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Last time we started this new topic called expanders or the concept is called expansion. So the

theorem that we are proving and it will take some time to finish the proof is by AKLLR 1979. So

in this theorem we will show that if you are given an undirected graph and vertices s and t, s for

source t for target, you want to check whether there is a path from s to t okay.

And in fact the, I mean in the end you will see that you can also output the path and everything

can be done using only logarithmic space in the work tape, okay. So input size is n, output size is

also n, but the workspace is only log n or order log n. And the idea is very simple. The idea is

just that you start your random walk from vertex s, which means that whatever neighbors you see

you pick a random one and then proceed okay.

So obviously, the main point here will be calculating the success probability, okay. So if s and t

are in the same connected component, what is the success probability of this random walk
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reaching t from s in steps where is something like this 300 times n the 4 log n. So what we𝑙 𝑙

have done till now is we defined this normalized adjacency matrix.

So normalized adjacency matrix is this 0,1 matrix but you will divide by d where d is the degree

of each vertex in the graph. Remember, we have already made our graph regular by a simple

transformation. So A is a symmetric stochastic matrix. So it has only real eigenvalues, right?

This I left as an exercise and the maximum eigenvalue is in magnitude 1. Next important thing

we defined was the probability vector.

So initially the probability vector is all concentrated on the vertex s. So the probability of being

there is 1, everywhere else it is 0. And as you take step, so every step is multiplying A with the

probability vectors, okay. This stochastic matrix is the kind of the probability density matrix and

this acts on the probability vector to get a new probability vector, which will be where you will

be with what probability after one step and two step and so on.

(Refer Slide Time: 03:08)

So we were then looking at this question in red, how large is )t place, okay. So we are(𝐴𝑙. 𝑒

interested in the probability of reaching t in l steps. So that is exactly this question )t(𝐴𝑙. 𝑒

coordinate and we will study it by eigenvalues and eigenvectors of A.

(Refer Slide Time: 03:36)
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So let us start that study. So first you denote the uniform probability vector which is

….., )T So this is we call it the uniform probability vector because this is just equal( 1
𝑛 , 1

𝑛

probability of being anywhere in the graph, which is 1 / n. And this is the ideal. So you want to

reach this state, right? So after steps you want to reach a state wherein probability of being at𝑙

any vertex is equal, which is 1 /n.

This ideal vector we will call and observe that A. = okay. So what this means is thus 1 is an1 1 1

eigenvalue And is eigenvector of A. Okay, this is the first property you learn. And we will also1

be interested in the vectors that are orthogonal to . So orthogonal means that1

n So notice that this means, in particular that has negative coordinates and1⊥: = {𝑣 ϵℝ |(𝑣, 1) = 0 } 𝑣

positive coordinates. So this is not really a probability vector. It is just a subspace, okay. This is a

subspace, vector space. So this is called vectors orthogonal to , okay orthogonal vectors. And1

one nice property that we will show is the action of A on this subspace orthogonal, okay. That1

is very nice.

And if you look at the maximum length of A for every in this space that will give you the𝑣 𝑣

second eigenvalue which is . So define So if youλ
2

λ(𝐴) : = 𝑚𝑎𝑥{ ||𝐴𝑣||   |  𝑣ϵ  1⊥ & ||𝑣|| = 1}
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look at the unit vectors in this space and apply A on that look at the length pick the maximum

length, call it , this is the second largest eigenvalue.λ(𝐴)

So why is that why is this thing related to , in fact equal to . What is the reason? So this willλ
2

λ
2

lead, this will need a proof. So first you identify a basis of this subspace. So pick an orthonormal

basis. Let us take b1 to be because that is an eigenvector of A. And then you take b2 and bn. So1

orthonormal basis b1to bn such that bi is, in fact this is a basis of n, okay. } ofℝ {𝑏
1

= 1 , 𝑏
2
,..... , 𝑏

𝑛

nℝ

Basically we are picking n linearly independent vectors, real vectors The first one is and each1

of these bi is a is an eigenvector such that bi is an eigenvector of corresponding to i ∀iλ ϵ[𝑛]

so we have picked this orthonormal basis. So these are mutually orthogonal. Moreover, they are

unit vectors they are eigenvectors of A, okay.

This can be found this exists and it also can be found it exists mainly because of this above

exercise A is symmetric stochastic. So the eigenvalues are real and then when you look at the

linear system = , will be a real vector okay and then you can also pick them to be𝐴𝑣 λ 𝐴𝑣 𝑣

mutually orthogonal and unit vector.

So this, we fix this 1 to bn and what happens is then by definition other than , so b2 to bn, if you𝑣 1

look at b2 ,b3 ……. bn, they form a orthonormal basis of orthogonal, okay. That is now by1

construction.

(Refer Slide Time: 11:09)
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So now = . So which means that any vector in this space can be written1⊥ 𝑠𝑝
ℝ

{𝑏
2
,...., 𝑏

𝑛
} 𝑣 ϵ 1⊥

as and now you can study the action of A on this orthogonal space. So (𝑣 =
𝑖≥2
∑ α

𝑖
𝑏

𝑖
1 𝐴𝑣 =

𝑖≥2
∑ α

𝑖

𝐴𝑏
𝑖
) =

𝑖≥2
∑ (α

𝑖
λ

𝑖
)𝑏

𝑖

So is a constant, bi is a vector. So this is the combination of which means what?α
𝑖
λ

𝑖
𝐴𝑣

Now remember that bi’s are orthogonal, right? So this is actually an orthogonal, it is a linear

combination of orthogonal vectors. So it behaves very well with the Euclidean norm. So the, if

you look at the length of this vector square, this is exactly equal to )2, okay because bi’s are(α
𝑖
λ

𝑖

orthogonal and unit vectors.

So the length can be expressed as just this sum of squares, which means that so we did not pick𝑣

to be a unit vector but we can make it unit by just dividing by 2 and that will be .||𝑣||
Σα

𝑖
2λ

𝑖
2

Σα
𝑖
2

2= )2 =||𝐴𝑣||
𝑖≥2
∑ (α

𝑖
λ

𝑖
⇒ ||𝐴𝑣||2

||𝑣||2

Σα
𝑖
2λ

𝑖
2

Σα
𝑖
2

So we are just taking a convex combination of , okay.λ
𝑖
2
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Now when you take this convex combination or when you take this kind of weighted average

you cannot exceed the maximum. So a maximum is , okay. So this A’s action on orthogonalλ
2

1

unit vectors right this cannot give a scaling more than . Also ,λ
2

𝐴𝑏
2

= λ
2
𝑏

2
⇒||𝐴𝑏

2
||/||𝑏

2
|| = λ

2

right?

So what we have is that in orthogonal space there is a unit vector whose scaling is exactly1 λ
2

by A and no other vector can exceed scaling of . So this overall means that overλ
2

𝑚𝑎𝑥 ||𝐴𝑣||

unit vectors in orthogonal is exactly okay. So this proves this theorem that which was1⊥  λ
2

λ(𝐴)

the max scaling, this is exactly . And this we are calling .λ
2

λ(𝐴)

So lambda A is exactly , okay. This is a very useful property that we have just shown. So weλ
2

are still just studying eigenvalues of A right. So next property that we will prove is remember we

wanted to study the action of . So how do the eigenvalues and especially the second largest𝐴𝑙

eigenvalue, how does this change as you power A. That is the next property to study.

(Refer Slide Time: 16:58)
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So what we will show is that . This is again a cute property. So by definition ofλ(𝐴𝑙) ≤ λ(𝐴)𝑙

. That we just showed this, the max cannot exceed . So everyλ: ||𝐴𝑣|| ≤ λ(𝐴)||𝑣||,  𝑣ϵ1⊥ λ(𝐴)

action divided by is this in magnitude.𝐴𝑣 𝑣 λ(𝐴)

Also, so what we are doing here is that from this inequality we will now study say the action of

A2. What is A2 So that we can see as action of A on . But then what is ? So we actually𝑣 𝐴𝑣 𝐴𝑣

saw in the previous proof that remains in , okay. So in that sense we can apply this𝐴𝑣 1⊥

inequality a second time. So in so formally speaking this is orthogonal to .𝐴𝑣 1

Why because okay. This is a< 𝐴𝑣,  1 >   =  < 𝑣, 𝐴 1 >  =  < 𝑣,  1 >  = 0 ⇒ 𝐴𝑣ϵ 1⊥

shorter proof than the previous one. So what we have learned is that A maps to itself, okay.1⊥

So A is a map from to itself. And the good thing about this is then A2 is also a map from to1⊥ 1⊥

itself and as well.𝐴𝑙

And the shrinking that it does, so shrinking each vector by a factor . So if you apply two≤ λ(𝐴)

times it will be 2. Three times or times then it will be okay. That is the proof; forλ(𝐴) 𝑙 λ(𝐴)𝑙

every in . This means that is at most this factor that you have shown above, okay.𝑣 1⊥ λ(𝐴)𝑙

So this kind of does not exceed . That is what we wanted to show. In fact, as anλ(𝐴𝑙) λ(𝐴)𝑙

exercise, you can also show that they are equal, but I would not need that. You can show this

because basically, you look at the eigenvalues of in terms of to . And you can show that𝐴𝑙  λ
1

λ
𝑛

the eigenvalues are exactly -th powers of those, okay.𝑙

So the order of the eigenvalues that you started with will remain the same. So it is actually a very

strong relationship. Powering of a matrix is very nicely related to the original matrix in terms of

eigenvectors and eigenvalues. So these were the basic properties of eigenvalues. And now we

will go back to questions that are more relevant to the theorem that we want to prove, which is

what is the action of on probability vector.𝐴𝑙
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So let us prove it in two lemmas. First lemma is for all probability vector, for every probability

vector , okay. And since is a fraction as you walk more and more in𝑝 ||𝐴𝑙𝑝 −  1 || <  λ(𝐴)𝑙 λ(𝐴)

a random fashion in the graph, you approach the uniform probability.

So the way we will show this is again we will use this above property of . So we have to seeλ

as an action of A on some vector. So for that simply observe that𝐴𝑙𝑝 −  1 𝑙

= ) . Because, these two vectors are exactly equal, =||𝐴𝑙𝑝 −  1|| ||𝐴𝑙(𝑝 −  1 || 1 𝐴𝑙1

then you repeat this times. And now ) is orthogonal to , you can show that. And𝑙 (𝑝 −  1 1

because of that okay, let us just claim it and , > = < > So<𝑝 −  1 1  𝑝, 1 >  −  < 1, 1

remember that is a probability vector. So the inner product with 1 by n will give you overall𝑝

1 /n.

And the second thing for the same reason 1 / n. So they are equal okay, it is 0. So which means

that is actually acting on a vector which is orthogonal to . So you can use scaling𝐴𝑙 1 λ(𝐴𝑙)

factor.

(Refer Slide Time: 25:21)
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So this means that So we will actually||𝐴𝑙(𝑝 −  1)|| ≤ λ(𝐴𝑙) . ||𝑝 − 1|| ≤ λ(𝐴)𝑙. ||𝑝 − 1||

show that this is less than 1. So we can drop it.

So let us do that. So define . So you can write it as sum of squares𝑝' : = 𝑝 − 1⇒  ||𝑝||2

. . So which means that < right. Because this s𝑝' : = 𝑝 − 1⇒  ||𝑝||2=  ||𝑝'||2 + ||1||2 ||𝑝'|| ||𝑝|| 1

length is positive.

So is then strictly smaller than which is or let me continue using squares. So||𝑝'|| ||𝑝||

. So what we have learned is that <1.||𝑝||2 =
𝑖=1

𝑛

∑ 𝑝
𝑖
2 ≤

𝑖=1

𝑛

∑ 𝑝
𝑖

= 1 ||𝑝'||

So which means that this . So after steps of the random||𝐴𝑙𝑝 −  1||≤ λ(𝐴)𝑙. ||𝑝'|| < λ(𝐴)𝑙 𝑙

walk the difference between your probability distribution with the uniform probability

distribution is . is a fraction so it keeps on decreasing. So you are reaching the uniformλ𝑙 λ

distribution, okay.

So this is a very natural result, but we have obtained it with a great number of calculations and

matrix analysis. But there is an easy way to read this, there is an intuitive way. So what you learn

from this the qualitative reading of this equation is the further is from 1, okay. So in otherλ(𝐴)

words the smaller is, it is a fraction, but the smaller it is.λ(𝐴)

So the further away it is from 1, the faster is the convergence to to the uniform distribution,𝐴𝑙𝑝 1

okay. And this is what motivates spectral gap, the notion of spectral gap. So for a graph like this

given by adjacency matrix, normalized adjacency matrix A, the spectral gap is

1- or 1- and we want it to be large. So 1 - or we can equivalently define it for theλ(𝐴) λ(𝐺) λ(𝐴)

graph as well in the same way.

This is called the spectral gap of the graph G and we wish it large, okay. So two things we have

defined here, two major concepts in graph, in spectral graph theory. First is the spectral gap and
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the larger it is, we want it to be large because the larger it is expansion in the graph is rapid, okay.

And the reason is this inequality we showed that after steps the error term from uniform𝑙

distribution is .λ𝑙

So if is very small is large then this converges very rapidly to 0 okay making yourλ 𝑙

reachability everywhere with equal chance, okay. So this is a major point in our understanding,

but we are still not done because remember we wanted to fix the value of in the algorithm,𝑙

right? So how long should we walk or how far should we walk? How many times should we pick

these random neighbors?

So for that actually we have to prove a bound on the spectral gap, okay. So no matter what graph

you are given, because your input is an arbitrary graph, what can you say about the spectral gap?

How large is it? So we will show that it is sufficiently large for every graph.

(Refer Slide Time: 33:40)

That is lemma 2. And then we will be done. So for every d-regular connected graph G( with

self-loops). In the proof you will see how we will use connectedness and these self-loops, okay.

It will appear in some equations estimates. So for any such graph, spectral gap 1- 1/8dn3.λ(𝐺)≥

So somewhere we should say n is the number of vertices connected n-vertex graph with

self-loops okay.
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So every vertex has degree the same which is d and n vertices. It is connected and there are

self-loops. Then the spectral gap is 1/n3. The reason why we are calling it large is because it is

inverse polynomially away from 0. So in contrast to this, this spectral gap could have been

extremely close to 0, but it is not, okay. It is inverse polynomially away from 0, so we call it

large.

It is inverse poly in the input size. That is why we call it large. It is not inverse exponential, it is

not 1/2n. So this is a good thing and the proof will be tricky. So first thing we will do is we will

replace this by as a norm on space, okay. So remember that is the norm can beλ(𝐺) 1⊥ λ(𝐴)

thought of as the maximum scaling that or maximum, yeah maximum scaling that you get when

A acts on , right.1⊥

So we will use that interpretation that is the idea. So use the norm interpretation of when Aλ(𝐺)

acts on . So that is the basic idea, but then you have to do a number of calculations to actually1⊥

get to this 1 /n3. Okay, so let us start that. So you can write, so let be a unit vector and𝑢ϵ 1⊥

. And then we will look at the stretch or the scaling that has happened when you went𝑣: = 𝐴𝑢

from u to v.

So we will show that is large. And once you have shown this1 − ||𝑣||2 1 − ||𝑣||2≥ 1/4𝑑𝑛3

you will get that, in other words we are showing that is small. So1 − ||𝑣||2 1 − ||𝑣||2

and . So this is the sequence of some of the basic≤ 1/4𝑑𝑛3 ||𝑣|| ≤ (1/4𝑑𝑛3)1/2 < 1/8𝑑𝑛3

kind of landmarks we will have in the proof. We will start with . We will show that1 − ||𝑣||2

this is small.

And because this will be smaller than 1 - . Now this will mean that 1 - is large,||𝑣|| 1/8𝑑𝑛3 ||𝑣||

okay. And 1 - is actually 1 - , which will exactly tell you about So you will have||𝑣|| ||𝐴𝑢|| λ(𝐺)

the statement in lemma 2, fine? So we will now focus on for this reason. So the first1 − ||𝑣||2

claim is that has a nice expression, okay.1 − ||𝑣||2
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It has a nice expression, which is why we actually chose it. So the expression will be

. So you can write this 1 minus square as sum of squares with1 − ||𝑣||2 =
𝑖,𝑗ϵ[𝑛]

∑ 𝐴
𝑖,𝑗

. (𝑢
𝑖

− 𝑣
𝑗
)2

the coefficients being . So this is called, in the literature it is called quadratic form in the𝐴
𝑖,𝑗

Laplacian of G, okay. So this equation has a fancy name, it is actually related to the Laplacian of

the graph. It is a quadratic form in that, okay.

So remember is . So u has n coordinates v has n coordinates and what this quadratic form is𝑣 𝐴𝑢

capturing is it is actually sum of squares for all possible differences across, right? So . So𝑢
𝑖

− 𝑣
𝑗

this is what we want to show. So once we show this, then the strategy or the plan would be to

show that this for some i, j is large, okay. We will show that for some i, j it is large and𝑢
𝑖

− 𝑣
𝑗

hence, the left hand side is large.

That would be the eventual plan. So let us first prove this. So this is just a calculation on the right

hand side. So Then we will calculate these three𝑅. 𝐻. 𝑆 = ∑ 𝐴
𝑖,𝑗

𝑢
𝑖
2 − 2∑ 𝐴

𝑖,𝑗
𝑢

𝑖
𝑣

𝑗
+ ∑ 𝐴

𝑖,𝑗
𝑣

𝑗
2

terms separately. So this is equal to first term you sum up over i.

(Refer Slide Time: 43:40)
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So you get this . It is basically the i-th row sum or sum of the i-th row in A, right the
𝑖

∑(
𝑗

∑ 𝐴
𝑖,𝑗

)𝑢
𝑖
2

second was this . This is the cross term. This is actually related to the inner product <Au,v>plus

a symmetric thing like the first one . And as you can guess, this will simplify because
𝑖

∑(
𝑗

∑ 𝐴
𝑖,𝑗

)𝑣
𝑗
2

A is stochastic. So this is 1 and then you get
𝑗

∑ 𝐴
𝑖,𝑗

.∑ 𝑢
𝑖
2 − 2 < 𝐴𝑢, 𝑣 >  + ∑ 𝑣

𝑗
2 = ||𝑢||2 − 2 < 𝑣, 𝑣 >+ ||𝑣||2

But u we have assumed to be unit vector, right? So this is is 1. So 1- as claimed, okay.||𝑢||2 ||𝑣||2

So this is equal to the left hand side; that is all. So now the strategy as I said is thus it suffices to

, okay.∃𝑖, 𝑗, 𝐴
𝑖,𝑗

... (𝑢
𝑖

− 𝑣
𝑗
)2 ≥ 1/4𝑑𝑛3

So we will show it next. Here we will use the connectedness and self-loops, okay. We will get

this and once we have for some time note that all these terms are actually non-negative,1/4𝑑𝑛3

okay. So the sum cannot be smaller than that. So that will give you the lower bound on 1- ,||𝑣||2

right. So remember that we have added, we assume that there are self-loops, so we can also focus

on right? What is happening in those terms?𝑢
𝑖

− 𝑣
𝑖

So if ∃i, the self-loop term, so . So if there is an i such an i,(𝑢
𝑖

− 𝑣
𝑖
)2 ≥ 1/4𝑛3

then you are done already. So the bad case is when for all the i’s this < . This is(𝑢
𝑖

− 𝑣
𝑖
)2 1/4𝑛3

for every i. Then we cannot pick these, the self-loop contributions.|𝑢
𝑖

− 𝑣
𝑖
| < 1/2𝑛1.5

Then we have to look at edges that are not self-loops, right? So there actually we will use

connectedness. So what you do is remember was a unit vector. So let us first sort the𝑢
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coordinates, sought the coordinates of u. So what you can say is . And we𝑢: 𝑢
1

≥ 𝑢
2
....... ≥ 𝑢

𝑛

have this information about ui’s that first is that since it is orthogonal to , 0.1 ∑ 𝑢
𝑖

=

And since it is a unit vector, 1. So u 1, if you look at the magnitude, either u1 is the biggest∑ 𝑢
𝑖

=

or un is the biggest, right? So either is the largest or is the largest. So one of them has to be𝑢
1
2 𝑢

𝑛
2

at least 1 / n just by averaging, because their sum is 1. So one of them has to be at least 1 /n. So

what you learn is that either .𝑢
1

≥ 1/ 𝑛 𝑜𝑟  𝑢
𝑛

≤  − 1/ 𝑛

And because the sum has to be zero, so for positives, there will also be negatives. And you know

that u1 is non-negative. And if u1 is positive then un will be negative. And with the sum of square

being 1, you get either u1 bigger than or un smaller than (- ). So these are the properties1/ 𝑛 1/ 𝑛

you know. So you know that there is a gap between u 1 and u n. And the gap is at least(𝑢
1

− 𝑢
𝑛
)

, right? We have gotten a gap, let me deduce the following.1/ 𝑛

(Refer Slide Time: 51:28)
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, because between the extremes the difference is . So there will be∃𝑖
0

𝑢
𝑖

0

− 𝑢
𝑖

0
+1

> 1/𝑛1.5 1/ 𝑛

some position where the consecutive differences, difference of the consecutive ’s or is𝑢
𝑖

𝑢
𝑖

0

or more. Again by averaging argument.1/𝑛1.5

So now look at vertices 1 to . So we wanted this consecutive because we will have some𝑖
0

information about to , it is in sorted order. And we will have information from to ,𝑢
1

𝑢
𝑖

0

𝑢
𝑖

0
+1

𝑢
𝑛

which is again sorted. So look at these two parts in the graph. So 1 to and , okay.𝑖
0

𝑖
0

+ 1.... 𝑛

Look at these vertices. This is the whole graph, I mean the vertex set.

And since the graph is a connected graph, there will be some way to go from this part to that

part, right? It is not disconnected. So there is some edge i to j. There is some bridge between

these two connected components. So pick this bridge and look at this cross term in the sum. So

there exists an edge( i, j) such that . So which means that is more than ,ϵ𝐸(𝐺) 𝑖ϵ[𝑖
0
] & 𝑗[𝑖

0
]𝑐 𝑢

𝑖
𝑢

𝑖
0

right?

And < . So which means in particular that if you look at the difference this cannot𝑢
𝑗

𝑢
𝑖

0
+1

𝑢
𝑖

− 𝑢
𝑗

decrease, okay. So this is a very good thing. We have identified that the difference is large, and it

is an edge. We have identified an edge where the difference is large, okay. So now just focus on

this term. So this means, if you look at the term .𝐴
𝑖,𝑗 

(𝑢
𝑖

− 𝑢
𝑗
)2 ≥ 1/𝑑  (𝑢

𝑖
− 𝑢

𝑗
) − |𝑢

𝑗
− 𝑣

𝑗
|)2

This you can say because this operator’s property, look at this. So the norm of | | it is at𝑢
𝑖

− 𝑣
𝑗

least the difference of the | | and | |. And then you use the above property in blue. So𝑢
𝑖

− 𝑣
𝑗

𝑢
𝑗

− 𝑣
𝑗

| | is large.𝑢
𝑖

− 𝑢
𝑗

what do you know about ? So the nice thing is that we know you already assumed𝑢
𝑗

− 𝑣
𝑗

something about which was the self-loop thing we did, right? We had assumed that all𝑢
𝑗

− 𝑣
𝑗
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these ’s are small. So let us invoke that. That is a useful property and then square. So𝑢
𝑖

− 𝑣
𝑖

which comes out to be ,1/4𝑑𝑛3

>1/d(1𝐴
𝑖,𝑗 

(𝑢
𝑖

− 𝑢
𝑗
)2 ≥ 1/𝑑  (𝑢

𝑖
− 𝑢

𝑗
) − |𝑢

𝑗
− 𝑣

𝑗
|)2 /𝑛1.5 − 1/2𝑛1.5 )2 = 1/4𝑑𝑛3

which means that we are almost there, right?

So we have shown that in fact , in fact strictly because we have shown and1 − ||𝑣||2 ≥ 1/4𝑑𝑛3

we showed this only by just by using one term, right? So sum will possibly be bigger but cannot

be smaller than this and from which we will deduce by the stretching that A is doing. By that will

deduce something about . It is same as (G), right?λ(𝐴) λ

1- (G) >λ 1/8𝑑𝑛3

That was the original claim. That is what we wanted to show. So 1- (G) is greater than that. Soλ

these are all strict. Okay, no so we have greater than equal to here. So this will probably, this

creates a problem. Oh it is too much. Okay anyway, so the proof is done.
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