
Randomized Methods in Complexity
Prof. Nitin Sexena

Department of Computer and Engineering
Indian Institute of Science – Kanpur

Lecture 03
Derandomization and Lower Bounds

(Refer Slide Time: 00:16)

Last time we started this new concept of Derandomization. Which is basically the question of
BPP = P. Where BPP is the class of problems that are solvable in randomized polynomial
time and P is the class of problem solvable in deterministic polynomial time. Whether these
two sets are the same. In other words can randomness be eliminated in an efficient way. So
this theorem on the slide proved by Kabanets and Impagliazzo is what we are interested in,
which shows that if BPP is equal to P then there is hardness in nature.

It is an either or statement, one of these at least has to be true. Either NEXP does not have
small boolean circuits or permanent does not have small arithmetic circuits. Before
embarking on the proof of this which will be quite complicated and long, let me give you
some hint about this connection by a different theorem.

(Refer Slide Time: 01:24)

34

Meanwhile we will prove a simpler connection as a detour. So this is an old result due to
Heintz and Schnorr from the 80’s. This says that if black box PIT is in P. A Black box PIT
means this question of polynomial identity testing that we defined before checking whether a
given circuit is 0. It is the same problem you want to solve but now you cannot see the the
details of the circuit.

The circuit is given as a black box so all you can do is just evaluate the circuit at some points
which have to be prefixed. You have computed these points in advance and then given any
black box you compute the value of the black box on these points, pre-computed points and
check whether the black box computes non-zero. If it does then the black box is non-zero
otherwise the black box is zero.

That problem has a very simple randomized practical algorithm: you just pick your points
randomly and evaluate your black box. But is there a deterministic polynomial time
algorithm? So Heintz and Schnorr showed that if you find a deterministic polynomial time
algorithm for black box PIT then there exists an E explicit polynomial family which is
exponentially hard.

The two important things here are first is obviously we want a hard polynomial family but at
the same time we also want it to be explicit. What this theorem is saying is that if you can
solve black box PIT in a derandomized way then you will have an explicit polynomial family
which is hard and very hard. Let us prove this. This has a surprisingly simple proof. This is
again the connection between derandomization.

Or this you can think of as the first connection between derandomization and hardness or
proving lower bounds. How do you do this? Suppose you have designed a set of points

for black box PIT of n variate, size s. These points that you have𝑝
1
, ···, 𝑝

𝑚
 ∈ 𝐹𝑛

precomputed are they have n coordinates. So the property of these points is, solving𝑝
1
, ···, 𝑝

𝑚

35

black box PIT in P. They are efficiently produced and a non-zero circuit of sizes will
evaluate to non-zero on one of these points, at least one of these points say at will be𝑝

𝑖

non-zero.

Let us define a polynomial which vanishes at all these points. What will you know about that
polynomial? You will know that the polynomial which vanishes on all these points cannot
have size s, it has to have size more than s. That is the potentially hard polynomial. Let us do
it a bit more systematically, so we will construct or we will find polynomial A in l variables
where l is let us say .2 log 𝑠 + 1

So we will find a polynomial A whose number of variables is around such that for alllog 𝑠
these points 1 to m, A vanishes. This polynomial we will call an annihilator, that is the goal.
Let us try to find a polynomial A which vanishes on all these m points, an annihilator
polynomial. If it exists and it is explicit then this is a good candidate for hardness. Because
this circuit cannot have have size s circuits.

Remember if it had a size s circuit then it cannot vanish on all the points . Let us𝑝
1
, ···, 𝑝

𝑚

now look at the properties of this polynomial, what are the parameters, how explicit is it, how
hard is it and whether it exists? And actually we will also ensure that this is multilinear. Let

us do that here. Multilinear polynomial A will have coefficients for all .𝑎
 𝑒

· 𝑦
 𝑒

𝑒 ∈ {0, 1}𝑙

We actually think of A as a multi-linear polynomial which means that or , they do𝑦
1

2, 𝑦
2

2 𝑦
3

2

not appear; it is just individual degree one monomials that appear. So appears, appears𝑦
1

𝑦
2

or appears and so on. This , these are the unknown coefficients. These are the𝑦
1

· 𝑦
2

· 𝑦
3

𝑎
 𝑒

coefficients we want to find such that .𝐴(𝑝
𝑖
) = 0

(Refer Slide Time: 09:57)

36

The constraints are that for all i 1 to m, A(p i) vanishes. This means that there are m∈
constraints. Here m in general will be polynomial in s but you can think of it as s2. There are
my constraints above and how many unknowns? So there are 2l many there. Each constraint𝑒
is just giving you a linear relationship between .𝑎

𝑒

Here you can see that since 2l is more than m, you have more unknowns than constraints and
these constraints are homogeneous. It is a linear combination of equal to 0, there is no𝑎

𝑒

constant term. And there are fewer constraints than there are unknowns. So there is a
solution; the system has a solution and that gives you the A by solving the linear system
which is this.

By solving the linear system given to you by equation 1, you will be able to find A. How fast

can you find it? So e can be found out in polynomial in so this is matrix. So2𝑙 × 2𝑙

polynomial in 2l where l was log s. This is polynomial in s time.

So these can be computed in poly s time. In terms of l this is actually E-explicit. With𝑒
respect to the l parameter which is the number of variables that polynomial A has, this is an
E-explicit polynomial and this you can compute immediately using the points p1 to pm. And
how hard is this? So A(y1,...,yl) cannot have size s circuit. The proof is very simple, this is
just because else A(p i) would not vanish.

Since we have picked a polynomial that vanishes at all pi's by the property of pi's A should

have size more than s which means that this polynomial A is -hard and2Ω(𝑙) 2𝑂(𝑙)

-time-explicit. And how many variables does it have? l variables. So this finishes the theorem
of Heintz and Schnorr that if you can solve black box PIT optimally then you have this l
variate polynomial which is 2l time explicit and it is 2l size hard.

II hope that this theorem with a small proof convinces you that there is a strong connection
between polynomial identity testing and existence of hard polynomials that are explicit. The
proof of this is relatively easy because our assumption was that we can solve black box PIT.
We are actually solving PIT without even looking at the circuit so that was a strong
assumption.

Now we will go back to our theorem of Kabanets and Impagliazzo which will only assume
PIT in P. This particular algorithm may even look inside the circuit and use the circuit gates
to make a decision. This is a weaker assumption, it is a weaker algorithm and consequences
will also be much weaker. You will get either NEXP or permanent hardness. But the proof
will not be so easy.

Let us now start the proof. It will actually require many of these interesting techniques that
you usually learn in the first course on computational complexity.
(Refer Slide Time: 17:22)

37

Let us go back to proving the theorem by Kabanets and Impagliazzo (KI) from 2003. First we
will prove a lemma which will use the PIT algorithm on permanent. If PIT is in P and
permanent has small size arithmetic circuits. So let us look at the statement. Suppose PIT is in
P and the second conclusion (in KI) is false which means that permanent has arithmetic
circuits then what happens?

Then we will show that Pper is in NP. This means that any polynomial time algorithm that uses
permanent as a subroutine will have those problems which can be solved this way will be
contained in NP. This is a very strange conclusion. We do not believe that this is true.
Because remember, Permanent is as hard or even harder than or it is as hard as computing the
number of satisfying assignments.

And what this conclusion is saying is that even that can be done in NP. So conjecturally we
do not believe this to be true. But if you assume permanent has small circuits and PIT is in P
then you actually get this, this is what we will show. The idea is, guess the small arithmetic
circuit for permanent and verify using PIT in P. So the idea of this proof is first guess the
small circuit. Why can you do that well because you are assuming that permanent has a small
circuit.

You can guess in NP and then you verify whether your guess is correct using the PIT
algorithm and thus you have a chance of showing that Pper is in NP. Remember NP is the
collection of problems which can be solved by guessing and verifying. The goal is to show
that permanent is of a similar type. All we have to show is this verification protocol. How do
you verify?

So what you have to observe is that we can expand permanent of an n n matrix. Let us call×
it Pern(A). You can expand it by the first row. Expanding by the first row you could recall this
from the determinant. In determinants also you can expand it by the first row or the first

38

column. What that means is that you look at the entries which appear in the first row and then
for each entry look at the corresponding minor which will be an n-1 n-1 matrix.×

And look at the permanent of that so that expansion will give you the following identity.
Permanent of A is equal to expand by the first row. So A 1i is the ith entry in the first row, i will
go from 1 to n and then put the minor. So, Pern-1. That is the minor, so permanent expands
like this, this you can do as an exercise. Recall the same or very similar expression that you
get also for determinant.

Now think of this expression as a recursive procedure. Given an expression for permanent
n-1 you can derive an expression for Pern. This can be used to get a verification protocol. You
basically look at the circuit that is given at n-1 n-1 matrix input and then check whether the×
left hand side and hand side are the same. Where is the sub matrix of A deleting row 1𝐴'

1𝑖

and column i. Basically minor just means that you delete the first row and delete the ith
column.

What remains is permanent of n-1 n-1 square matrix. Now given a circuit where× 𝐶
(𝑛−1)2

(n-1)2 is the number of variables in the minor to compute the Pern-1. Once you have this
circuit we can use the following verification protocol.

(Refer Slide Time: 25:47)

You check whether , the circuit computing permanent for n by n matrix, that you have𝐶
𝑛2

guessed whether this is equal to on the sub matrix. That is your recursive𝐴
𝑙𝑖

· 𝐶
(𝑛−1)2

verification protocol. This guess and verify process will prove that is indeed𝐶
𝑛2(𝐴)

permanent of A, by induction on n. You can go through this inductive proof. The idea is quite
simple. The idea is just that when you apply this recursive definition on 2 2 or recursive×
kind of equation on 2 2 matrix.×

39

Then you will get the 2 2 permanent. This will be written as . And is just an entry.× 𝐶
22 𝐶

12 𝐶
12

You can see that actually what you get on the right hand side in this green equation is the 2 by
2 permanent. Then you repeat this for three by three permanent. You will see that this will𝐶

22

be 2 by 2 permanent, will be 3 by 3 permanent and so on.𝐶
32

By induction actually it is always true that if satisfies this recursive equation then it is𝐶
𝑛2

permanent. This is actually a characterizing equation. You just have to verify this on the
circuit. What you have done till now is for any problem in Pper which means that is a
polynomial time algorithm or polynomial time turing machine using permanent as an oracle.

Any such problem which can be solved using permanent as an oracle, we can first guess the
circuit for permanent then verify whether it is indeed permanent or not. Verified by using𝐶

𝑛2

PIT. Equation 2 is exactly an instance of PIT. You have a circuit on the left and circuit on the
right and you want to test whether they are equal.

You guess a circuit, verified by PIT algorithm which you are assuming exists and then use𝐶
𝑛2

instead of the oracle. Oracle now can be eliminated from your polynomial time algorithm for
l. You can in fact use this arithmetic circuit. This means that once you have guessed the
circuit you have a deterministic polynomial time algorithm. And because of the guess it is
actually a non-deterministic turing machine.

This means that L is actually in NP which means that anything in Pper is in NP and any
problem in NP can obviously be solved using permanent. This actually means that these two
are equal. In lemma 1 we have achieved that if we assume that PIT can be derandomized and
permanent has small circuits then permanent is as good as being in NP.

This is a very strong conclusion. We do not believe this to be the case actually. Which
suggests that we are making some wrong assumption and our conjecture is that permanent
does not have small arithmetic circuits. We do not believe this assumption. That is the first
thing which was relatively easy to prove. Now permanent being in NP from this point, we
want to reach NEXP not in P/poly; that was the hardness.

Remember that this conclusion is not a hardness result we want to get to a hardness result.
We wanted to connect PIT to some sort of hardness either arithmetic or Boolean. So how do
we get there from here?
(Refer Slide Time: 33:16)

40

So what we have achieved is the strange assumption of permanent in arithmetic P slash poly
gives the strange conclusion P raised to permanent is in NP. So let us now make another
strange assumption which is NEXP is in P slash poly. So we will assume this, that NEXP is in
P slash poly and we will try to get a contradiction which will definitely mean that one of
these strange assumptions is false. So either permanent is not in arithmetic we slash poly or
next is not in P slash poly.

So what will happen with this change assumption that we want to show from this; From this
we want to show that if NEXP is in P slash poly then NEXP is in P raised to permanent
which we have shown to be in NP. You want to actually put NEXP in P raise to permanent
which you have shown to be in NP before, in lemma 1 which is a contradiction. Which
contradicts the non deterministic time hierarchy theorem.

So this will be the end. We would have contradicted nondeterministic time hierarchy. We
know that NEXP is actually bigger than NP. It is not equal to NP and that will be a
contradiction. This contradiction would tell you that one of the strange assumptions is false.
This would mean that one of the assumptions is false. Okay that is the plan of the proof. This
proof requires a lot of tools, quantifier based and interaction based complexity classes.

Basic example of quantifier based complexity classes is NP, because in NP the key quantifier
is (there exist) . There exists a correct guess which can be verified by the verification or by∃
the verifier. On top of there exists you can throw in (for all) and then based on there exists∀
for all you can actually have more complexity classes which will potentially be stronger than
NP. They will continually solve harder problems.

You can use more quantifiers and build more complexity classes. A third quantifier is “for
most” strings. You may ask whether for most strings something is true. That gives you BPP
but then when you mix these three for all, there exist, and for most, then you will get a lot

41

more complexity classes and there we have to then discuss what is the meaning of interaction.
Let me give you a crash course on this.

This is usually covered in detail in the first course on complexity but we will not be needing
everything here. Let us just go into the definition and hopefully you will get some insight or
some intuition from the definitions.
(Refer Slide Time: 39:19)

First quantifier based classes - there exist and for all. So you can define to be theΣ
0

complexity class P and the complexity class NP. Then you can define to be theΣ
1

Σ
2

complexity class NP with NP as an oracle - NPNP. This is like a non-deterministic turing
machine which is using SAT as an oracle and then you can repeat this process to infinity.

Further will be NP to the NP as an oracle so you get and so on. That is a language LΣ
3

𝑁𝑃𝑁𝑃𝑁𝑃

is in if there exists a polynomial time non-deterministic turing machine (NDTM) usingΣ
2

SAT as an oracle. Think of somebody giving you a subroutine that solves SAT. Using that
subroutine, what can an NDTM do? Those problems are these problems. Now why did IΣ

2

call this quantifier based?

An alternate classification of language L is or characterization of this is that there exists a
poly time turing machine N such that for all input x, x is in L if and only if there exists a y1

string for all y2 string, N(x, y1, y2) is equal to 1, where y1 and y2 are not too large. The size is
polynomial in the input. Let us read this again carefully. So what this alternate
characterization is saying is the problems you are solving by these problems have aΣ

2

characterization based on quantifiers where you will use both the quantifiers and .∃ ∀

42

Some string x L or it is a yes string if and only if there is some y1 such that for every y2, N∈
accepts. This is the important part. If this for all y2 was not there then it would have been just
NP; there exists y1 such that N accepts. But with this this is something else it is a class∀
stronger than . So without this you get . The reason why this is happening is I mean oneΣ

1
Σ

1

intuitive reason is that when you look at NP to the NP.

NP is using SAT but then you can also think of it as NP using complement of SAT.
Complement of SAT are satisfying assignments which are always true; tautologies. Instead of

you can think of the dual which is . So actually is using both and . From NPNP you∃ ∀ Σ
2

∃ ∀

can actually use this intuition to give a formal proof of this , characterization.∃ ∀

First start with . So sigma-1 is P and is P. This is a simple way to understand andΣ
1

∃ Σ
2

∃ ∀

remember what we just did. You saw the definition of , . is quantifier so you guessΣ
1

Σ
2

Σ
1

∃

and you verify. is which means you guess but then the verification is more complicated.Σ
2

∃

Here the verification is for every string y2 the thing has to be true. So the verification is more
complicated than and we can obviously make it more general. We can say is defined viaΣ

1
Σ

3

alternating three quantifiers. So like and then there will be also. The∃𝑦
1
∀𝑦

2
Σ

2
∃𝑦

3

verification is happening in a more complicated way which is this part. You have to first
guess a string y1 and then you have to verify for every y2 whether there is some y3.

Again informally you can think of this as P. We have defined these infinitely many∃ ∀ ∃
complexity classes in two ways. We defined as a tower of NP, NP raise to NP raise to NPΣ

𝑖

and we are claiming that there is an alternate equivalent characterization which is by a tower
of alternating quantifiers which is and so on.∃ ∀ ∃ ∀

Remember these two definitions of and once you have these you can look at the union ofΣ
𝑖

Σ

this which is called Polynomial Hierarchy(PH).
(Refer Slide Time: 48:14)

43

This is the union of everything, all the ’s. You can think of this as either a constant numberΣ
𝑖

of NP towers of constantly many NP’s or constantly many alternating quantifiers . Any∃ ∀
problem that you can solve this way is said to be in PH. Now it is easy to show that the
polynomial hierarchy is completely contained in Pspace.

Well is NP, which is contained in Pspace because you can go over all the string y1’s. NowΣ
1

the first question is why is in Pspace? , why is this thing in Pspace? Again you canΣ
2

∃𝑦
1
∀𝑦

2

actually enumerate over all possible y1’s. And once you fix y1 then you can go over all y2.
That is the proof. Systematically go over all the possibilities of the quantified strings y1 ,y2

and only constant many times to yc.

Going over all the possibilities of y1 to yc systematically requires only polynomial space,
polynomial in the size of x. So in Pspace you can solve anything that can be solved by PH.
Which is essentially saying that any problem in can also be solved in Pspace. This is aΣ

𝑖

large number of complexity classes that we have created as generalization of NP and
obviously all these questions are open questions.

Whether is smaller than is smaller than is smaller than the PH, and is it smaller thanΣ
0

Σ
1

Σ
2

Pspace? These infinite towers are collapsing or are things equal. These questions are open
questions and = P even that question is open. Whether P is different from Pspace. AlthoughΣ

1

Pspace seems to have very difficult problems which we do not expect to have polynomial
time algorithms, practical algorithms.

But still we do not have a proof of the strength of Pspace over P. This is an outstanding open

question. That finishes the discussion about quantifier based complexity classes. Next time

we will start another or analogous tower based on some other quantifiers. The starting point

44

would be for most quantifiers. So, the third quantifier that we can use is M, which is for most

strings.

(Refer Slide Time: 54:20)

Let us define it. This statement M quantifies a string y. So My let us say in the space .{0, 1}𝑛

We say that N(y) is equal to 1. Think of N as a turing machine. We say that N(y) evaluates to

1 for most strings y. We say this is true if the probability that N(y) is 1 in the space is{0, 1}𝑛

high, let us say 3/4. In simpler words if turing machine N is true for at least three fourths of
the strings in the space then we say that N is true for most of the strings.

And for that we use the quantifier My. This is what we have defined as a third quantifier.
Using this quantifier with we can actually define more complexity classes. We will call∃, ∀
them interaction based complexity classes. We will see next time why this can be seen as an
interaction between two parties.

45

