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Introduction 

 

So last time we discussed, we ended our class with the definition of logspace reductions. So, 

logspace reductions just to recall, logspace reductions are reductions which computes functions 

using a Turing machine which has a logspace bound on its work tape and its output tape is just a 

write only type. So, it just goes from left to right. So, that is logspace reduction. So, let us look at 

some properties of logspace reduction.  
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And these are not very difficult to prove. So, the first property is a closure property. So, these 

reductions are closed under transitivity, so that notation is as follows. So, we have a L at as the 

subscript to denote it is a logspace reduction. So, the first property is if a language A reduces to 

B in logspace and B reduces to C then A reduces to C. So how do we prove this? So, suppose 

you have a Turing machine for this reduction.  

 

So, let us say you have a Turing machine for this, let me call this M 1 and you have a Turing 

machine for this M 2. So, you have to be little bit careful over there. So, that is okay. So, 



suppose we want to build a new Turing machine N which computes this reduction and it 

simulates let us say M 1 on one tape and M 2 on the other tape. But you have to be little bit 

careful because we do not have the input of M 2.  

 

So, you are given some input x which belongs to this language A and you have to compute an 

instance y which belongs to language C. So, suppose this reduction computes the function f and 

this computes the function g. So, what we want to compute is f of x, I mean g applied on f of x. 

So, this is what we want, this is our y. So, we do not explicitly have f of x, so I just cannot 

simulate M 2 and if I try to just write down f of x that will create problem. 

 

Because where do I store it because f of x is not guaranteed to be bounded by logspace. So, the 

idea is that we do not care about time. So, this is something that we discussed some lectures 

earlier. We do not care about the time taken to compute this reduction. We do not care about the 

time taken by this machine in what we do is we go ahead and simulate the machine M 2 that is 

we try to compute this function g. 

 

And whenever it needs a bit of, f of x, so suppose it needs some jth bit of, f of x which is good 

look at the other tape as you said which contains the description of machine M 1. And it has the 

input x on its input tape, we just simulate M 1 on x and we find out what that jth bit of, f of x is 

and we carry on with our computation of g. So, there is so there are two tapes which we will 

imagine.  

 

So, we will use the first tape to simulate the computation of M1 and will use the second tape to 

simulate the computation of M 2 and whenever M 2 requires a particular bit of, f of x, we will 

just go back to the first step will simulate M1 on the input which is x get that bit and proceed 

with the computation of M 2 and then finally on the output tape we will write g of f of x which is 

y. So, that is the idea, and this is again possible in log space. So, just you guys can complete the 

proof essentially you just follow this idea. 
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 So, let us look at another property. If a language A reduces to another language B and B is 

contained in L then A belongs to L as well. Again, this is using similar ideas. So, we have a 

logspace machine for B whenever that logspace machine requires an input of the language B, we 

just use this reduction. So, basically, I want to show that a belongs to l so given an input, so I 

will just use this reduction and this logspace machine together and decide whether A belongs to 

L or not.  

 

So, another reason why we need logspace reductions is because if we did, I mean, if it do not 

consider logspace reductions then this property is not true. In other words, if you are looking at 

only polynomial time reductions let us say and we have some language A reduces to B in 

polynomial time and B is contained in L. It does not imply that A is contained in L. So, we have 

to look at reductions which are of computation power that is not greater than the given classes so 

in this case L. 

 

 So, again the idea is the same. So, suppose you have a machine, you have a logspace machine 

M 1 which computes this reduction and you have a machine let us say N which decides if a 

string d is in L or not. So, what we do is given an input x, I want to decide if x belongs to A or 

not. So first what we do is we reduce x to an instance of B and then use this machine to check 

whether B that instance belongs to L or not.  

 



Again, we have to be careful because when we are reducing, we do not want to write out the 

entire thing. Because then that would I mean, we do not have sufficient space for that. So, we 

will again just write out as and when or will run this machine M 1 as and when we need a bit of 

an instance of B. This basically the same idea, you mean to say that if A is reducible to B in 

polynomial time see then the problem is that, so basically what you can pick is, suppose you 

pick A to be some, I mean basically by the same thing that I said last time. 

 

So, suppose A and B are both languages which are smaller than P. So, let us say that, they are 

both so B is a language which is in L and let us say A is a language which is a NL. So, I can 

always say that A reduces to B in polynomial time by doing the following, I pick two instances 

of B, a yes instance and a no instance and since I am already assuming that A is contained in NL. 

Let us say that A is the path problem.  

 

So, there is a polynomial time algorithm for A, so I just go ahead and compute A, right away. 

So, I will just use DFS or BFS and given any instance of A, I will just check whether it is a yes 

instance or no instance and depending on whether what answer I get, I will map it to the 

corresponding instance of B. So, if it is a yes instance, I will map it to the yes instance of B and 

if it is a no instance, I will map it to the no instance of B.  

 

So, it is a very trivial kind of a reduction that I am doing. Basically, I am abusing the power of 

polynomial time reductions that I am given. So, instead of doing and then it will not imply that A 

belongs to L. Because A is a language which is not known to be contained in L. So, basically the 

idea of reductions is that they should translate the structure of one problem to the structure of 

one another problem. I mean the reduction should not be so powerful so that it can actually 

compute the problem that is given to us.  

 

Because if it is actually computing the problem, we are abusing the power of reduction that is 

given to us, so is that clear. So, let me know Ii mean if it is not clear I mean, I can say this again 

but just let me know. What we are assuming here is that so suppose A is the problem path. So, 

we do not know if A belongs to L, in fact that is an open problem. But since we are using 



polynomial, the power of polynomial time reduction I can actually go ahead and compute A and 

then map it to A yes or no instance of B appropriately. 

 

 So, I am misusing the power of reduction that is given to us to actually solve the problem which 

we are not supposed to do. So, that is why it is important that we consider reductions which are 

at most as powerful as the languages that are the classes that we are considering.  
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So, let us move on, so the next theorem that we will see is actually we have already seen the idea 

behind this theorem but nevertheless I will go ahead and state it that the problem path is NL 

complete. So, we have already seen that path is in NL, so you just guess a path from S to T and 

if your guess succeeds you output yes otherwise you output no. So, the question is how do we 

prove that path is NL hard?  

 

The claim is that path is not only in NL, it is NL hard as well. So, how do we argue this? 

Exactly, so it is basically the same ideas that we have seen in our earlier classes. So since so how 

do we prove path is NL hard. So, let us take any language L in NL. So, this means that there is 

some non deterministic machine which is deciding L and which is logspace bounded. So there 

exists a machine M such that L is equal to L of M and M is non deterministic and logspace 

boundary, that is a definition.  

 



So, now since we know that such a machine exists, so given any input x, what we go ahead and 

do is we construct the configuration graph of the machine M on the given input x. And together 

with the vertices C start and C accept that gives an instance of the path problem. So, now there 

exist a path from C start to C accept in G m, x, if and only if what, if and only if this the given 

input x belongs to our language L. So that is the reduction. 

 

So, it is basically just taking the machine M, taking the input x and outputting all the 

configurations basically have to output all the edges of G m, x. So, basically for all pair of 

configurations C and C prime by looking at the transition function of M, you check whether C 

prime is reachable from C in one step. If it is you just say that C, C prime is an edge in G m x 

and you output that edge.  

 

So, you output the list of all edges and then you output the start configuration and the accepting 

configuration. So that is a so if x belongs to L then this is a yes instance of the path problem and 

if x does not belong to L this is a no instance. So, there is nothing dramatic happening over here 

it is just basically just follows, from the definitions, any questions? So, let us move on so we will 

see a very important result about space bounded complexity and this is one of the breakthrough 

results in complexity theory. 
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 So, basically what we will show is that, so we will show that NL is closed under complement. 

Basically, NL is equal to CO NL, and the reason why this is so very important is that, so recall 

that when we were discussing the class NP and we for the class CO NP, we saw that how 

difficult it is to prove that NP is equal to CO NP. In fact, what people generally believe is that 

these two classes are not the same.  

 

And what is the reason for that. So, the reason for that is the following, so what does it mean to 

say that let us say NP is equal to CO NP, it means that even for nonexistence of a certain 

instance there is a small sized certificate. So, let us say if you want to say this with respect to the 

SAT problem. So given a formula phi, it is very easy to check existence of a satisfying 

assignment. 

 

You just guess an assignment and that is a small sized assignment. But how do you prove that it 

is not satisfiable how can you come up with a short certificate which proves that phi is not 

satisfying. So, that is something which is very difficult. Because well there are exponentially 

many assignments and well one way to get a certificate is to basically try out all those ones and 

that is an exponential sized certificate.  

 

So, that is the fundamental reason why for non deterministic classes closure under complement 

is so very difficult. So, this result was shown independently by two people in 1988 and this was 

something which was not believed. I mean although we are looking at a different model, we are 

looking at space bounded complexity and in particular machines which can use only logarithmic 

amount of memory.  

 

But still this was something which was not believed to be true. So this was very counter intuitive 

that how can non deterministic classes be closed under complement. So this was shown 

independently by two guys Immerman and Neelimerman and Robert Zelazny, I hope I have the 

spelling correct, in 88. So Zelazny was in Russia and Emmerman was in America. So, there was 

no communication between them. But so nevertheless this was a very important result. 

 



 So, we look at the proof of this theorem today. So, what we will show is that the language path 

complement. So, path complement is the set of all instances G, s, t such that there does not exist 

a path from s to t in G and path complement is a complete problem for CO NL. By again you can 

prove this by the same argument. So, what we will prove today is that for the rest of the lecture 

is path complement belongs to NL.  

 

So, what do we want to show that given such a instance if s is not reachable, I mean if t is not 

reachable from s then we can answer that using an NL machine. So, let us look at an easier 

problem first. So, I just want to motivate, I mean how this proof was constructed. So, instead of 

looking at the actual algorithm, let us look at a easier problem.  
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So, suppose somebody gives you the following number, so together with the input G, s and t he 

also provides you a number r which is the set of all vertices, I mean the not the set but the 

number of all vertices that are reachable from s including s. So, suppose you are given this a 

number r which is defined as the number of vertices reachable from s, of course including s, 

because s is trivially reachable from itself.  

 

So, can you now give me an NL algorithm. So, what you are given as an input is you are given 

G, s, t, r together with the promise that r is the number of vertices that are reachable from s and 

what you have to output is, you have to output let us say yes, if s is not reachable or if t is not 



reachable from s and no otherwise of course in NL, how to do this? So, basically what the idea is 

that we will use this as a check. So, this number r will use it as a check.  

 

So, let me give the algorithm and maybe we can discuss then why it is correct and how much 

time it is taking. So, the algorithm is as follows.  
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So, for all vertices v belonging to the vertex set of G minus t let us say. I guess a path from s to 

v. So, if the guess succeeds that is if I am actually able to correctly guess a path. Then well I 

need to keep a counter. So, I will keep a counter over here, C which will initialize to 0, then you 

increment the counter and you carry on. So, now when do we accept can we complete the rest of 

the algorithm and when do we reject?  

 

So, at the end of this loop if C equals r, what do we do? What can we say? We output Yes else 

No, so this is the correct algorithm and why is this correct? So, we are looking at all vertices in 

the graph other than t. So, if C actually if I am able to count, I mean actually if the counter 

reaches r it means that the number of vertices that are reachable from s it does not include t. 

Because if you look at the definition if you look at the way this algorithm is proceeding the 

counter can only be at most as large as this number r.  

 



Because I never increment this counter for a vertex which is not reachable from s. So, there can 

be many computation paths along which this counter is strictly less than s where I mean there 

was a vertex which was reachable from s but I was not able to guess a path properly. So in which 

case we do not care? But there will be at least one computation path along which I will be able to 

correctly guess all the vertices that are reachable from s.  

 

In other words where the counter will be exactly equal to r and of course t is not reachable from 

s which is why I will output Yes and otherwise I will output No. So, is this clear to everybody 

and this again it is easy to see this is in log space. Because I am using just few variables, I am 

using a variable here and maybe to guess these paths I will use one or two variables. So, just by 

using some constant number of variables, I can run this algorithm and each variable takes log n 

bits.  

 

So, now the problem is how do I get this value r, how do I get the set of all vertices and the 

count of all vertices that are reachable from s. So, what if we do the following? So, what if we 

attempt the following?  
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So, basically what we do is, so let us say we keep a counter C, so let me write this as attempt to 

compute r. So, what we do is we keep a vertex C as the vertex that we will use for counting and 

for all vertices v in V, I guess a path from s to v. If it succeeds is if I correctly reach the vertex V, 



then I increment the counter and I run this loop and then finally at the end I just output C. So, is 

this correct, so this is a non-deterministic algorithm, because I am doing some guesswork.  

 

So, the first question is does it actually give the correct value of r along some computation path? 

It does right. So, does it give an incorrect value along some computation path can it give, it can 

right. In particular, here right here so suppose you have a vertex v that is reachable from s. But 

you are not able to correctly guess a path, you guess an incorrect path in which case you are not 

incrementing the counter.  

 

So, in which case the final value that you output is strictly less than r. So, this is a non-

deterministic algorithm. So, starting from the beginning, there are several computation paths 

along some paths maybe you output the correct value r and along some path you output some r 

prime, r double prime may be some a double prime again which are strictly less than r. Sorry, 

these values are strictly greater than r. 

 

 So, you are right, so if you are not able to reach. So, suppose so what do I want, what I want is 

that if t is not reachable from s there should be some accepting path, along some path out I 

should output Yes and if t is irreachable from s along all paths I should output No. So, let us look 

at the first case here.  
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So, maybe I can analyze the correctness of the first algorithm. So, if there is a path from s to t. 

So, then note that since I am not including t in the set of vertices that I am considering this 

counter will never reach the value r along any path. Because there is a path from s to t so t is 

counted within this value r. And since I am not including t the counter c will always strictly be 

less than r.  

 

So, therefore I always output No. Similarly, if t is not reachable from s, it can happen as you said 

it can happen that I incorrectly guess a path for which I do not and therefore I do not increment 

C and therefore when I come to this step C is less than r and I output No, that can happen. But 

the point is that there will be at least one computation path along which I will correctly guess all 

the vertices that are reachable from s and therefore c will be equal to r and therefore I will output 

Yes. So, it is yes on at least one computation path.  

 

What do you mean by always output Yes? That is what I am saying but it can be that there is a 

path but I am not able to guess a path. Suppose you have a graph suppose you have a simple 

graph, and I am trying to guess let us say this is my vertex v and this is my vertex s. So, we 

know that there is a path from s to v, so let us say when I start guessing whether there is a path 

from s to v, I start from here. 

 

So, I non-deterministically guess which way I should go. So, let us say if I am going left then I 

reach this vertex then again, I non deterministically guess which way I should go and then I can 

reach either this vertex or this vertex. So, along if I am guessing this path then I will never be 

able to find v, if I am guessing this path then I am able to find v also if I am guessing this path, I 

will be able to find v.  

 

So, there is a sequence of non-deterministic choices along which I will find v and there can also 

be sequence of non-deterministic choices along which I will not find v. So, that is what I am 

saying that if the guess succeeds. So, even if a vertex is reachable it can it is possible that my 

guess does not succeed. Because I mean what does it mean to guess I mean, it just means that 

when I am at this vertex, I am just choosing which way I should go either this way or this way.  

 



So, if a vertex is reachable then the claim is that there is at least one path which will lead me to 

the correct destination. So, if I am using this approach to compute r what can happen is that, 

along certain computation paths I will get a value which is, no, actually values which are smaller 

than r. So, this was correct, so r prime and r double prime they are strictly small smaller than r 

and therefore if i am using these values on top of this subroutines, I will get incorrect answers.  

 

So, the point is that how do I compute the correct value of r? So, in fact this is the most crucial 

part of this algorithm. Any questions before we proceed. All possible paths, how do you know 

that the answer of every computation is No? That you do not know. Because the moment you 

proceed along a particular computation path you do not know what is happening in the other 

paths.  

 

So, computation is proceeding only along one path. So, it is only the global property of the 

machine that you use to decide whether a string is acceptable or not. But locally within a 

computation path they are totally ignorant about what is happening along other parts. See that is 

the same problem with NP and CO NP as well. So, you can say that I mean if you want to use 

the same logic you can say that well I will guess a satisfying assignment and if along all paths I 

am not able to find a satisfying assignment then I will accept.  

 

Let us say if I want to accept SATBAR that is not possible. Because I do not know what is 

happening, I mean I cannot get information about the other computation paths. You mean for the 

SAT problem. No, this problem. What do you mean by satisfying assignment? Basically, as you 

find a path, so if you find a path you flip that bit to one. So, however you test. How are you 

testing all the paths?  

 

So, you do not know I mean you cannot keep a count on the number of paths. I mean you cannot 

index all the paths. So maybe the next time that you are guessing you will try guessing the same 

path and if you try to index all the paths that you cannot do it in log space. Because there are 

exponentially many paths it will take at least some super logarithmic number of bits. We have 

loops here, now I have a loop here as well as here.  

 



So, here it is still deterministic I mean up to this point it is deterministic, but the moment I try to 

guess a path that is where I am introducing non-determinism so that will give me different 

computation paths. It is actually a loop so this is a I mean this is giving rise to a loop and the 

same thing here this is giving rise to a loop anything else. There we have the guarantee that if the 

string belongs to the language, there is some computation path which will give me a Yes.  

 

Guessing is not the root of the problem. Basically, guessing is the same as non-determinism 

using non-determinism, because what is non-determinism? It means that from one configuration 

I can go to multiple configurations. Guessing a state in the middle of the no so that is what i was 

saying when I answered his question that you do not care. So, maybe there are sequence of 

guesses which will give you to a No.  

 

So, suppose you have a instance x which does belong to a language. But there is a sequence of 

guesses which will lead you to a No. For example, here so v is reachable from s, but there is a 

sequence of guess in particular, this particular sequence which does lead you to No. But the 

promise is on the global structure of the machine.  

 

Globally it has the property that there is some computation path which leads to Yes. So, what is 

the definition of non determinism? I mean, if even if you go back to first time when we saw non-

determinism. So, non-deterministic machine is one where from one configuration you can go to 

multiple configurations. And the thing is that if at the end, so finally at the end of your 

computation you can be at many different configurations at the same time. And if at least one of 

those configurations contains an accepting state then you accept. 

 

 There can be many configurations which contain a rejecting state at the end of your 

computation. But you do not bother about them.  
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So, basically you have a machine. So, suppose you have a machine M which is given a string x. 

So, the question is how do you answer yes. You answered yes if this machine at the end of its 

computation, it can be at many different configurations. Because since it is non deterministic, it 

has this property that it branches away. So, at the end of its computation it can be, so let us 

assume that M is a halting machine. M always halts some x.  

 

So, therefore when it holds it can be at many different configurations at the same time. It is the 

case in these algorithms. So, here we are treating our accepting state to be those states where we 

are at the vertex v. For example, here so, I am saying that suppose if i want to so let us maybe I 

can explain this a little bit more. So, suppose I am given a graph G and I want to test if there is a 

path from s to t. So, let us look at what the non-deterministic algorithm exactly is.  

 

So, what I will do is from s at any vertex, so if I am at any vertex p, I look at all the edges that 

are going out of p and for all those edges, so suppose there are many edges q, there are many 

vertices q that are reachable from p in one step. For all those vertices I will go to a different 

configuration of the machine which is trying to decide if t is reachable from s and then I set q to 

be my current vertex and I keep on doing this.  

 

Now finally when do I accept if at the end of n steps if I am at a configuration which contains 

the vertex t as its current vertex that is when I go ahead and accept. So, I define my accepting 



state to be that particular state where it is reading t as its current vertex. So there can be many 

things, there can be many different paths from s to t, there can be paths which lead to other 

vertices and there can be many ways in which that can happen.  

 

So there are many ways in which I can land up at different vertices in this graph. But the point is 

that if there is a path from s to t there is at least one path which will land me up at t. So that is the 

thing. So the way to think about non-determinism is that I mean, you have to share the idea I 

mean you have to I mean you cannot think in terms of a deterministic machine. You do not have 

power to decide to look at all these computation paths.  

 

So locally you can only look at one computation path and there can be computation paths which 

reject a particular input x although it belongs to the language. But we say that the machine 

correctly decides a language L if for all instances x that belong to the language. There is at least 

one final configuration of the machine which has an accepting state. So, when you say that you 

are guessing it means that if there is a path there will always be a correct sequence of guess.  

 

So, the way I will define my non-deterministic machine is as follows. So, what is a non-

deterministic machine? It means that the transition function can go to multiple configurations. 

So, I will define my transition function as, so if I am at a vertex v and it has many vertices that I 

mean if it has many outgoing edges from it. I mean the machine simultaneously will go to all 

these vertices.  

 

So, my transition function will take the machine simultaneously to all these possible vertices. So, 

when I am saying, I am guessing a path it means that I am simultaneously trying to look at all 

possible paths. So, if you have any other questions, I think we can take them offline and we will 

complete the proof next time. 


