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Lecture – 39 

NP-Completeness 
 

Welcome to the 39th lecture of this course. Today, we will discuss the topic of NP- 

Completeness. So, last time I mention that, there are these problems in NP, which are in 

some sense the hardest problems in NP. So, how do we characterize these problems and 

how do we will define hardness of a problem? So, that is going to be our agenda today. 
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We have seen the definition of reduction, reducing 1 language to another. So, today we 

are going to find tune the definition and talk about polynomial time reduction. Let say, L 

1 and L 2 are 2 languages. So, we say that L 1 polynomial time reduces to L 2 and this is 

denoted as L 1 with a subscript p, if there exist a poly time computable function f from 

sigma star to sigma star such that x belongs to L 1, if and only if f of x belongs to L 2. 

The only difference is that, we say that L 1 polynomial time reduces to L 2, if the 

function f is a poly time computable function. So, the difference is that, we have a turing 

machine. We say that a function is computable, if there is a turing machine that outputs 

the value of f of x when given x. Now, in addition, if we restrict the turing machine to 

run for a polynomial number of steps in the length of x then we say that the function f is 



poly time computable, so that is the only difference the rest of the definition is similar to 

that of reduction. 
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Let L be some language. L is said to be NP-hard if for all languages L prime belonging to 

NP, L prime reduces to L l prime polynomial time reduces to l. In other words, we say 

that language L is NP-hard if every other language in NP or every language including L 

itself must reduce to L in polynomial time. In other words, there is a polynomial time 

computable function which maps instances of L prime to instances of L. 

Now, we say that L is NP-complete, if L is NP-hard and L belongs to NP. So, if a 

language is NP-hard it need not necessarily lie in NP. So, maybe it lies outside NP that 

can very well happen. So, all we say here is that every language in NP reduces to l, but L 

can lie anywhere, but we say that it is NP-complete if it is NP-hard as well as it belongs 

to NP. So, this is our definition of the highest level of hardness inside NP in some sense. 

So, basically if 1 language if we have an NP-complete problem if we have a language 

which is NP-complete then of course, it belongs to NP by definition and every other 

language in NP can be reduce to this language. So, what are some of the properties that 

we can say about NP-complete problems? 
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The first result is state it as a theorem. So, if L is NP-complete or even NP-hard and L 

belongs to P then P equals NP. In fact, this is probably the most popular strategy to show 

that PN and P are the same, you take an NP-complete problem and you give a 

polynomial time algorithm for that problem. If we can do that then we have would have 

shown that P is equal to NP and the proof is quite easy. So, the idea is as follows. 

Basically take any problem in NP. So, let L prime be a problem in NP, because L is NP 

complete it means that L is NP-hard. So, we have that L prime reduces to L and now 

because L belongs to P, we have that L prime is also belongs to P the reason is. Suppose, 

if I take; if I want to show that y is L prime in p. So, take a box, this is poly time 

algorithm for L prime. So, given an input x, look at this reduction. This reduction is via 

some function f. So, via f say, first compute f of x. So, given x, feed x to this box and 

then compute f of x, now if f of x, what is f of x? f of x is an instance of the language L 

and our assumption is that L belongs to P. 

Now, I apply that box on top of this. So, we make it bigger, I get f of x and then I apply 

the box for. So, this is P algo for the language l. So, I apply the box to this. Now, if this 

guy output S then I output S and if this guy outputs no then I output a no. If I am given 

an input x I first convert it into f of x, f of x is an instance of L because of this reduction 

and we know that L belongs to p. So, there is a polynomial time algorithm for l. Now, I 

just check if f of x is in L or not if f of x is in L I output S, if it is not in L I output no and 



that this total algorithm consist of 2 parts, first computing f of x and then applying the 

algorithm for L on f of x and both these algorithms are polynomial time hence the total 

box also takes polynomial time. 
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So, this is a strategy to show that a problem, if you want to show that P is equal to NP 

then here is a strategy to that 1 can use. 

Now, I will discuss a mechanism to show problems to be NP-complete and this theorem 

is similar to the way in which we showed that language is are un decidable that is if L 1 

polynomial time reduces to L 2 and L 1 is NP-hard then L 2 is also is also NP-hard. So, if 

I have a reduction L 1 to L 2 such that the first language is NP hard then it implies that 

the second language is also NP hard. So, to prove this what I will do is I will use a 

lemma. So, this is again a lemma that is of interest by itself. Suppose, we have three 

languages L 1, L 2 and L 3, let L 1 L 2 and L 3 are 3 languages. So, if L 1 reduces to L 2 

and L 2 reduces to L 3 then L 1 reduces to L 3 also. 

In some sense, reduction is transitive in nature. So, if 1 reduces to 2 and 2 reduces to 3 

then 1 reduces to 3. So, how do we prove this? 
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Suppose that L 1 reduces to L 2 via a function f and L 2 reduces to L 3 via a function g. 

Now, I want to reduce L 1 to L 3. So, I have to give a function. What is the function 

going to be? So, this function is going to be nothing, but a composition of f and g. So, 

first given an input x, I apply f to it. This is my box f, this produces f of x. So, OBS 

observe that if x is in L 1 then f of x is in L 2 and if x is not in L 1 then f of x is not in L 2 

by the definition of reduction. 

Now, I feed f of x to the box for g. So, g is also a polynomial time computable function. 

There is a polynomial time algorithm for g and this will give me g of f of x and I just 

output this as the answer. So, let us call this as h of x. So, define h of x to be g of f of x 

and therefore, L 1 reduces to L 3 via the function h, why is that? So, take an x which 

belongs to L 1. So, if x is in L 1 then f of x is in L 2, if f of x is in L 2 then g of f of x is in 

L 3. Hence, that is the same as h. So, therefore, h of x is in L 3. 
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So, if x belongs to L 1 then f of x is in L 2 which implies that h of x will be in L 3. On the 

other hand, if x does not belong to L 1 then by the definition f of x will not belong to L 2 

and if f of x is not in L 2 then g of f of x is not in L 3. Therefore, h of x is not in L 3 and 

why is h computable in polynomial time. So, we also have to prove that. So, note that h 

is nothing, but applying f first and then g. 

This takes some polynomial number of steps; the total is some other polynomial. So, h is 

poly time computable since f and g are poly time computable. Now, we will use this fact 

to prove our theorem. So, this was the lemma that we showed this is the proof of the 

lemma. Now let us go back to the proof of this theorem. This is what we want to show 

that if L 1 reduces to L 2 and L 1 is NP-hard then L 2 is also NP-hard. So, what I have is. 

So, what I want to show is that L 2 is NP-hard. 
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So, let me call this proof of let us give this a name theorem 2. So, proof of theorem 2. So, 

take any language in NP. So, let L prime be a language in NP to show that L 2 is NP-hard 

I have to show that L prime reduces to L 2. 

Now, take we have a language in NP and we know that L 1 is NP-hard. So, we have that 

L prime reduces to L 1 since L 1 is NP-hard and of course, we also have another 

statement that L 1 reduces to L 2 we have that L 1 reduces to L 2. So, this is our 1 of the 

hypothesis or that I call it hypothesis I will just call it assumption. Now, we apply the 

lemma that we have L prime reduces to L 1 and L 1 reduces to L 2. Therefore, combining 

both these we have that L prime reduces to L 2. This proves that L 2 is NP-hard as well. 

So, this is what we actually wanted. 

Now, we have a mechanism to show languages are NP-hard, but then we need a first NP-

hard problem because we need to. So, to show that language is NP-hard I need to at least 

pick some NP-hard problem and then reduce gives a reduction from that problem to my 

given problem. So, what is the first NP-hard problem? So, this was a famous result again 

in computer science due to Cook and Levin. So, this is called the Cook Levin theorem. 
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There actually independently proved the following that there is this problem called the 

satisfy ability problem. SAT is NP-hard and also it is in NP. What it implies is that SAT is 

NP complete. So, what we will do next is that we will look at the definition of this 

problem. So, what is the Satisfiability problem? Remember that to show the first 

language to be NP-hard, we have to somehow argue that every other language in NP 

reduces to this language.  

So, they can be infinitely many languages in NP and we cannot do it one by one. So, we 

have to give a generic strategy. So, the strategy was to take a NP machine. So, take any 

language that is in NP consider the machine for that language look at it is ah 

configurations how it how they behave and using that somehow argue that this problem 

SAT is NP hard. Let us first understand what the problem SAT is? 
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The Boolean Satisfiability problem - A Boolean formula is a formula defined inductively 

over Boolean variables and the gates – AND, OR and NOT. So, I am not going to give 

the precise definition of what a Boolean formula is, but I am going to give it with an 

example.  

So, I am assuming that you have seen what a Boolean formula is at some point of your 

curriculum, but if not I would suggest that you go back and I mean refer to it and find out 

what is the exact definition, but what I am going to do is I am going to give some 

examples which would make it clear. So, here are some examples of Boolean formula. 
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So, it is basically a formula that is defined over Boolean variables, Boolean variables are 

variables that can take only 2 values 0 and 1 and gates AND, OR and NOT. For example 

I can have something like x 1 or x 2 bar and let say x 3. This is a Boolean formula. So, x 

1, x 2 and x 3 are Boolean variables and I have. So, this is a or gate this is an and gate 

and this is a a not gate. I can also have another formula; let us look at another formula x 

1 or x 2 bar and x 3 bar or x 1 bar and x 2 bar or x 4. Here I have a Boolean formula that 

is defined over four variables. So, there are four variables x 1, x 2, x 3 and x 4 and it is 

written in this manner. So, it is defined. 

Basically, I said inductively because at the base level the variables are also Boolean 

formula and then I combine Boolean formula with the help of the Boolean operators. So, 

the or of 2 Boolean operators is a Boolean formula and of 2 Boolean formula is a 

Boolean formula and not is a operator which takes only 1 argument. So, not of a Boolean 

formula also gives a Boolean formula and I use brackets to define precedence. So, which 

part gets precedence? This is similar to arithmetic expressions also. Now, I will define 

what is truth assignment; tau is an assignment of values 0 or 1 to each Boolean variable. 
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For example, if I look at let say if I look at a truth assignment tau which is define which 

is giving let say x 1 equal to 0, x 2 equal to 1, x 3 equal to 1 and x 4 equal 0. So, under 

this assignment, what is the value of this Boolean formula, because x 1 equal to 0 and x 2 

equal to 1. The first argument I mean this the Boolean formula within the first 

parenthesis x 1 is 0. So, let me write it down. If I have x 1 or x 2 bar and x 3 bar or x 1 

bar and x 2 bar or x 4. So, x 1 is 0 x 2 is 1, x 2 bar will be 0. This is 0 or 0 with x 3 bar is 

0 x 1 bar is a 1 x 2 bar is a 0 is 0 and x 4 is a 0. So, lot of 0s, now if I evaluate this, this 

is. So, 0 or 0 is a 0 0 or 1 is a 1 and 0 or 0 is again a 0 and now I have and of 0 1 and 0 

which is equal to 0. So, under this truth assignment the Boolean formula evaluates to 0. 

We say that a Boolean formula, phi is satisfiable if there exist a truth assignment tau such 

that phi of tow evaluates to 1 and now we can define the problem SAT. So, SAT is 

basically the set of all formulas phi such that phi is satisfiable. We can define a few more 

things we can define another language as well. So, let me define it here. 
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A literal is a variable xi or xi bar. So, it is a variable or it is compliment a clause is an OR 

of literals, for example, in this Boolean formula this is a clause this is a clause and this is 

a clause a 3 CNF formula is an and of clauses where each clause has three literals, for 

example, this is a 2 CNF formula because each clause note here has 2 literals this 1 has 2 

literals this 1 has 2 literals and the third clause also has 2 literals. 

Similarly, if I have three literals it is called a 3 CNF formula and now I can define 

another problem which is similar to the satisfiability problem. 
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It is known as the three SAT problem which states that phi such that phi is 3 CNF 

satisfiable Boolean formula. So, this is a variant of satisfiability where the Boolean 

formula is restricted to be a formula which has this particular form. So, it is a 3 CNF 

form. So, I will stop here today, we will continue more on NP completeness in our next 

lecture. 

Thank you.  


