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Introduction 

 

So, let us get started last time we were discussing the polynomial hierarchy. So, I will get into 

the discussion in a few minutes but before that I just want to digress a little bit and talk about 

something else. We talked about space bounded complexity classes and we saw the class 

PSPACE. Let us look at a complete problem for PSPACE. I will not prove the completeness part 

in our lecture but I will motivate as to why it is a complete problem and if you are interested in 

the proof you can always go back and read it is there in your text. 
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So, we have seen, what a Boolean formula is and what does it mean to say that a Boolean 

formula is satisfiable. Suppose if we have a Boolean formula phi, we say it is satisfiable, if there 

exist an assignment to the variables of that formula which makes the formula evaluate to true or 

1 however you want to think of it. So, suppose what we are saying is there exist an assignment to 

the variable. 

 

Suppose the formula has n variables what I am saying is that each of those variables can take a 

value 0 or 1. Instead of quantifying each variable with existential quantifier I can generalize this 



idea and talk about variables which are bounded by the universal quantifier. So, instead of saying 

that a variable can take any value between 0 and 1, I say that well the formula has to be true for 

all possible values that the variable can take.  

 

Whether it is 0 or 1 I do not care it has to evaluate to true. I mean a very simple example is 

suppose if you look at the probably the most simplest formula let us say just a single variable x 1. 

This formula means if you think of this as a formula is always satisfiable. Because if you set x 1 

to 1, it gets evaluated to 1. But if I wants this formula to be satisfiable for all possible values of x 

1 then we see that phi is not satisfiable because if I assign 0 to x 1 clearly it is not satisfiable. So, 

this is what is the distinction between these two ideas.  

 

Let us try to encompass this idea into a formal definition. So, a quantified Boolean formula 

which in short, we will denote as QBF is of the form some Q 1 x 1. We will assume that the 

formula in n variables Q 2 x 2 so on till Q n x n such that we have some formula phi on n 

variables where each Q 1 is either an existential quantifier or a universal quantifier. When do we 

say that this formula evaluates to true if for the appropriate setting of the Q i.  

 

For example, if Q 1 is an existential quantifier then I allow x 1 to take any value 0 or 1. For any 

setting of the value I will consider the formula phi. If Q 2 is an universal quantifier, then I want 

this formula to be satisfiable for all possible values of x 2, that is whether it is 0 or 1. So, this is 

what I mean by a quantified Boolean formula. And the language TQBF so, T stands for true is 

the set of all quantified Boolean formulas. 

 

Let us call them psi such that psi is a QBF that evaluates to or I should not say evaluates that is 

satisfiable for an appropriate setting of the variables. I mean quantifiers are already fixed but 

depending on the quantifiers I am giving values to the variables that is what I mean here. So, if it 

is a there exist even if it is an existential quantifier it can take any value and if it is a universal 

quantifier it should be true for all values.  

 

That is what I mean. Universal quantifier 0, 1 they are all Boolean variables. So, we are looking 

at Boolean formulas. So, each x I and take values between 0 and 1. And we can also assume in 



addition that phi is a formula in 3 CNF. It is a conjunctive normal formula with three literals per 

clause. That does not make a difference, is this language clear to everybody? So, clearly, we can 

see that this is a generalization of the 3 psi language.  

 

Because if I set all my quantifiers to existential quantifier that will basically mean that this is 

nothing but just the language psi.  

(Refer Slide Time: 08:20) 

 

So, the theorem is that TQBF is PSPACE-complete. I will just discuss the containment part that 

why is TQBF contained in PSPACE in other words we need to give an algorithm. So, how do 

you give an algorithm for this language a PSPACE algorithm? That is one way to look at it. Let 

us give a recursive algorithm and you can also give an iterative algorithm but probably that will 

be more difficult to construct because it will be an exponential time algorithm. 

 

So, let us give a recursive algorithm, let me call this algorithm A, which takes sum QBF formula 

phi and then tries to answer yes or no depending on whether phi is satisfiable or not. If n is equal 

to 0 that is it does if phi does not have any variables, so we are also considering the special case 

when, I mean a formula consists only of constants 0’s and 1’s. So, it says and an or of constants 

in which case it is easy to evaluate.  

 



So, then just output the value of, whatever value you get by evaluating phi it is just constants. 

Else that is if n is greater than 0, if n is greater than 0 then we know that it has at least one 

variable. There is a quantifier associated with that variable if Q 1 is an existential quantifier what 

we do is we check the following two formulas. That is, we check the formula phi with x 1 set 

getting the value 0.  

 

So, if A of psi with x 1 set to 0 = 1. We can just say that also because this is just some value. 

This is 1 or A phi x 1 = 1 is 1. So, either of these 2 return A 1 then we output 1. So, now we 

again go back to this if else if Q 1 is a universal quantifier then we check if A phi x 1=0 is 1 and 

A phi x 1=1 is also a 1. It is a very standard intuitive algorithm. The point is how much space 

does this take?  
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So, the thing again is that space can be reused so when computing phi and I am making recursive 

call to phi with x 1 set as 0 and phi with x 1 set as 1. I can reuse the space in both these recursive 

calls. Let us say that for a formula with n variables and of size m. So, suppose phi has n variables 

psi and phi has size m then the space taken with n, m as parameters is the space required for n-1, 

m plus sum constant times m.  

 

Because we need this much amount of space to basically write out this expression on the tape 

and then run the algorithm on it. Because basically what we are doing in this algorithm is that we 



need to write out what the new formula would be on which I am running my recursive calls. So, 

for that I need some constant times m space. Basically, if you look at one iteration how much 

space am, I requiring here. 

 

So, to make a recursive call to A this is the amount of space I am requiring and the same space 

can be reused here also. The only thing that I need to remember what is the bit that this guy had 

output. So, that is the only thing that I need to remember. But then I need to so to be able to run a 

on a particular formula I need to know what that formula is. So, that is why I am just assuming 

that I write out that particular formula on the tape and that requires some m space.  

 

I guess you can make this some constant. You have this thing globally written on your input tape 

you can always refer to that and probably you can replace this with some constant. So, if you 

solve this what you will get is something like order n times m but what you are saying so then 

you have to look at what the base case is so the base case is when you have 0 variables so, s of 0, 

m will require some size m.  

 

So, what you are saying then will require n + m. But yet does not quite matter because we have 

sufficient space. The hardness part also can be shown again not with much difficulty its basically 

again looking at the configuration graph and then looking at adjacent configurations and coming 

up with a formula that encodes the definition of an edge between adjacent configuration. So, you 

write a formula which is 1 if there is an edge between two pair of configurations and which is 0 

otherwise and you appropriately encode it into a thing.  

 

I will not go into that part so let us come back to our discussion of polynomial hierarchy and let 

us see how this thing fits in.  
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So, what was the definition that we saw last time? It is the union over all i greater than or equal 

to 1 of the classes sigma i p. And what was the definition of sigma i p? It is basically a 

generalization of the class n p where instead of looking at just one the existence of just one 

certificate you look at an alternating manner whether there exist different certificates with the 

universal and the exit existential quantifier.  

 

Let us just write that definition down once more. So, L is in sigma i p. If there exist a machine M 

and a polynomial Q such that for all strings x, x belongs to L if and only if there exist u 1 such 

that for all u 2 so on till some quantifier Q I u I. The machine M with x, u 1, u I evaluates to 1. 

Where all the uj’s have length Q of mod x and Q i is an existential or universal quantifier 

depending on whether I is ordered even, so this was the definition.  

 

And one of you asked last time that why do we look at alternating quantifiers? I mean what if we 

have the same quantifier for 2 consecutive strings? Can anyone answer that? Exactly so I mean if 

we have two strings with the same quantifier 2 consecutive strings then basically, we can just 

treat both those strings as just a single certificate with that particular quantifier. Let us say if I 

had a there exist u 1 and there exist u 2. 

 

I can think it off as the concatenation of u 1 and u 2 with the existential quantifier. So, what is 

the blow up? The blow up is only in the length of the string but then I mean we have that 



freedom then we can choose a polynomial Q appropriately which is just twice the length of this 

polynomial. We do not care what that polynomial is as long as it is a polynomial. So, a language 

is in this class if there is some machine and some polynomial.  

 

It is just that we will have a new Q prime and maybe a new machine which will deal with that. 

And the same thing happens if I have a consecutive universal quantifier as well. And it is not 

only for 2 if I have any sequence of quantifiers which are the same, I can always club those 

strings together and put the quantifier preceding it. So, that is why always without loss of 

generality we can assume that the quantifiers alternate. That changes the definition of the class. 

So, we will look at that so similar to sigma i p.  
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We define the class pi i p which is just a complement of sigma i p, that is it contains the set of all 

languages L such that L complement is in sigma i p. And now I think that answers your question. 

So, if we look at the class pi i p. We can also now since I have defined pi i p as the complement 

of sigma i p I can state this as a theorem that a language will belong to pi i p, if there is some 

polynomial time turing machine M and a polynomial Q such that for all x, x will belong to the 

language.  

 

If and only if for all u 1 there exist u 2 and basically again the quantifiers will not or they will 

alternate and they will be i such quantifications and the machine accept the string with all those 



certificates. The difference is that what is the initial quantifier that I am starting off with. So, 

therefore again we can define pi h also in the class PH also alternatively with respect to the 

classes pi i ps.  

 

So, it is the union over all i’s of pi i p, and again these are very easy to see also what can we say 

about the various sigma i's and the various pi i's? What can we say between let us say 2 sigma let 

us say you have a sigma i p and a sigma j p? For j greater than i, sigma i p is contained in sigma j 

p. This follows from the definition. Because if I, have a higher j I can just ignore all the 

additional strings.  

 

So, that we do not know, we know that there is a containment but whether it contains any 

additional languages that is something again that we do not know. Again, that is a good question 

and people believe that all these containments are actually proper. People believe that within the 

polynomial hierarchy, so basically these are referred to as levels of the polynomial hierarchy. 

They believe that all these levels are actually different from each other.  

 

There exist problems in each of these levels which are not contained in smaller levels, but that is 

something which is not known. We will actually come to that so there are complete problems 

known for each of these levels and actually that is not something very easy to see I can just state 

that if you just look at a generalization of sat again. So, what was sat? Basically, SAT was 

having certain variables and you look at does there exist values to those variables which makes it 

satisfiable. But instead of that if you just generalize it. Let we write this here. 
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So, we can define the following language sigma i SAT is the, it is a set of all formula’s phi. Such 

that there exists some vector u 1 such that for all u 2 and so on some quantifier Q i with a vector 

u i such that the formula phi with all these vectors u 1 through u i is satisfiable. So, I can treat the 

variables in this formula as some set of disjoint vectors where there exists some assignment to 

the variables in u 1 such that for all possible values that can be assigned to the variables in U2 u 

2 and so on all the way up to u i this formula is satisfiable. 

 

And this is complete for sigma i p. I think this is actually an exercise in your textbook to prove 

why this is complete. So, this is again not difficult to show but this is something which is kind of 

derived from the definition of sigma i p whether there exist other natural problems which exactly 

characterize these classes or not, that is something interesting and up to the second level of the 

polynomial hierarchy there are complete problems which are known. 

 

There are other natural problems which are known to exactly characterize for example sigma 2 p. 

So, sigma 1 p is nothing but n p right for sigma 2 p they are unknown but for sigma 3 and 4 you 

can come up with artificial definitions but I do not know what exactly what you want. So, just 

coming back to this thing, what about let us say the relation between a sigma i p and a pi i p what 

can we say about these two classes.  

 



Maybe for a different type; maybe let us say we if have some j. So, pi j p is call sigma j p. In 

other words what we can write is for any actually i + 1 if look at just pi i +1 p. So, this contains 

sigma i p. Because again what we can do is we can just forget the first quantifier. We have some 

other, still i quantifiers left which begin with the opposite quantification. And in the same 

manner this is contained in sigma i + 2 p.  

 

I am stating these theorems but you guys should go and just work this out and convince 

yourselves. So, they do follow from the definitions but it is good to actually work them out. So, 

the reason why I stated why I digressed and talked about this PSPACE complete problem is that.  
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So, now again we can see quite easily that for all i, sigma i p is contained in PSPACE. Maybe I 

should not have erased that language and the reason for that is if you look at the complete 

problem for sigma i p that actually erased out. So, that is nothing but a special case of the TQBF 

language. So, it is just a special case where we are only looking for some small set of variable. 

And what we get as a corollary is that this entire class PH is also a subset of PSPACE.  

 

There exists this entire plethora of classes and natural languages which sit between the class n p 

and PSPACE which makes a case as to why we study this hierarchy pi. Let us look at another 

theorem that if P = NP. Then the polynomial hierarchy also collapses to P. This is what is 

referred to as the polynomial hierarchy collapses. So, again this is something that is not believed 



because the hypothesis of this statement is not belief. But let us look at a proof of this very 

difficult but let us look at it.  
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So, we will prove this by induction, so what we will show is that for all I sigma i p is contained 

in P. That will immediately imply that the polynomial hierarchy is contained in P. For I = 1 this 

follows from our hypothesis, if I is equal to 1 then sigma 1 p is by definition the class N P which 

is equal to P by our hypothesis. So, therefore the claim holds true. Suppose it is true for i –1 so 

how do we show it to be true for i.  

 

Let L be a language which belongs to sigma i p. This means that there exists a polynomial time 

turing machine M and a polynomial Q such that x belongs to l if and only there exists a string u 1 

such that for all u 2 some quantifier Q i, u i, and M on x 1, x, u 1 up to u i evaluates to 1. And all 

the u j’s belong to have size Q of X. Now we can define a language L prime based on this 

language. 
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Let us define L prime which is the set of all tuples of the form x, u1 such that for all u 2 there 

exist u 3. Q i u i and M given X, u 1, u i evaluates to 1. I am just clubbing u 1 together with the 

given instance x. Now what can we say about L prime? It has i - 1 quantifier and it begins with a 

for all so therefore L prime belongs to pi i - 1 P. And since we had assumed earlier that sigma i p 

belongs to P.  

 

Here we have assumed that sigma i - 1 is belongs to P, so since P is closed under complement pi 

i - 1 also belongs to P. This also belongs to P since it is that we still do not know. But we what 

we can say is that since this is equal to P and P is so this we know is closed under complement, 

well does not matter because P by definition is a subset of all these classes. So, we can write 

equal to also.  

 

So, if this belongs to P that implies that there exist some polytime deterministic turing machine 

M prime such that L prime is equal to L of M prime. So, now let us go back to the language L 

prime so when do we say that language an instance is L prime. By our definition for all strings X 

we know that X belongs to l if and only if there exist U 1, such that M prime given X, u 1 = 1. 

So, that is what our definition of l prime was that there exists some u 1 which together with the 

string x and for all these certificates x gave us 1.  

 



So, therefore if you just check this so this is nothing but the definition of NP. So, therefore l 

belongs to np which is equal to p. Most of these theorems that you would see they will have this 

similar kind of flavor because it is just basically cutting down on the number of steps in the 

polynomial hierarchy and then being able to prove something. Actually, we can generalize this 

theorem a little bit. I just state it as a corollary. 
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So, instead of assuming that t = NP even if you assume something much weaker that if so for all 

i if sigma i p = pi i p. Then what do you think we can say about PH? If I just fix some i. So, it 

can be for any i so basically do not confuse this for all I statement together with this what this 

means is that if you fix any i that is greater than or equal to 1. And if for that particular i sigma i 

p = pi i p what do you think we can say about PH?  

 

Well not quite so PH will not quite all the way collapse down to p but it will collapse to sigma i 

of p. So, we have all these classes so let us draw small picture. We have the class p over here. 

And we have the class n p and the class co- NP. So, P is of course a subset of these two classes. 

This is nothing but sigma 1 p and this is pi 1 p. So, where does sigma 2 p sit? Sigma 2 p again 

encompasses both these and it is something like this. 

 

This I have you can think of this as sigma 2 p and you have similarly pi 2 p and the hierarchy 

continues. So, each level of the hierarchy contains all the classes in its lower levels. And each 



level of the hierarchy I mean you can think that the sigma and the pi versions are in some sense 

separate. If for any particular level I if the entire polynomial hierarchy above it if for any 

particular level these two classes coincide then basically what is happening is that the entire 

polynomial hierarchy that is sitting above it will collapse to that particular level.  

 

It does not imply that even the lower classes would collapse but at least we can say that the 

highest higher ones would collapse. It is not for one particular it is for any i. So, that is why so 

maybe can just rephrase the statement slightly differently. So, fix i, now if sigma i p = pi i p. 

Then it collapses to that. This i, that fixing can be anything. So, that is what I meant earlier. But 

there exist again, I do not I mean depends how you interpret it but there exist would mean that 

for some particular I, this is happening.  

 

It should be fine as long as you understand what is happening so that is what is important. Again, 

this you can just try out as a proof the proof is nothing is just its very similar along these lines 

where you have to prove it inductively just you have to start your induction from this particular i, 

instead of from i = 1. So, I will stop here today. 


