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Last time we were in the middle of proving this theorem by AKLLR which will have

a long proof because it involves many new ideas and many new tools in matrix

analysis. So this theorem says that you are given an undirected graph on the input tape

and vertices s and t and you have a very small work tape, logarithmic space. You have

to decide whether there is a path from s to t.

Basically you have to solve this problem using random bits in logarithmic space.

(Refer Slide Time: 01:00)
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The way we are doing it is till now we have seen the random walk. You start a random

walk from s. Every vertex you reach there will be three neighbors. And you will pick

one randomly and then proceed. In terms of the normalized adjacency matrix we are

basically doing matrix multiplication on the initial vector state and the question is

how fast will this converge.

In how many steps with decent probability you will reach t. So we have made the

graph d-regular with .𝑑 = 3

(Refer Slide Time: 01:48)

And we showed in lemma 1 that is exponentially dependent on the|| 𝐴𝑙 · 𝑝 −  1 ||

second largest eigenvalue.
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(Refer Slide Time: 02:15)

The second lemma showed that is basically small, it is away from 1. It is below 1λ

and it is sufficiently away from 1. It is not exponentially close to 1 and this we

showed using the Laplacian of the graph We had .Σ 𝐴
𝑖𝑗

· (𝑢
𝑖

− 𝑣
𝑗
)2

(Refer Slide Time: 02:51)

And now what we will do is the final lemma where we will show that taking l to be

roughly , if you take these many steps, then with high probability you will𝑛3 · log 𝑛

reach t. So let . Remember , so this is like . If𝑙 = 10 · 𝑑𝑛3 log 𝑛 𝑑 = 3 30𝑛3 log 𝑛

you take these many steps, and if s and t are connected in the graph then the

probability that the random walk reaches t in l-th step, this is quite high.
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So reaching t in the l-th step is probability is sufficiently high, it is . And to1/2𝑛

increase the success probability even more we can boost this. We can take more steps.

Let us prove this. We will basically, we will use lemma 1 and 2, proof will be easy. So

let be the probability vector at the l-th step.𝑝

Lemmas 2 and 1 imply that l applications of A, which is a normalized adjacency

matrix on the initial vector probability vector which is 1 at only the s-th place. This𝑒

part being away from the uniform probability vector is is dependent on how small is1

the . That we have shown is smaller than .λ (1 − 1/8𝑑𝑛3)𝑙

Basically after this l applications of the matrix you are very close to , the error is1

only this much, which is less than equal to

. And now there is this small thing(1 − 1/8𝑑𝑛3)10𝑑𝑛3log 𝑛 <  𝑒−5 log 𝑛 /4 <  1/2𝑛1.5

that the difference vector we have taken is the Euclidean norm

From this now you can extract information about each coordinate - how small is each

coordinate? That can be done by the Cauchy-Schwarz inequality. You will get that

.|| 𝐴𝑙 · 𝑒
 𝑠

 ||
1
 ≤ || 𝐴𝑙 · 𝑒

 𝑠
− 1 ||

2
· 𝑛

The 1 norm is related to the Euclidean norm by the factor of number of𝑛

coordinates. Whic is still less than . This is the information you have about each1/2𝑛

coordinate, the sum of the magnitude of each coordinate that is less than . Which1/2𝑛

means that if you look at the t-th coordinate, which is the probability of reaching t,

that is also smaller than .1/2𝑛

This is the difference between the t-th coordinate of and t-th coordinate of .𝐴𝑙 · 𝑒
 𝑠

1

This implies that the coordinate of interest exceeds because the1/𝑛 − 1/2𝑛

difference cannot be more than , which is still .1/2𝑛 1/2𝑛

This means that the probability of reaching t at l step is greater than promised in1/2𝑛

the lemma statement. This is just a simple application of what we have already shown.
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Basically if you take these l many steps in the random walk then you are almost in a

random place. In the connected component of s, you are everywhere with equal

probability, which means that if t was there you are also at t.

(Refer Slide Time: 10:51)

This also means that by continuing this walk, the random walk for a longer amount,

we can bring the probability above let us say three fourth or two third - sufficiently

high probability. You can reduce the error probability to quite small. For example, if

you do this calculation, the error probability currently is .1 − 1/2𝑛

So if you repeat this 4n times, you can see it is smaller than , which is smaller than𝑒−2

. What you have deduced is makes error1/4 𝑙 : −  40𝑑𝑛4 log 𝑛 = 120𝑛4 log 𝑛

smaller than one fourth. Error has become quite small and if you want it further

exponentially small, then you can go up to . If you take random steps then the𝑛5 𝑛5

error of not reaching t is exponentially small.

This is a very good procedure. And every step you can do in logspace, because you

only have to look at 3 neighbors, you can identify this from the input graph and the

number of steps is even if it is , to keep track of each of these iterations you only𝑛5

need logspace.

So this random walk is in logspace as we need to store the current vertex label, which

has only log n bits. Which means that we have shown that the Upath is in RL. And
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notice that since you are actually going to vertices you can also keep outputting these

vertices, so the whole path can be outputted as well.

The working space is only O(log n) space and you can bit by bit or vertex by vertex

you can write the path on the output tape. So the next question is can we improve on

this. This is a randomized logspace, can we derandomize this algorithm? Can we

make it exactly the complexity class L?

(Refer Slide Time: 16:07)

This was an intriguing question for three decades and to solve it several tools were

developed. One idea could be that you transform the input graph G in such a way so

that your random walk converges to the vertex t in the fastest possible way. And what

is the fastest possible? In the algorithm we took l to be or . What if you can take𝑛4 𝑛5

l to be log n.

In log n steps you are already at t. Can we achieve that? If we can achieve l log n, so

logarithmically smaller l then what will happen is we can actually explore all possible

l length paths from s in logspace and this we can do because every vertex has only 3

neighbors. You can just store which neighbor to go to 1, 2, 3 of s and then in the next

which neighbor to go to 1, 2, 3.

You just have to search over l length strings of 1, 2, 3. So convert G to G a graph with'

constant spectral gap so that l equal to log n suffices to reach any vertex from s.
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Basically it boils down to having constant spectral gap. Because remember lemma 1,

if is constant let us say it is then you just have to make steps, which isλ 1/10 (1/10)𝑙

something like .1/𝑛

Just reduce the error to be inverse polynomial in n. So for that l log n will suffice.

Once this is achieved, then one can exhaustively look for all log n length paths from s

in logspace, because the degree is constant. Since the degree is constant you can

actually try out all possible log n length strings in 1, 2, 3. That is how you will be able

to go over all the paths.

Hence solving connectivity or directed path questions in G in L. This is the key

challenge to convert G into this highly connected graph G' and these graphs are called

Expanders. So G' motivates Expanders. These are highly connected graphs. For

expanders, there are many definitions that we can use and especially the connections

between the definitions are highly interesting. We will now define it in two ways.

(Refer Slide Time: 22:00)

First is the algebraic definition. We call a graph G and n, d, expander if G isλ

n-vertex, d-regular, d is the degree and the second eigenvalue of G which is λ(𝐺) ≤ λ

. The spectral gap is bigger than . You want to be small. The smaller is the1 − λ λ λ

better is the algebraic expander G.
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Instead of looking at only one graph we will obviously or we will be more interested

in actually graphs that are growing. A family of infinite graphs. So a (𝑑, λ) −

expander family, so graphs . You can take d to be 3 and in general you can𝐺
𝑛{ }

𝑛≥1

ask the question. There are two parameters in expander family, d and .λ

For a given d you can ask how does behave as a function of d. Can you makeλ λ

extremely close to 0? Or is there a limit? Is it away from 0? Is it large in terms of d?

Actually it depends on d pretty strongly. There is this result by Alon and Boppana

which showed that . So if you take then this is .λ(𝐺) ≥ 2 𝑑 − 1/𝑑 𝑑 = 3 2 · 2/3

You cannot make the second largest eigenvalue arbitrarily small. It will really depend

on the degree d parameter and this expression is a bit more non trivial to show. But, as

an exercise you can show that by using .λ(𝐺) > 1/ 𝑑 𝑡𝑟(𝐴2)

But Alon-Boppana bound is better and it is optimal. It is saying that actually it is more

than almost . Graphs with are called Ramanujan graphs. And2/ 𝑑 λ = 2 𝑑 − 1/𝑑

their explicit constructions are known. That result is due to Lubotzky, Phillips and

Sarnak. So these objects are very important.

They are heavily studied and using analytic number theory there are these

constructions due to LPS of Ramanujan graphs. The degree there is actually prime

power plus 1. So it is not for every degree, but for this prime power plus 1 degree

these constructions are known and they achieve this Alon-Boppana bound. This is an

optimal bound. Point being that these infinite families are constructible.

They not only exist but they are constructible and we very well understand the

spectral gap. This is some advanced topic, independently, we will not go deeper in

this. Instead what we will do next is define expanders combinatorially.

(Refer Slide Time: 29:24)
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In combinatorial definition of an expander we will call these now edge expander

instead. So is an edge expander. If G is an n-vertex, d-regular graph. This(𝑛, 𝑑, ρ) −

will be more pictorial than the algebraic definition. In the algebraic definition, it was

not clear why you pick the second largest eigenvalue, unless you recall lemma 1 that

we have shown where if is smaller than the convergence is faster of the randomλ

walk.

But the combinatorial definition will be even simpler and more directly related to

connectivity. So here what we will say is that, if you take any subset in the graph, then

there are many edges going out. If G is an n-vertex d-regular graph such that for any

subset of vertices of size small, let us say smaller than . Say you take an n, you𝑛/2

take half the vertices as S then count how many edges are going out.

That is the connectivity information or a way to measure connectedness in the graph.

The edges that are going out of S, that is S to S is large. So this is basically' 𝐸(𝑆, 𝑆 )

these edges going from S to . This is all undirected edges. And you can think𝑆 𝑑 · |𝑆|

of this as the max that could happen, because they are |S| vertices and the degree is d.

There cannot be more than edges going out.𝑑 · |𝑆|

And is the fraction that is the parameter given to you for edge expansion. Let us sayρ

then you are actually saying that maximum possible edges are going out of Sρ = 1

for any S. And if is let us say 0.99, then still many edges are going out. So this is aρ
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very good level of connectivity inside the graph. In the algebraic definition we want λ

to be small.

So close to . While in the combinatorial definition we want to be large. But2/ 𝑑 ρ

how large can it be? Can it be 1? You can show that it cannot be 1. The maximum it

can be is actually half, because you want it to be true for every subset. If you want it

to be true for every subset of size n/2 or less, then you can only afford half. That is

what we want optimally.

Now what we will do is next we show their equivalence. Why are these two very

different definitions of expansion? Why are they equivalent? This is not at all clear

although intuitively we have some feeling. The combinatorial one is the natural

meaning of well connectedness and the algebraic one comes from lemma 1 because

lemma 1 says that the convergence of the random walk will be rapid if is small.λ

But see what is the quantitative relationship between that parameter and thisλ ρ

parameter. So here it is.

(Refer Slide Time: 36:03)

We start with showing if G is an expander; so algebraic definition. Then G(𝑛, 𝑑, λ) −

is also an edge expander. If G satisfies the algebraic expansion(𝑛, 𝑑, (1 − λ)/2) −

definition then G also satisfies edge expansion definition. So you want to be close toλ
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zero and you can see in the implication that then edge expansion will be close to half

and theorem 2 is the converse.

Let G be an edge expander. Then what can you say about the second(𝑛, 𝑑, ρ) −

largest eigenvalue of edge expanders? It will not quite be the converse of theorem 1, it

will be slightly weaker. What you will get is expander. Again you(𝑛, 𝑑, 1 − ρ2/8) −

can check if is half which is the best edge expansion possible.ρ

Then in the bound for the second largest eigenvalue or for the spectral gap, you are

getting is 1/32. That is the relationship. So this anomaly is not if and only if, which is

why we have to write actually two theorems instead of just one theorem with the, if

and only if. We can also state it as Cheeger’s inequality. Basically, it tells you what isρ

for a graph in terms of the parameter, the second largest eigenvalue.λ

There is this gap that you get for edge expansion. If in the best possible case will beλ

0, I mean ideally speaking it could be 0, then this is telling you that is between halfρ

and . That is a wide range.2

The point is that this is not precisely telling you what is but it is giving you a decentρ

lower bound on the edge expansion. As you keep making smaller, edge expansionλ

improves. It matches our intuition. You can think of Cheeger’s inequality as a way to

measure bottlenecks in a graph. This is the only inequality which kind of connects

both theorems, and combines theorem 1 and 2.

But we have to prove these theorems individually. Proofs will be sort of related but

still they will look different. Let us start with the proof of theorem 1. We have to

connect this algebraic structure with the or concept with combinatorial concept. We

want to estimate the number of edges that go out of S. You are assuming that G is a λ

expander.

The second largest eigenvalue is smaller than in magnitude. From this you want toλ

deduce that if I take a subset S in the graph, how many edges are going out. For that
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actually we will consider a function. It is called the Laplacian quadratic form. It will

measure this exact thing. Its evaluation will measure how many edges go out of S.

The number of edges going out of S are estimated by considering this Z quadratic

form, which is

𝑍: =  
𝑖,𝑗 ∈[𝑛]

∑ 𝐴
𝑖𝑗

· 𝑥
𝑖

− 𝑥
𝑗( )2.

This seems like a weird function, but it has a name, and it appears in many places.

We have actually used something like this also before, when we wanted to use the

connectedness of a graph to deduce that the second largest eigenvalue is sufficiently

away from 1. There as well, we used something of this type. This is in particular this

is called Laplacian quadratic form. Now you have to realize that this could measure

the number of edges that go out of S.

Basically the vertices which are in S when i is in S, you give them value 1 and the

vertices which are not in S you give them values 0. Then this difference square, this is

1 only when you are looking at an S that crosses. Within S and within it is 0. Let us𝑆

formalize this. This is the bridge between algebra and combinatorics.

(Refer Slide Time: 43:15)

Define vector as, the i-th coordinate is if i is in S and it is otherwise. That𝑥 𝑆| | − |𝑆|

is the definition of . Now you can see the value of Z at . Let us break𝑥
𝑖
,  ∀ 𝑖 ∈ [𝑛] 𝑥
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the sum into three parts. So one is within S. Then within and then across, that is, the𝑆

rest.

𝑍|
𝑥

=
(𝑖,𝑗)∈𝑆2

∑ +
(𝑖,𝑗)∈𝑆

2
∑ +

(𝑖,𝑗)∈𝑆×𝑆 ∪ 𝑆 ×𝑆
∑

For i in S the sum is 0; i and j both in S it is 0; i and j both in bar it is 0.𝑆

And now let us see the last thing. Since, S to or to S it is the same thing, there is a𝑆 𝑆

factor of 2 and what is the sum?

.𝑍|
𝑥

= 2 ·
(𝑖,𝑗)∈𝑆×𝑆

∑ 𝐴
𝑖𝑗

· 𝑥
𝑖

− 𝑥
𝑗( )2

You can notice that . So you get this equal:𝑥
𝑖

− 𝑥
𝑗( )2 = |𝑆| + |𝑆| = 𝑛

.𝑍|
𝑥

= 2𝑛2 ·
(𝑖,𝑗)∈𝑆×𝑆

∑ 𝐴
𝑖𝑗

= (2𝑛2/𝑑) · #𝐸(𝑆,  𝑆)

This is what this Laplacian evaluates to and so this is one way to evaluate the

Laplacian. And next what we will do is we will do this calculation in a different way.

We will relate this to , the second biggest eigenvalue. We have this Laplacianλ

quadratic form Z and we have shown that value at is giving you essentially the𝑥

number of crossing edges. Let us now recalculate it in a different way so that this

connectivity information relates to the eigenvalue. You can expand Z as:

.𝑍 = ∑ 𝐴
𝑖𝑗

· 𝑥
𝑖
2 − 2∑ 𝐴

𝑖𝑗
𝑥

𝑖
𝑥

𝑗
+ ∑ 𝐴

𝑖𝑗
𝑥

𝑗
2

Now the nice thing is that this term is this you can see as the action of A on𝐴
𝑖𝑗

· 𝑥
𝑖
𝑥

𝑗

, that is . That is the nice thing about this calculation and hence this𝑥 < 𝐴𝑥, 𝑥 >

expression of Z becomes:

𝑍 =
𝑖

∑
𝑗

∑ 𝐴
𝑖𝑗( )𝑥

𝑖
2 − 2 < 𝐴𝑥,  𝑥 >+

𝑗
∑

𝑖
∑ 𝐴

𝑖𝑗( )𝑥
𝑗
2
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Now clearly this calculation we have done before that over all j. This is just theΣ 𝐴
𝑖𝑗

i-th row sum which is 1. You will get:

.𝑍 = || 𝑥 ||2 − 2 ·<  𝐴𝑥,  𝑥 >+  || 𝑥 ||2

And furthermore, you know something about . Note that here that we have𝐴𝑥 𝑥

chosen it satisfies this property. So is actually orthogonal to 1. Because if you added𝑥

up , what do you get?Σ𝑥
𝑖

which is 0. That is a very useful thing in the second green|𝑆| × |𝑆| −  |𝑆| × |𝑆|

calculation, because you know that on such vectors the action of A scales by at most λ

factor. So . So what we can write is this as:|| 𝐴𝑥 || ≤  λ · || 𝑥 ||

.𝑍 ≥  2 · || 𝑥 ||2 − 2λ ·  || 𝑥 ||2

The other thing we are using above is . This is simply| < 𝑦,  𝑥 >  | ≤ ||𝑦|| · ||𝑥||

saying that inner product is bounded by the product of the vectors, length of the

vectors This is clear by geometry because we are working in the real Euclidean space.

So that gives you a nice relationship of lower bound on Z.

(Refer Slide Time: 53:09)

So this means that Z is at least

.2 · || 𝑥 ||2 · (1 − λ)
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And it is exactly the number of crossing edges. That gives you a relationship. Further

what is this equal to?

𝑍 ≥ 2(1 − λ) · (|𝑆| · | 𝑆 |2 + |𝑆| · |𝑆|2)

Which implies that the number of crossing edges is at least

. Further, |S| you have assumed is less than equal𝑑/2𝑛2( ) · 2(1 − λ) · |𝑆| · |𝑆| · 𝑛

to n/2. So . Then you get|𝑆| ≥ 𝑛/2

.#𝐸(𝑆, 𝑆) ≥ (1 − λ)𝑑/𝑛 · 𝑛/2 · |𝑆| =  (1 − λ)/2 · 𝑑 · |𝑆|

So this in particular tells you that . And G is anρ ≥ (1 − λ)/2 (𝑛, 𝑑, (1 − λ)/2) −

edge expander. And this we were able to achieve because of the bridge between

algebra and combinatorics - Laplacian quadratic form. We actually evaluated it at 𝑥

and that gave us the first equality Z equal to basically the number of crossing edges.

Then we did a different calculation on Z to get a lower bound. So that is a brilliant

connection. Here we are 50% done. Next we will do the almost-converse of this,

proof of theorem 2. Now assume G to be an edge expander. And given this(𝑛, 𝑑, ρ) −

combinatorial property now we want to estimate the second largest eigenvalue of the

graph.

Again we will use this bridge called Z. We again estimate Z, but we evaluate at a

different . Now will actually be an eigenvector. Use equal to an eigenvector of𝑥 𝑥 𝑥

So the second largest eigenvalue of the matrix became eigenvector and nowλ
2
. 𝑥

estimate Z afresh.

(Refer Slide Time: 59:01)
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What you have is and you have that eigenvector is orthogonal to 1.𝐴 · 𝑢 = λ
2

· 𝑢 𝑢

In fact, let us take this as a definition. Pick a nonzero such that this happens. This𝑢

means that has positive and negative coordinates. Let us collect them in and𝑢 𝑣 𝑤

respectively.

What we have is we have basically written as with both and , every𝑢 𝑣 + 𝑤 𝑣 − 𝑤

coordinate is non-negative. We have separated into positive locations, and negative

locations. Based on this now we will estimate Z in the next class.
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