
Computation Complexity Theory 

Prof. Raghunath Tewari 

Department of Computer Science and Engineering 

Indian Institute of Technology-Kanpur 
 

Lecture-15 

Shannon Theorem and Karp-Lipton-Sipser Theorem 

 

So, yesterday the last thing that we saw was this P-uniform circuit families. And we also saw that 

if we have a language which is accepted by a P-uniform circuit family, it is exactly the same set 

of languages that are n P in the class P. 

(Refer Slide Time: 00:37) 

 

So, similarly we can also define an analogous notion of log space uniform circuits. So, they are 

known as L uniform circuit families, and the definition is basically the same it is only that. Now 

instead of restricting the turing machine to run in polynomial time, you just impose a log space 

restriction on it is work time. So, C n is a L uniform circuit family, if there exist a log space 

turing machine M, so with output. 

 

So, we are looking at turing machines which have an output tape also, because I want to write 

out the circuit finally, I want to print the circuit such that M on input 1 to the power n outputs the 

circuit C of n. And as it turns out that even, so although this is a restricted family of circuits. 

Because restricted in the sense that it is a subset of P-uniform circuits because of course if circuit 



can be generated by a log space machine, the same machine also we know runs in polynomial 

time. 

 

So, we know that L is contained in P, so therefore this is a smaller family, yes, but nevertheless 

the following result still holds. That L is in P if and only if L is decided by a L uniform circuit 

family. So, yesterday we saw this theorem that the same theorem holds for P-uniform circuit 

families but it also holds for this stricter notion. And the reason is that so one direction is easy of 

course because L uniform is a subset of P-uniform. 

 

But for the other direction what needs to be noted is that, again the same reduction that we saw 

yesterday, where we showed that P is contained in P slash poly. If you just observe that reaction 

that reduction carefully it is actually a log space computable reduction. So, at any point of time 

you are not storing more than logarithmic number of bits in your work day. 

 

So, that is the observation one needs to make to prove this theorem so I will just leave that thing 

you can verify that yourself but that is the essential idea any questions? Karp even polynomial 

time Karp reductions. There are no such implications as such basically what this means is that I 

mean if I impose a certain kind of uniformity constraint on a circuit family, all I am saying is that 

then the class of languages that can be decided by those family of circuits is not more than P, so 

that is only thing. 

 

And what I am saying here is even if you look at a stricter notion of uniformity that is log space 

uniformity which is even more stricter than polynomial time uniformity. Even then I am 

claiming that the class accepted is exactly the set of languages in T. So, it is there is no, so I do 

not know what you mean by connection with Karp and log space reduction. No, but here we are 

not looking at reductions as such we are looking at machine which produces. 

 

And yes, if you are looking at any circuit family that is being produced by these kinds of 

machines, then yes they yield the same family. But now there can be other interesting questions. 

So, suppose instead of looking at any circuit family if I look at let us say special kind of circuit 



families. Let us say circuits which have a small depth, so till now we have not talked about depth 

at any point. 

 

I mean we did not put any restriction on what depth a circuit can have the only restriction that we 

talked about was that of size. But if you look at circuits having certain depth then we later see 

that log space uniformity is actually a stronger constraint than P-uniformity. So, we will probably 

see that in sometime later. But as far as general circuits are considered, general in the sense that 

circuits which only can be generated by an L uniform I mean circuit families which are either L 

uniform or P-uniform, there it does not make a difference, any other questions? 

 

So, let us look at a lower bound result something which I briefly mentioned yesterday actually, 

but let us look at the proof of it. 

(Refer Slide Time: 07:50) 

 

So, a lower bound result regarding circuits. So, this is not very difficult to prove, let me state the 

theorem first. So, this was proofed in 1949 by this guy called Shannon and it is historically 

named after his name. So, what he proved is that for all n there exists a function f that takes n 

bits as input and outputs either 0 or 1. That requires circuit of size at least as large as 2 to the 

power n by what did I have some 11 n. 

 



So, this number is not very crucial I mean we will just see that it is because of certain back 

calculation that will end up with this number. But the point is that there exist certain functions 

for which I mean there exist certain function on n variables which requires circuits that have at 

least exponential size, so that is the main idea behind this theorem. So, I mean there are functions 

which are very hard to compute in some sense. 

 

I mean you cannot have any polynomial time sorry any polynomial sized circuit for such 

function. So, and the proof is basically just a pigeonhole principle kind of argument. So, let us 

quickly run through it, so how many functions are there on n variables on I am sorry on n bits? 2 

to the power 2 to the power n. So, there are 2 to the power 2 to the power n distinct functions on 

n bits. 

 

So, now let C be a circuit of size S, let us say we are looking at all circuits or like we are looking 

at a particular circuit of size S. How many bits do we need to represent this circuit? What is a 

good upper bound on the number of bits that we need to represent a circuit? So, for that let us 

look at a way of representing a circuit, so one way of representing a circuit is of course by using 

a an adjacency matrix. 

 

Because a circuit is nothing but a dag, so I can use but that is kind of too big representation. 

Because not only is a circuit a dag it is a dag which has a constant degree. So, every vertex has in 

degree 2, so I can represent a circuit using an adjacency list where each list has no more than 2 

elements. So, there are S many vertices and each corresponding to each vertex there is a list of 

size utmost 2. 

 

So, I can say something like, so C is a circuit of size S and S can be represented using sum let us 

say 10 S log S bits. So, this S comes from the fact that the number of vertices in this graph is S. 

And we need log S bits to represent one of it is incoming edges, so there are constantly many of 

them, so I am just being liberal enough and taking a large enough constant. Because maybe you 

need to also remember which is a I mean the labels on the vertices as well. 

 



So, you need 1 or 2 more bits for that. So, let us look at this, so one way of representing a circuit 

is by using a adjacency list representation. So, let us say the circuit has 4 nodes 4 vertices. So, I 

have a vertex v 1, I have v 2, v 3 and v 4 and each of these lists have size 2. So, there are S many 

such vertices on my adjacency list representation. 

 

And each such list has constantly many elements and to represent to one element you need log S 

bits, so that is why it is some 2 times log S plus maybe some other constants that is why I took an 

upper bound of 10. So, this 10 is not very important, the point is that it is some constant times S 

log S. So, there are S many things over here and to represent this you need good place. So, each 

of these needs log S bits some order log S, so is this clear? So, now how many such circuits are 

there of sizes. 

(Refer Slide Time: 14:47) 

 

So, the number of circuits of size S is equal to or is 2 to the power 10 S log S bits. Because each 

such circuit can be represented by a string of so many bits, and this is the total number of distinct 

such strings. So, now let us see where we get a contradiction, so we have 2 to the power 2 to the 

power n distinct function on n bits. 

 

So, therefore, so if I substitute the value of S, so substituting S equals the size that we picked 2 to 

the power n by 11 n, 2 to the power 10 S log S is equal to 2 to the power 10, 2 to the power n by 



11 n times log of 2 to the power n by 11 n. And if you work this out, this is not very difficult, if 

you work this out you will find that this is strictly smaller than 2 to the power 2 to the power n. 

 

So, what this implies is therefore there are functions, so there is a function g from such that f 

requires a circuit of size strictly greater than 2 to the power n by 11 n. So, guys please check this 

inequality, because I just worked it out but might be a mistake. But again the main point here is 

that the size is, I mean there are functions for which we need exponential sized circuits, so that is 

a lower bound result. 

 

So, which means that there are difficult functions as well. So, now let us come back to the other 

question that we posed at the very beginning. That so we saw that P is contained in P by poly, so 

what happens if n P is contained in P slash poly as well. 

(Refer Slide Time: 17:58) 

 

Yes 11 is just because I want, so if you just work this out I mean there are much better optimal 

bounds known here, there are even larger sizes for which the statement is proven. So, I mean I 

was just it basically all depends on what is the representation of the circuit that you are choosing, 

how many bits you are using to represent that. 

 

So, those things are taken care I mean those things are taken into account, and that does give a 

better representation which uses lesser number of bits and which does give more optimal bounds 



than this. But the fundamental point is that whatever optimal bound you get it is still exponential. 

So, let us look at this theorem this is quite interesting as well. So, this was first proven by Karp 

and Lipton in 1980 and then subsequently it was actually improved by Sipser I think in 81 or 82. 

 

So, we can credit all these three guys for this theorem. So, what they showed was if NP is 

contained in P slash poly, then the polynomial hierarchy collapses to the second level. So, 

actually what Karp and Lipton showed in 1980 was that if NP is contained in P slash poly then 

the hierarchy collapses to the third level, that is sigma 3 P. And then subsequently Sipser 

improved it to sigma 2 P. 

 

So, let us see how we can prove this, so what is sufficient to prove in this case is. Because if pi 2 

P is subset of sigma 2 P, then we as we have seen earlier what it will mean is that sigma 2 P and 

pi 2 P are the same classes. And if they are the same then it would imply that the hierarchy 

collapses to that level. So, we have seen this when we were looking at polynomial hierarchy. 

(Refer Slide Time: 20:51) 

 

So, let us look at a claim before proceeding to the actual proof. If NP is contained in P slash poly 

then for all polynomial time computable function F. So, let us say we are looking at functions 

which take 2 arguments for all polynomial time computable functions F and all polynomial P 

there exist a polynomial sized circuit family C n. Such that for all x if you run the circuit C mod 

x whatever is the length of x, if you look at that particular circuit. 



 

And you run the input x on that circuit, so that will give a string y such that F of x, y = 1 and 

cardinality of y is less than well I can say equal also it does not matter. Let us just keep this equal 

cardinality of y = P of x. If such a y exists and otherwise what this circuit will output is a string 

of so many zeros. So, in the first case it either outputs a string y of length P x which makes this 

function evaluates to 1. 

 

And if such a y does not exist then it outputs say string of so many zeros otherwise. So, let us 

understand what is happening here. So, under this hypothesis that NP is contained in P slash 

poly, that is NP has polynomial sized circuits. If you take any polynomial time computable 

function F on 2 arguments and you take any polynomial P. Then there is a polynomial sized 

circuit family. 

 

So, maybe I can write this as there exists some polynomial q such that C of n has size less than q 

of n for all n. So, this is just another way of saying that there is a polynomial sized circuit family 

which has the property that given any x if you run the appropriate circuit on that input x, it will 

either output a y such that f of x, y = 1 and y has length P of x, if such a y exist. 

 

And if such a y does not exist then it will output a string of P of x many zeros. Input to this is x 

yeah, so maybe I will let me clarify one more thing here. So, this is not the kind of circuits that 

we defined yesterday or the day before yesterday. So, here we are looking at circuits which 

actually have a output which is longer than 1, so we are outputting a string in particular, we are 

not outputting just one bit. 

 

And that we said yesterday that it is very easy to generalize, I mean we can just look at circuits 

which have a more than one sink. And each such thing corresponds to one bit of the output 

string. Any y, any it will just output some y, so there can be many y such that y has length P of x 

and f of x, y = 1, in which case it will just output 1 such y. So, this is not very difficult let us see 

how this happens. 

(Refer Slide Time: 26:56) 



 

So, before proceeding to the formal proof let us look at a picture to motivate how the proof 

proceeds. So, what we will do is we will construct for each n, for each n we will construct P of n 

many circuits. So, what each such circuit will do is I will have a circuit C n of 1, so C n of 1 on x 

will output 1 if there exist a y of length P of n. Such that F of x, y = 1 and the first bit of y is 1. 

So, I will just refer to this as y 1 = 1, so this particular circuit given an x it will check if there 

exists a y of that particular length P of n, such that F on x, y = 1 and the first bit of y is 1. 

 

So, what can we say about this circuit C n 1, so let us not go that far I mean we have not talked, 

but what can we say about the complexity of this circuit? The point is that, so if you look 

carefully at the definition of what is happening this circuit is actually realizable in NP or this 

circuit can actually be computed by an NP machine and that is quite simple. So, what that NP 

machine does is given an input x it guesses a y which has that particular length. 

 

And then it substitutes x and y, so x is already given, so it substitute that x and y on to the 

function F, and since we are assuming F to be a polynomial time computable function. So, it just 

evaluate what is the value of x and y I mean what is the value of that function on given x and y. 

And it also checks whether the first bit of y is 1 that is also easily checkable. And if all these 

conditions are met it will output 1 otherwise 0. 

 



So, it is very easy to see that this is checkable in NP, so is this clear to everybody. No so this has 

currently this has nothing to do with circuit, but we will come to that. All I am saying is that if 

you have such a problem where you want to design a circuit which has this property, this 

problem can be decided by an NP machine that is all I am claiming. And the reason why I am 

claiming that is basically because of the hypothesis. If there is an NP machine which can do this, 

then there is some circuit let us call it C n 1 prime which has polynomial size and which can also 

do the same thing. 

 

So, that is the reason why I want to come with an NP machine for this, because I want to apply 

the hypothesis. So, now we will construct a sequence of such circuits, so similarly C n 2 given x 

will output 1, so this is not quite complete. So, C n 2 of x, so it takes x and it also takes the bit y 

1, so this outputs 1 if there exists such a y such that F of x, y = 1 and y 1 is equal to here we 

should not use this same here. 

 

So, it is let us say it is given a bit b 1, so y 1 = b 1 and y 2 = 1. So, now I am claiming that 

suppose you are given a string x and a single bit b 1. Again checking whether there exist a y 

which has length P of n such that F of x, y = 1 and the first bit of y 1 = b 1, and the second bit is 

equal to 1, again this can be checkable in NP. 

(Refer Slide Time: 32:25) 

 



So, now we can generalize this and define the circuit C n i that given x and the bits b 1, b 2 up to 

b i - 1 will output 1, if there exist a y of size P n. Such that F of x, y = 1 and y 1 is b 1, y 2 is b 2, 

y i - 1 is b i - 1 and y i is 1. So, if you have such an input again I am claiming that this circuit can 

be realized by an NP machine, with just guesses a y, it verifies whether the first i - 1 bits are 

equal to these given i - 1 bits, and the i th bit is 1 or not. So, similarly we do this and we get the 

circuit C n P of n. So, now we can combine C 1 sorry C n 1 up to C n P of n to get a circuit let us 

call it C of n such that C of n on x is equal to and it is 0 otherwise. 

 

So, if such a y exists and it is 0 otherwise, so basically what we are doing is so as I said that each 

of these computations can be realized by an NP machine. So, therefore by our assumption there 

is some circuit for each of these computation, so now I can club all those circuits together. So, if 

you want to look at a pictorial view what is happening is, so suppose you have this circuit C n 1. 

(Refer Slide Time: 35:45) 

 

So, this is taking x as input and it outputs a bit b 1, so now I have C n 2, so I also feed x to this 

and along with that I also feed this bit b 2 this circuit b 1 onto this circuit. So, this will give me 

another bit b 2, now I have the third circuit. So, this gets x this gets b 1 and it gets also b 2, and 

this will give b 3 and so on. And now this entire circuit again this has size some polynomial in n, 

so is it clear how this is working. 

 



So, let us look at just one of these predicates, so suppose given an x, I want this circuit to output 

1 if this happens. So, first of all the first claim is that this predicate can be computed by an NP 

machine. So, there is some NP machine let us call it M n of 1 that given x outputs 1 when this 

happens, is that clear. Because F is a polynomial time computable function, so the machine just 

guesses y and verifies whether F of x y is 1 and the first bit of y is 1. 

 

So, now since NP is contained in P slash poly for such a machine there is a circuit which does 

that same thing, there is a family of circuit which is doing basically that same thing. So, I am just 

so that is the reason why I said that there is a circuit C n 1 which can compute this predicate, a 

polynomial sized circuit. So, if you are more comfortable, so maybe I skipped a step here but if 

you are more comfortable. 

 

One way you can think of this is first think of this as a NP predicate that is being computed, and 

then think of there being a corresponding circuit a polynomial size circuit which exist for that NP 

predicate because of our hypothesis. So, now again the same argument holds for the second 

circuit, the third circuit and so on. So, this circuit I am claiming now has some polynomial size 

and in particular this has size some q of n q of that is what I had claimed. 

 

So, I do not know if I have enough time to complete the rest, but let us see. So, now let us come 

back to our theorem it is not much left. 

(Refer Slide Time: 39:13) 



 

So, now we want to show that pi 2 is contained in sigma 2. So, which means that what we want 

to show, so if we have a language L in pi 2. So, this implies that there exist a sum polynomial P 

and a poly time computable function F on three arguments. Such that for all x, x is in L if and 

only if what is the definition of language being in pi 2. So, for all y 1 let us say having size P of 

mod of x, there exists a y 2 and F given x, y 1 and y 2 evaluates to 1. 

 

This is the definition of pi 2. So, now how can we use our earlier claim, so what did we claim 

earlier that for all functions F and for all polynomials there exist a family of polynomial sized 

circuits. Such that circuit given x will output a basically certificate y, which makes that function 

evaluate to 1. 

(Refer Slide Time: 41:41) 



 

So, now what we can say is for all x and for all such y 1s, so let us say we are looking at some 

particular n. So, we are looking at some fixed length n, so we are looking at all x’s of size of psi 

0 1 to the power n and all y 1 of psi P of n there exist a y 2 of length 0, 1 to the power P of n such 

that F of x, y 1 comma y 2 = 1. So, this is equivalent to saying that F of x, y 1, C of n given x, y 1 

evaluates to 1. 

 

So, all I am saying is that so let us see what is happening here. So, we have a function F and we 

have a polynomial P, such that we say x is in L if this predicate gets satisfied. So, now from our 

earlier claim if this happens then we have a family of circuits which gives us a y which satisfies 

that predicate. So, just think of this as being the x in our earlier claim, this x and y 1 together as 

being the x in our earlier claim. 

 

So, for all x here there exist, so therefore again for all x in 0, 1 to the power n, I can just restate 

this as follows. So, I can say that x will belong to my language L if and only if there exist a 

circuit sum such circuit such that C n has psi sum length sum C n S i is some polynomial in n and 

for all y 1 F given x, y 1, C n of x, y 1 evaluates to 1. So, now you see that this is basically a a 

sigma 2 predicate now. 

 

Because now we have switched these quantifiers, so instead of having a for all in front we have a 

there exist. Essentially what we are doing here is that we are guessing that circuit apriori. And 



then we are checking that for all y 1 is this predicate getting satisfied. And this holds true for all 

n, so therefore L is in sigma 2, so that completes our proof. So, we are out of time, so we will 

stop here. 


