
Randomized Methods in Complexity
Prof. Nitin Saxena

Department of Computer Science & Engineering
Indian Institute of Technology - Kanpur

Lecture - 07
Monotone Circuits

(Refer Slide Time: 00:13)

Last time, we finished the proof of the theorem due to Razborov and Smolensky showing
that if you look at constant depth Boolean circuits, ACC0 together with modq gates, then to
compute modp function, you will require exponential size. Constant depth would need
exponential size.

Note that if you allow more than constant depth, then in log depth you can compute it
efficiently in polynomial size but in constant depth you will require exponential size. The
tools used in the proof were very interesting and new.

(Refer Slide Time: 01:12)

88

We learned that ACC0[q] has low degree approximators which are polynomials and we
learned that modp has high degree approximators. It does not have low degree
approximators.

(Refer Slide Time: 01:34)

Now we will move to the next topic which is again a lower bound for Boolean circuits. This
will be for the model of Monotone Circuits. It is a Boolean circuit which contains only
AND/OR gates. So, monotone means that there is no NOT gate. These circuits in the absence
of NOT gate are called monotone circuits.

A monotone circuit can compute only monotone functions. A monotone function as the
name suggests, means that if you increase the input, then the output can only increase.
Here increase means that if in the input you make any bit from 0 to 1 then in the output it
cannot happen that 1 becomes 0. So, 0 can become 1 but 1 cannot become 0.

Monotone means that it is increasing in one direction or it is decreasing. If you decrease the
input, then the output cannot increase and if you increase the input, then the output cannot

89

decrease. There is a relationship between input and output. This is because there is no NOT
gate. So, for n-bit strings x and y, we define if for every bit i-th bit . This𝑥 ≤ 𝑦 𝑥

𝑖
≤ 𝑦

𝑖
defines what we mean by for strings.≤

A n-bit Boolean function is called monotone if for every the same relationship holds𝑥 ≤ 𝑦
for the output value. Then we say that it is monotone. You can show that monotone
functions always have monotone circuits but in general the circuits will be very large but
they do exist that you can show.

In other words, all the monotone functions can be expressed as monotone circuits but the

representation may be large. For n-bits you might require gates, but it exists. On the2𝑛
other hand, non-monotone functions cannot have monotone circuit. This is actually an if
and only if condition.

(Refer Slide Time: 06:48)

Let us think of a monotone function, which seems hard. Consider a hard monotone function

and a good example is this NP-hard problem called k-clique. This function takes bits in
𝑛
2()

the inputs and output a single bit that based on a graph G is 1 if and only if G has a k-clique.
Where k-clique means that there is a complete graph on k vertices. If you remember your
theory of computation or algorithms course, k-clique is supposed to be an NP-hard problem.

It is supposed to be very difficult to solve practically. Here k is something which is also
growing. The Brute-force algorithm on this graph will be to look at all possible subsets of k

vertices, which will take time . We believe clique is a hard function.
𝑛
𝑘() ∼𝑛𝑘

It is believed to be hard in general or for an algorithm, then you will also believe that the
circuits also will be large size and hence you will believe that the monotone circuits will also
be of large size. The important point why I took this example is that clique is a monotone
function.

90

Why is that? Well! Because in a graph which is the input if you add more bits in the input or
if you add more vertices or edges in the input, then it cannot happen that a clique which
existed before a k-clique disappears. The clique can only improve, it cannot disappear by
addition of more edges or vertices. This is a monotone function and the question is, does
there exist a polynomial sized monotone circuit for clique?

This is a question which we will answer negatively. That monotone circuit complexity for
clique is indeed exponential. But the same question is open for Boolean circuits and for
algorithms. We will basically prove this theorem by Razborov. Pick your k to be a variable

function of n, say, . Then there does not exist monotone circuit of size smaller than𝑛1/4

computing k-clique.𝑛 𝑘/20

That is the theorem. That monotone circuits for clique problem have to be of size , which𝑛 𝑘

is very large. This is something like which is what we call exponential size. It is an𝑛𝑛1/8

exponential lower bound.

So, how will we show this? This seems to be a pretty strong result. We have to understand
two things. We have to understand properties of monotone circuits which we can use to
somehow show that monotone circuits have a weakness. And then at the same time, we
also have to show that clique is a hard function. And then we have to match the two things.

We have to show that monotone circuit is a weak model and we have to show that clique is
a strong model and then we have to compare the parameters of the two. What is that
parameter or what is that potential function that will give you a separation.

(Refer Slide Time: 14:19)

We will use here the probabilistic model like we used in ACC0. Using the probabilistic
method, we will show that any monotone circuit computing clique can be approximated.
Like in the previous result, we showed that they can be approximated by polynomials low

91

degree polynomials. Here, we will show that they can be approximated by an OR of few
clique indicators.

Instead of polynomial, we will use something else here. We will remain in the Boolean world
or in the world of propositional formulas. It can be approximated by an OR of few clique
indicators. Clique indicators will be simple functions of low circuit complexity and they will
be few or a few. Overall this monotone circuit model somehow will imply a weakness of
clique.

On the other hand, will also show that clique is actually not weak. When you match the two,
then you will get the lower bound. But, let us first define what is a clique indicator. For a
subset of vertices, vertices are 1 to n. For a subset of the vertices, let clique indicator Cs be a

Boolean function which takes a graph edges, . Also you can assume it to be an
𝑛
2()

undirected graph – with no self-loop.

So, the edge vector is given to you defines a graph uniquely. Now, in the graph you test
whether the vertices S form a clique. So, 1 on G if and only if S is a clique in G. Just test this
and this is called, Cs is called clique indicator of S and as a notation , for the empty set𝐶

Φ
when you don’t take anything, you assume it to be a clique of size 0.

Conventionally we can set to 1 and for all the other non-empty subsets, check whether𝐶
Φ

there is a clique on the vertices defined by the subset S. What is immediate from this is that
the clique function, this is an OR of clique indicators. Go over all the subsets of size k. This
follows from the definition of clique because cliquek,n will be 1 if and only if there is a
k-clique.

If there is a k-clique, then there would be a subset of k vertices and that would be S. So, Cs

will be 1 and it is an OR. If one of these Cs is 1 the answer is 1. This is what was meant by OR
of clique indicators and the weakness of the monotone model would mean that to show
that clique actually can be approximated by few of these Cs; not all C s are needed, just few
will be enough.

First we show a lower bound on the number of clique indicators on the number of S needed
to compute clique. In fact, we will use a simpler input than a general graph. We will use yes
instances to be very simple graphs or very simple input instances. They will basically just be
randomly chosen k-cliques.

(Refer Slide Time: 21:46)

92

So, let us define two simple distributions on n vertex graphs. First is for the yes instances of
input. This distribution is on a random subset big K of size small k. So, on a random subset
output a clique and no other edges. Yes instances with unique k-clique. For the no instances
you want k-clique to be absent.

How do you avoid that? This is non-trivial. It is a more clever construction than the first one
or more clever definition. What you do is on a random function that is k - 1 valued on the
vertices, randomly assign a label 1 to k-1 to every vertex. Now you have basically clustered
the vertices in k - 1 clusters in a random way. And what is the graph that you define?

So, u, v is an edge of the graph if and only if the labels are different. Basically you have these
k - 1 clusters to join across. This is a k - 1 multipartite or k - 1 partite graph. These are no
instances. You are just outputting a random k - 1 partite graph. Can it have a k-clique? Well!
It cannot have a k-clique, because there are only k - 1 parts but it has a lot of k - 1 cliques.

That if you pick vertices one each from each of the k - 1 parts, then all possible edges are
present. You can immediately see that clique function is 1 on the yes instances and 0 on the
no instances. On the yes instances, there is always a k-clique; and on the no instances there
is never a k-clique but there are k - 1 cliques. These are your yes and no instances. Let us first
show that clique is hard.

(Refer Slide Time: 27:09)

93

Basically what we will show is that clique requires many indicators. It will suffice to show
that if you just use one indicator, then the yes instances with high probability will fail, which
means that your indicator will output 0 on yes instances and the opposite thing on the no
instances. On most of the no instances, your clique indicator will say yes. That means, the
answers will be wrong with high probability.

This is what we want to show, which will mean that you need many clique indicators even to

work correctly on yes and no distributions. So, if k is let us say and S is a subset k size,𝑛1/4

then either the probability on no instances of being 0, which is the correct answer, that
probability is quite small or on the yes instances, saying one, which is the right answer is
extremely small.

Either on the no instances, there will be mistake but this mistake is 99%. That is on 99% or
0.99 fraction of the no instances, the answer will be 1. This mistake is more than 99% but in
the yes instances the probability is exponentially small. Almost everywhere it is making a
mistake. Second thing is a bigger problem, which shows that clique is actually hard.

To show this, we will use some probability. We will use a parameter .𝑙 = 𝑘 − 1/10
Suppose the set S is smaller than l. See either the set S is of size less than l or more than l.
When it is less than l, it will make mistake on one side; when it is more than l it will make
mistake on the other side. For example, when the set S is of size less than l, it is a small set,
then what will happen is then we have to look at the no instance distribution.

In that distribution, although the k-clique is absent since there are many k - 1 cliques. This
indicator will usually answer 1 because the set is small. When the set is large, then we will
show that mistake happens in the other side. Remember that S defines your clique indicator.
So, if you take a small set, then you will have these false positives, say and if you take your
indicator to be based on S, then you will have the opposite problem.

We will do it step by step. Let us first handle this small s case. So, what happens when the
set is small or your indicator is small is that a random C from S k - 1 will be one to one→

94

with high probability. The first element in S, you can freely label but then the second one,
you cannot use the label which you used in the first vertex.

That will be . This is at1 − 1/𝑘 − 1()() · 1 − 2/𝑘 − 1()() ··· 1 − 𝑙 − 1/𝑘 − 1()()
least which is at least . Here1 − 1 + 2 +···+ 𝑙 − 1()/𝑘 − 1 1 − 𝑙2/𝑘 − 1() 𝑙2/𝑘 − 1
by definition we have picked it to be 1/100. So, we get 0.99. Almost always your random
labeling will keep S distinct. The labels will be distinct, which means that in the (k – 1) partite
graph, you will see a clique on S.

Your answer will be 1 but there was actually no k-clique. So, your answer for 99 percent of
the cases, is incorrect. Vertices S in the no instances form a clique, which means that the
clique indicator will answer 1 with high probability on no instances that is one case.

(Refer Slide Time: 35:14)

Let us go to the next case when the set is large. Basically you have chosen a big indicator.
Now what will happen is, you might be missing the yes instances because you have chosen a
bigger indicator. Let us calculate the probability of S being a clique in the yes instances. S will
be a clique only when this graph of in the yes input distribution, it is contained in the clique.

This G is already a k-clique. S has to be a subset of that if you want to see a 1 in the answer.
This is the same as the probability that S is contained in this subset K, the way G was
defined. Graph G was defined with respect to some subset K of size k, and S should be
contained in that subset of that the indicator output 1. And what is that probability?

We can first give the exact probability, which is you want to pick a random subset K but you

also have to put big S in it. That is total number of choices is and favourable ones are
𝑛
𝑘()

, which is less than equal to , which again is less than equal to
𝑛− 𝑆| |
𝑘− 𝑆| |() 𝑛−𝑙

𝑘−𝑙()/ 𝑛
𝑘()

and that is exactly the binomial coefficient expansion
𝑛

𝑘−𝑘()/ 𝑛
𝑘()

.𝑘 − 𝑙 + 1() ··· 𝑘()/ 𝑛 − 𝑘 + 1() ··· 𝑛 − 𝑘 + 𝑙()()

95

Now, all the numbers dividing the numerator are at most k. So, you get as an upper𝑘𝑙

bound. All the numbers that appear in the denominator, they are at least n/2. So, you get

. Further, k/n is smaller than .2𝑘/𝑛()𝑙 𝑛{−0.7𝑙)

Recall that l is . You get smaller than . In case-2, you get success probability𝑘/10 − 𝑘/20
or the error probability on yes instances to be very large. In case-1, you get error probability
to be large on no instances. You can see the probabilities match our claim.

We will actually use the lemma 1 to show that if you just take or fewer than that𝑛 𝑘/20

indicators, it cannot be clique. This almost immediately follows but, let us just do the
formality.
(Refer Slide Time: 42:02)

First you write clique as this OR of clique indicators I from 1 to m. And if there is an i here,
such that size of Si subset is smaller than that l then the case-1 applies. If there is an i such
that set Si is smaller than l, then your case-1 will give you problem in the no instance. Then

on the no instance is 1 with high probability, which means that clique function is also 1𝐶
𝑆

𝑖

with high probability. Because clique is an OR of these ’s.𝐶
𝑆

𝑖

If one of them is 1, the whole thing is 1. That is a contradiction. This cannot happen. Let us
look at the other case. So, for all i, the subsets are large, and since the indicators are large
you can apply case-2 on the yes instances. There is a problem in the yes instance. The
probability on the yes instances that is 1 or a 0. This probability we calculated to be quite𝐶

𝑆
𝑖

high.

We had as the probability, which means that probability on these graphs of your1 − 𝑛 𝑘/20

indicator being 0. Clique function is 0 when all these indicators output 0, each indicator

output 0 with this much of probability. So, you multiply them. This is where1 − 1/𝑟()𝑟

96

and it is more than . Here m was picked to be smaller than that equal to that𝑟 = 𝑛 𝑘/20 1/𝑒
actually.

With a decent probability on the yes instances, you are getting 0, which means that it cannot
be clique function. That is also a contradiction. This finishes the proof. It means that Cliquek,n

is not . We have shown that if you use only clique indicators, then you will not be able𝐶
𝑆

𝑖

𝑛 𝑘

to compute clique exactly. It is a statement about exact computation. Remember it is not
approximation at this point.

(Refer Slide Time: 47:04)

Next lemma that we want to show is to do with weakness of the monotone circuit model
with respect to clique indicators. We show that a small monotone circuit can be
approximated by an OR of few clique indicators. Here, we will talk about approximation and
we will show something opposite to what we showed for the clique function that even few

indicators fewer than that we had before, fewer than that many clique indicators are𝑛 𝑘/20

enough to approximate a monotone circuit.

By the way, this will not be on all input instances. This will be on the same input instance
distribution as in lemma 1. This actually result is not strong enough to work for all inputs. I
should remark that for distributions yes and no, this is important. Let us compute the
probabilities on these distributions and also we have to specify which clique indicators will
work.

Lemma 1 was about clique hard. This is now about monotone circuits. This will show that

again same and size you can think of as ; same parameters. Then there exists𝑘 ≤ 𝑛1/4 𝑛 𝑘/20

m subsets or clique indicators where m is smaller than .𝑛 𝑘/20

97

Subsets S1 to Sm of 1 to n such that we will now talk about success. We want to show that
these indicators will well approximate the value of monotone circuit. Actually the probability
now is large of success. On the yes instances when you look at this OR of clique indicators,
these m clique indicators, it is actually.

So, on the yes instances, it is actually 1 or it is whatever the circuit was outputting, the value
of the circuit monotone circuit C on this G. It may be outputting 0, or 1 but whatever it was
outputting the OR of the indicators is at least that much. It matches the answer of C with
high probability on most of the yes instances according to the distribution and symmetric
thing on the no input distribution.

For no instances this indicator is at most the value of the circuit. Iff the value was 0, this is
also 0 with probability 0.9. If the value was 1, then the OR of indicator can be 0 or 1 but the
point is that it matches the monotone circuit C value. On the yes instance in 90 percent of
the cases, it is. So, if C(G) is 1, then this or of indicators will be 1. If C(G) was 0, then then it
can be 0 or 1.

When it is 0, it is at least matching C(G). If it is 1, then it is matching the yes instance, the
correct answer. Either it is the correct answer or it matches C(G) with high probability. The
point is that with respect to clique, we have shown that monotone circuits are
approximable. So it is easy with respect to clique distributions that is what this lemma is
saying, it is not a general result for monotone circuits. It is only for the clique problem.

The function that we are interested in is the clique function and the input that we are
interested in is only yes and no instances. Only then this this thing makes sense. First prove
the main theorem using lemma 1 lemma 2.

(Refer Slide Time: 55:20)

Proof of Razborov’s theorem, you see that if there exists a monotone circuit C of size smaller
than what was claimed in the theorem statement computing clique, then by lemma 2 there
will be clique indicators such that the OR of them mostly agrees with the clique function for

98

the yes and no instances, because lemma 2 talks about both. Graphs both in the yes and the
no input distributions, the clique function is being well approximated.

For 90% of the cases it is correct with this OR of clique indicator. This is the approximation
result you get for clique by lemma 2 but. Now in lemma 1, it was shown that whenever OR
of indicators agrees with clique, there has to be a lot of indicators. Compare with this
probability that you got error probability of 1%. The match cannot be more than 1% that is
what lemma 1 said.

But by lemma 1, the error is at least 99%, which implies a contradiction. Lemma 1 and
lemma 2 contradict. So, lemma 2 is saying that m clique indicators are agreeing with clique
on 90% of the cases. On the other hand, lemma 1 is saying that they can agree on at most
1% of the cases. t is a big contradiction, which means that monotone circuit of this much size
cannot exist.

That is the impossibility result. If once we have shown lemma 2, then lemma 1 and lemma 2
together prove Razborov’s theorem. Next time we will do lemma 2.

99

