computer 

science, if I want to sort an array, and let us say somebody gives me a black-box which is 

able to find the maximum element in an array, I can use that black-box and sort the array. 

So, how do I do it? I do it by repeated application of this black-box.  

First, I feed my array to this black-box, it will give me the maximum element; I keep the 

maximum element out then I pass the reminder array that is the array left without the 

maximum element again to this black-box which will give me the maximum element of 

this new smaller array, and that will be my second maximum. And I keep on doing this 

until my array becomes empty. So, this will allow me to sort an array. 

Also in for example, if I want to multiply two numbers, I can reduce it to the problem of 

addition. So, multiplying n times m essentially means that I want to add m to itself n 

times. So, if I can do addition, I can of course be able to do multiplication. So, there are 

various other examples where we somewhat we always where we use reduction without 

often observing that this is what we are actually doing. So, what will do today is we will 

formalize this concept, we will define precisely what we mean by reduction and then we 

will see its application with respect to showing that problems are un decidable. 
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So, informally, as I say that reduction is converting one problem to another. Now for the 

purpose of reduction, so when we reduce one problem to another, we will use the Turing 

machine model; but we will slightly modify the model. So, our Turing machine model 

will now contain 3 tapes, so there will be input tape, there will be a work tape, and there 

will be output tape. Also in our finite control, so this is the finite control; in addition to 

all the states, we will assume that there is one state, which we call the halting state. So, 

this is the convention that we use. 

So, what do these tapes signify? The input tape will signify the fact that it contains the 

input to the Turing machine. So, I can only read from the input tape, I cannot write 

anything to the input tape. And of course, I can scan both sides I can go back and forth 

and on the input tape, but I cannot write anything other than the input. The work tape is 

where I perform my work to come up with the solution. So, I can write on to the work 

tape, I can read from the work tape, I can erase the work tape, I can do everything.  

And the output tape is a write only tape. The output tape has the property that I can only 

write bits to it, but I cannot read whatever I have written earlier. So, in some sense, it is a 

one directional tape. So, whenever I write a bit, I move one cell to the right and I keep on 

doing it I can never come back and read something. So, this input tape is as I said so the 



input tape is read only; the output tape is write only, and the work tape is of course, read 

write, I can do both read as well as write. 
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Now, what is the purpose of this halting state? So, what we want to do is that we want to 

compute functions or we want to output functions of this form. Let us look at a function, 

which takes a string as an input, it can take any string and it produces another string as an 

output. So, in the case of languages, one can think of languages as basically Boolean 

functions. So, functions which take a string as an input and produces 0 1, so that is a 

special type of function. So, I can think of languages as Boolean functions, because 

whenever I have a string that is in the language, I will map it to 1; and whenever I have a 

string there is outside the language, I will map it to 0. 

So, languages are essentially equivalent to Boolean functions, so Boolean functions are 

those where the right hand side has. So, basically functions of the form f going from 

sigma star to 0 1. So, these are Boolean functions. Now I want to look at this general 

type of function, where actually I can write out a string, so often this necessary. For 

example, if I look at the sorting example, so in the case of sorting, I am given an array as 

an input, and I want to output another array which is the sorted array as output. So, I am 

not outputting a single bit, but I am actually outputting a string. So, it is essential that we 



have a way of computing such functions. 

So, this Turing machine these particular types of Turing machine this generalization I 

should say is capable of doing it. So, what the Turing machine does is that it starts 

reading the input, it starts performing its computation, and during its computation it can 

write bits on to the output tape, it keeps on doing this.  

And finally, when the machine enters the halting state, I stop; and whatever is written on 

the output state that is the output of the Turing machine. Let us call this a Turing machine 

with output, a Turing machine with output is a Turing machine that has input, work and 

output tapes as I showed. Such that for all x in sigma star, the Turing machine computes 

a string y belonging to sigma star and before entering the halting state; this y I will call 

as the output of the Turing machine. 
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Now with this, I define a computable function. So, a function f from sigma star to sigma 

star is said to be computable if there exist a Turing machine with output M, such that for 

all x in sigma star, M halts with f of x written on its output tape. So, this is when this 

happens we say that the function f is a computable function.  
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Now we are in a position to define reduction. Let L 1, L 2 be two languages. We say that 

L 1 reduces, so reduces sign is basically, let me just say it we can write it. So, we say that 

L 1 reduces to L 2. So, this is denoted as L 1 with the less than or equal to sign L 2. If 

there exist a computable function f such that for all x belonging to sigma star x belongs 

to L 1, if and only if f of x belongs to L 2. So, a reduction is basically a computable 

function, which takes a string x and maps it to another string f of x such that it has the 

property that if x belongs to L 1 then f of x must belong to L 2. And if x does not belong 

to L 1 then f of x should not belong to L 2. 
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So, pictorially, I can we can represent this as follows. So, suppose this is our universe of 

all strings again we have the universe. So, f is a function which goes from sigma star to 

sigma star. Such that so I have some subset of sigma star which is my language L 1. So, 

this is language L 1 and these are the strings which are not in L 1, hence they are in L 1 

compliment.  

Similarly, there is some subset, which is L 2 and L 2 compliment. So, we say that f is a 

reduction if L 1 is mapped to so let me put it here. So, if L 1 is mapped to some subset of 

L 2, the entire L 1; and the entire L 1 compliment is mapped to some subset of L 2 

compliment. So, it is not necessary that every element in L 2 or every element in L 2 

compliment must have a pre image. So, there can be elements outside also, there can be 

elements inside also. So, this is what a thing represents. 

So, f is a function which means not all element f is a general function, I should say which 

means not all element in L 2 or L 2 compliment has a pre image. And we now in our 

notation, we had this small m as a subscript in our notation for reduction, so that m 

stands for many to one, so the m in stands for many to one. It essentially means that there 

can be many strings let us say in L 1, which is getting map to the same string in L 2, for 

example, I can have string here and here. So, maybe both of these get mapped to this 



guy, same thing can happen here also. So, it is a many to one function.  
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Now, why are reductions so interesting? The reason is the following proposition. Let L 1 

reduce to L 2, and put it if, so if L 1 reduces to L 2, and L 2 is decidable, then L 1 is also 

decidable. So, if I am able to reduce a language L 1 to a language L 2, and I know that L 

2 is decidable, then it means that L 1 is also decidable. So, why is this, so the proof is not 

difficult to see? So, suppose I want to prove that L 1 is decidable. So, if I want to show L 

1 is decidable, I have to construct a Turing machine for L 1. I know that L 2 is decidable. 

So, say L 2 is so since L 2 is decidable there exist a Turing machine M such that L 2 

equals L of M, and not only a Turing machine it is a halting Turing machine. 

Now, we will construct a Turing machine for L 1. So, what we will do in our Turing 

machine. Let us say I want to construct a Turing machine N for L 1. So, what the Turing 

machine N does is given an input x, it first computes f of x. So, why can we compute f of 

x, because f is a reduction, so where f is the reduction function, so this is step 1. In step 

2, you simulate M on f of x. If M accepts, so if M accepts then you accept; and if M 

rejects, then you reject. Let us prove why this is correct. So, take any x, suppose if x 

belongs to L 1, then after I compute f of x, because I know that f is a reduction, since x 

belongs to L 1, f of x must belong to L 2.  



Now when I simulate M on f of x, since f of x belongs to L 2, M accepts, hence I would 

accept. So, if x belongs to L 1, I accept; similarly if x belongs to L 1 compliment, then 

here I my f of x will belong to L 2 compliment. Hence when I simulate M on f of x it 

rejects, hence I finally, reject. So, it is a just a simple box, which is doing two things; it is 

first computing f of x and then it is simulating M on f of x, so that is the argument. 
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Now this has some interesting applications. So, as a corollary, we get two interesting I 

mean we can say two things. So, first if L 1 reduces to L 2, and L 1 is undecidable then L 

2 is also undecidable. Now, this gives me a mechanism to prove that a language is 

undecidable. So, if I want to show that a language is undecidable, all I have to do is that 

to reduce an undecidable language to my given language. If I can do that then I would 

have succeeded in showing that my given language is also undecidable.  

And similar technique I mean technique similar to what I have described here can be 

used to shown that if L 1 reduces to L 2; and L 1 is not Turing recognizable, then L 2 is 

also not Turing recognizable. The idea is the same. You can actually figure this out 

yourself. The key point here is that, so the key observation is that, so, this is what you 

should always remember that if L 1 reduces to L 2, intuitively what this means is that 

then L 2 is at least as hard as L 1. The language L 2 is either harder than L 1 or it is 



equivalent in hardness to L 1, it cannot be easier than L 1, so that is intuitively what 

reduction means. So, this is what you should keep in mind. 
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Now, let us look at an application of this result. So, consider the language E T M. So, this 

was an example. So, E T M is encodings of Turing machine M such that M is a Turing 

machine and the language of M is empty. So, E stands for empty, so this language we 

will prove is will prove that this is undecidable.  

And the way we will show this is undecidable is we will use this corollary here. So, we 

will take an undecidable problem. The problem that we will take is A T M bar. So, we 

will show that A T M compliment reduces to E T M. So, not only we will this prove that 

E T M is undecidable, it will also prove that E T M is not Turing recognized, because A T 

M bar is also we saw this last time that A T M bar is not Turing recognized. So, what is 

the idea? Let me give the reduction. The reduction is nothing but giving a computable 

function. 
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So, I want to design a function f that takes an instance of A T M bar that takes an input 

which is from the universe of A T M bar, and it produces an instance of E T M. Such that 

if so instance of A T M bar will be instances of the form M comma w, an instance of E T 

M will be just a simple machine M. So, I will take as input encoding of a machine, let us 

say M comma w, and I will produce as output let us say I will give this another name N 

such that if M does not accept w then this language is empty the language of N. And if M 

accepts w, then the language of N is not empty. So, that is what I am going to do. So, 

how do we design the machine? So, what we do at the beginning is design N as follows.  

So, here is what N will do. So, on an input x, so x is the input to N. So, I have to define 

the Turing machine N. So, I have to define that what this Turing machine is going to do 

on every input, for example, if I am given an input x, what should the behavior of empty. 

So, what N will do is that first N ignores x. So, N would simulate M on w, if M accepts 

w, then accept if x is equal to w else reject.  
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Let us look at representation. So, I want to, so this is my reduction f that I want to 

design; inside this, I am designing this machine N. So, what N does is that. So, f takes as 

input two things; it takes an M and it takes a w, and N is taking some x as input. So, what 

it does is that first it will simulate M on w, if this accepts, and if this rejects, we do two 

things. So, if this rejects then N will reject; and if M accepts then check if so check if x 

equals w; if this accepts then accept else reject. Now, let us try to understand and finally, 

f will output the machine N. 

Let us try to understand what is happening. So, suppose if M accepts w, so if M accepts 

w, observe that here I would accept w then the machine N going to check if x is equal to 

w; if x is not w, it is anyway going to reject. Which strings x will N end up accepting. So, 

N will accept only the string w. So, then the language of N is going to consist of only the 

string w that is the only string that it will accept. On the other hand if M does not accept 

w, then so if M does not accept w if M is rejecting or if M is going into an infinite loop, I 

will directly anyway reject or go into an infinite loop in other words it will not accept 

that x. So, in other words the language of N will be the empty set. 

Now, I have shown that therefore A T M bar reduces to E T M; because if M does not 

accept w, then I have outputting a machine N whose language is empty as it is the 



definition of E T M. And if M accepts w, I am outputting a Turing machine whose 

language is non empty, so that is a no instance. So, here I am outputting yes instance, 

here I am outputting a no instance. Therefore, I have this reduction, which proves that E 

T M is undecidable.  

So, I will stop here. Next time, we will look at more examples. 


