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Lecture - 08
Monotone Circuit Lower Bound and Sunflower Lemma
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Yesterday, we saw 2 lemmas. So, the theorem that we are proving is for monotone circuits. So,

this theorem in blue, you want to show Razborov’s theorem that the k-clique Boolean function
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. . . . k . .
on n vertex graphs. If any monotone circuit solves it, then the size has to be n\F . So, if you think

of k to be, let us say, n/10, then this n\/Eis like n\/;. So, this is a very large exponential sized

monotone circuit. So, to prove this theorem we have to work hard. So, we have to prove 2
lemmas.
(Refer Slide Time: 00:58)
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The first lemma that we showed, so, recall these input distributions. So, we will be working with
these kind of graphs, first is the yes distribution. The yes graphs why? Which is basically just
randomly pick subset of size k and the set is called K and on this draw clique, join every
possible pair of vertices. The no graph is basically these, which have k - 1 partite connections.

So, you basically just label randomly the vertices, labels 1 to k - 1.

So, there will be k - 1 cliques but not k cliques. These are the clear no instances. So, only on
these special yes and no graphs, we will work. So, lemma 1 is that which we have already shown
that clique is a hard function on this distribution assuming that you use clique indicators.
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So, if you are only going to do an OR of clique indicators, then the success probability for a

single clique indicator is so low, it is less than 1 percent that you will actually need larger than

n\fthese many clique indicators. In few clique indicators, you cannot achieve success of 90%.
That was the first lemma.
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Second lemma that we have stated again in this blue is that if you look at the output of a

monotone circuit solving clique on these yes and no distributions, input distributions and the size

. k . . g . .
is smaller than n\f, then actually few clique indicators is enough to achieve 90% success. So,
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these 2 lemmas taken together give you the proof of Razborov’s theorem. This also we finished.

So, the only thing remaining is lemma 2.

So, we will prove this now. We will show that a monotone circuit has few clique indicators. So,

Jk ) . ) k/20

the size of the monotone circuit is S < n' and the number of clique indicators ism < n
some constant is there and we want to show that the success probability is 90% on the yes and no

distributions. So, remember that we are only looking at special graphs.

So, let us prove this. This is going to be a very tricky proof with interesting combinatorial

techniques.
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So, like we had clique indicator size before [: = \/E/ 10 and the number of clique indicators that
we will ultimately get that will be m:=(p-1)L.l! where=100l.logn. So, p is like L, p is like \/E, S0,
your m is \/E kind of that. So, m=pl =§=(\/E.logn)\/ESO, this thing in all is, we have taken

k to be n'*,

So, overall this is much smaller than n/k/20. So, this is the m that hereafter. We will reduce to

these many clique indicators, such that the OR of these clique indicators is correlated well with
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the monotone circuit output on the y and n distributions. So, think of the monotone circuit as a

sequence of monotone functions f;.....f;: input is a graph, so, input %

Output is a bit, where each f;, so, monotone circuit is computing, is first it applies some AND/OR
gates on the input, which is basically your sequence of edges, — many bits and on this output,

another layer of AND/OR gates acts and so on. This is how you can see the computation in the
monotone circuit happening, leaves to the root. So, the functions which you are getting these are

all monotone functions and this is what f;.....frepresent.

So, each f; is an AND/OR of 2 previous functions, f; and f;. or is an input variable x,,. So.f; s,
we are assuming this to be, all functions to be binary, AND OR are our binary gates. So,f; will
have 2 inputs. They are f;, fi.or it is a variable.f; is a variable at the leaf. That is one way to model
the monotone circuit and then finally or at the root, what happens is, you get circuit equal to the

circuit value C = f; that is the Boolean function in the end.

such that F is an OR of <m clique indicators. Write m clique indicators, CS o CS ; |sl,|S L. So,

1 m
m clique indicators each of sizel and we call this function and (m,l)function. So, each
intermediate function f; will represent it as an (m,l) function, which means that we will actually
devise m clique indicators each of size [ . So, that the OR is well correlated with f; value.
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So, we construct a ]Tl by induction, again induction on depth and size. So, for the OR gate in the
monotone circuit, we will construct 71 = 7{ u F, some operation this square cup operation on
the 2 input (m,l)functions. So, Fi' is an (m,l) function and same thing with ]7, using those two
(m,l) functions square cap operation, will define. This (m,l)function for jTl and respectively,

f_ M ﬁfor fIAf

So, these are the 2 operations that we have to now define. So, what is this operation? So, both f
and g are given to you as(m,l) functions. Let us also write that from this these (2m,l) functions,

we want to produce a single one. So, say f is these clique indicators f = Vie[m]Cs and

i

g = Vje[m] C _ and remember that you want to compute OR of f and g. So, what should you do?

J

You should just takeSi and T],’s together, but then you will get 2 m clique indicators,

h = Vie[Zm]CZi where Zl_ = Sl_ and Zj+m = Tj; for all i, je[m]. So, we are just placing

S,.... Suand then T,......T,, calling them Z; in order Z,....Z,,.. And this h is clearly an OR of f and
g, but it is a (2m,l) function. So, we have to drop or rewrite the clique indicators to make it m
comma | form (2m,l), but this h is equal to f OR g that is correct, but it is not (m,l). So, let us

now do a procedure to reduce the clique indicators.
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So, we need to approximate h by an (m,l) function. So, what we will do is using the following
iterations. So, how do we approximate ideally? We want to drop some of the clique indicators.
So, what we can do is, we can actually merge clique indicators. So, for example, if Z, and Z;

clique indicators, they have something in common then we replace the 2 by their intersection.

So, in set theoretic terms instead of checking, whether subset Z, is a clique or Z, is a clique, you
check whether Z,, Z, is a clique. So, you may be making mistake, but at least you have reduced

the number of clique indicators. So, that is what we want to do. So, we will do it systematically.

So, as long as, there are >m distinct sets, find p subsets. So, what was p? p was \/E logn.

So, find p subsets, Zl_ ...... Zi that form a sunflower. So, what is a sunflower? So, in this set
1 P

theoretic or combinatorial terms, sunflower means that mutual intersection ofZ e Z ; is the
1 P

same. That is, there exists a subset ofZ C [n],Vj < j'e[p], Z N Z .So, find p subsets that

j 7
form a sunflower, which means their mutual intersection is the same and then replace them by

this intersection.
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So, that will shrink your clique indicators that is the trick. So, replaceCZ - CZ clique

indicators in h by C,. And third is, maybe still, you have more than m clique indicators, because
originally you had 2 m, m is much bigger than p. So, in 1-round, you are only reducing by p, — p,
s0, you might have to repeat this. So, keep repeating, till you go below m or till you reach m. So,

when you stop, then you call each prime to be fLUg: = h'.

So, there are these rounds of identifying in each round, you are identifying a sunflower and then
replacing the p clique indicators with the intersection. So, the question is, will a sunflower
always exist? That is the first question. If we keep finding sunflowers and we keep reducing this
way, what is the error that we are introducing? So, these are the two things, we have to
understand now, the process is clear. This is the process, but why does it proceed? And second is,
what is the result? How good is the result?

(Refer Slide Time: 22:56)
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So, first question, we will answer by stating sunflower lemma. So, Erdos and Rado prove this.

So, let this Z be a collection of distinct sets of size <l. So, like (()) (23:58) 2 m sets each of sizel

that is the set of subsets is called fancy Z. Now, if it is a lot of subsets, so, if

1Z] > ((p — 1)1. [, then there exists a sunflower basically, then there exists Z,.....Z, €Z

basically.
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And a set Z such that V i<j €[p], Z ;N Zj=Z when you take the intersection, it is exactly Z, so,

that is a sunflower. So, what this is saying is that if your collection is large, relative to the set
size, which is relative to the subset sizes, which is [. So, if your collection is exponential in that,
then there is always a suitably large sunflower in the collection. So, in this the universe is

arbitrary.

So, Z; are subsets of an arbitrary universe, there is no size information there and p >2. This is
also what we are assuming. So, at least you will get in the sunflower at least 3 subsets Z,, Z,, Z;
such as the mutual, there are 3 mutual intersections, they are all equal. So, this we will prove
later, the proof is again by induction, it is by induction on the collection size. Assuming this, let

us continue with the error analysis.

So, first we will look at the yes instances and show that Pr[(fUg)(G) < f(G) VvV g(G)] = 0.
This is what we will show. This is kind of obvious because, in this h which was the all the clique
indicators, 2 m clique indicators, we are just replacing some of these clique indicators by the

Intersection.

So, if the original value was 1, then after the removal or after the replacement also it remains 1.
So, 1 cannot become 0. So, this inequality can never hold. So, the reason is

C , @) =1>¢C 2(G) = 1. Because Z; , you have already checked that on Z; there is a clique in
1

the graph g. So, on Z; there is a clique, there is also a clique, obviously there is a clique on a

subset.
So, if OR was 1 then in this approximation, the value will be 1. There is no error introduced.

Second is on the no instances.

(Refer Slide Time: 28:55)
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So, probability on the no instances, what may happen on the no instances is that there was no
clique but since now, the clique indicator is smaller, it says that there is a clique. So, what is the
probability then? Pr [(fug)(G) > f(G) V g(G)] < 1/10SThe probability is 1 / 10 s that is
what we will show. So, let us analyze this. This will be a probability analysis. Remember no

instances are k - 1 partite labeling. So, a random labeling is chosen.

So, we will use that to estimate the error. We may make an no instance true if C,(G)=1 but

CZ (6)=0, V ie[p]. So, originally the OR of clique indicators was 0 but when you replace it by

the intersection it is 1. It is a smaller clique indicator. So, it is making a mistake. So, recall that G
is generated by a random vertex labeling into k - 1 parts and what are the edges? So, add edge if
and only if different labels.

So, what is happening is that C actually was not one to one on Z; but it is one to one on Z, on
Z;’s. This is what has happened. So, the random C that you labeling that you picked, it may it
was actually not one on one to one on Z; but the places where it was not one to one, they are lost
because you replace them by the smaller Z. So, what is the probability? Let us say, what is the
probability C is one to one

on Z; given C is one to one on Z.
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Let us instead calculate this probability. So, if you have checked that C is one to one on this
smaller subset Z, what is the chance? That it is one to one on bigger subset Z; that is containing

Z. So, that is basically you just have to make choices for Z; — Z. So, this probability is equal to,

Pr [c one — one onZilcis one — oneoneZ] = (1 — |Z| -—r) @ - |Z|+1

remove the Z values which you have picked out of k - 1 and then Z + 1 and finally Z; is at most [

large if you assume exactly! this is removing [ — 1.

2
And this fraction, we have seen before, so, this comes out to be at leastl — ﬁ, which is more

Z
than % in this setting, — was small. So, this is at least 50 percent. So, once you have checked

on Z, then on Z;, the result will be the same usually. So, C is most probably one to one on Z;.
Now, but there were Z,, Z, and Z,, there were p things chosen. So, what is the chance that C is
not one to one on any of those.

(Refer Slide Time: 35:00)
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So, Z\\Z...... Z, \Z they are disjoint because of the sunflower property. They are mutually
disjoint. So, we also get pi independence. So, this looking at C, across Z;’s is actually
independent. These are independent p events, so, we can multiply the probability. So, now

PrC[V i€[p], cisnot one — oneonZ l,|c one — one on Z]. So, previously, we showed that this

probability for Z; is less than 1/2.
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So, when you go over all these Z;’s, it is less than 1/2P, 2P is the way we chose it, this was a

10k

10 \/E.logn. So, you exactly get n ' . So, if you look at m, what was m? m and S both of them

nﬁ/

we had picked 2 So, we can claim that this is smaller than 1/10ms. This is much smaller.
So, that is the probability that you make a mistake on when you replace the sunflower by a single

clique indicator.

And sunflower lemma will be applied. So, this replacement of a sunflower will happen how
many times. You are going throughout. You are covering every gate in the monotone or you are
covering in this case all the OR gates in the monotone circuit, which are at most as many you
wanted to reduce 2 m to m. So, every time you reduce a sunflower, you are reducing the number

of clique indicators by at least 1 obviously.

And you want to reduce them maximum by m. So, this is done m times at most. So, sunflower
lemma is applied less than m times, which means that the probability over the no instance, when
you are doing this single square cup definition. This is less than m. 1 / 10 ms just by the union
bound, which is 1 /10 s that is what we wanted to show. So, the error that we introduce is at most

1 /10 s per OR gate but over 10 s is good because there will be at most S OR gates.

So, by union bound again, the error introduced overall is just 1 by 10,
just 10 percent error 90 percent success. Let us now look at the
second construction which is operation f 7 g for AND. When you see an
AND gate, what do you do? So, AND corresponds to,

h:= (v CSl_) A (V CT]_)=V CSL,UT_ So, you distribute this AND on OR’s and then you want both

J

S;indicator and T; indicator to be true, which means that S;s a clique; T;is a clique.
Now, will that mean that union is a clique. So, actually on the yes and no instances. It will yes

and no instances. So, if you on the yes instance basically the only case when S; and T both are

cliques, is when both of them are in the subset k. So, the union will be at clique. In the no
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instance, if S; is a clique and T;is a clique then again, so, this has to be seen. Let me just say, yes

at least this much is true.

So, let us leave this as an exercise. AND will actually correspond to this function h. So, we will

focus on this r ofSi U Tj for all i, j. This is our h in the AND case and fg. So,

we have these m square. We have these m square indicators. We want to
bring it down to m again using the sunflower trick. So, approximate

each by (m, [) function as so, what do you do?

So, you had thisC ¢ Many msquare, many indicators, so, again, we want to drop some of them
i

in every round we want to drop them. So, that they become m or less. So, we will again be
looking for a sunflower and removing it but some of them may actually have now length also
size also more than [ because S; was at mostl; T j was at most [; maybe the union is more than .
Those we will just drop more. So, between [ to [ will drop and I and below, we use sunflower

lemma.
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On the rest, you use the sunflower lemma. And then what remains is called h'. h' this is the
definition of f. This is what we call . So, why will this process proceed? Well. That is because

you will keep getting sunflower lemma as you got in the first case square cup case. So, square
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cap case also will have the same reason why you will keep getting sunflowers till you reach m

clique indicators.

So, only question here is how much is the error introduced. So, this we have to work out. So,
what is the error introduced in this procedure when you want to get AND of f and g. So, let us
first see the, again the yes instance, no instance. So, first is on yes instances,
Pr((fng)(G) < f(G) A g(G). It can be smaller, but we will show that the probability is also
smallPr[(fng)(G) < f(G) A g(G)<1/10s. So, small error on.

So, fV Cs’ g =V CT=> fAgly =V Cs or = hand recall that Gey yes distribution graph

j [

corresponds to subset K € [—Z] on which there is a clique and there is no other
edge in the graph. So, if this (f m g)(G)vanishes, then what does it

mean? If this vanishes while the f(G) A g(G)= 1, then what does it mean?

So, AND was 1 means that there was a clique on some Sl, U Tj. So, Si U Tj was in

contained in k but that was dropped. So, that clique indicator was
dropped. This is the only thing that can happen. If it was not dropped,
then there was no chance of getting this f m g to be 0. So, there

existed i, j such that S T]E Kbut €  this was dropped.

So, the size |S Y Tl_]was large. It was bigger thanl which is why it was dropped in the process in

step 1 that is the bad case here, which we have to analyze. So, let us call this Z and compute the
probability.
(Refer Slide Time: 50:31)
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So, by lemma 1, the probability over random K says that this Z € K. So, remember Z is larger
than [. And k was, so, what is the chance that you pick a random key and it contains this large

subset. So, that probability will be small Pr[Z € K] < n 7 , which is smaller than if you

. : . 2
recall S n m expression, it is smaller than their product in fact, smaller than 1/10ms .

Just recalll S and m, then you can see this. So, the process how long will the process continue;
how many steps; how many rounds will the process have for 1 square cup or square cap that will
be less than m*because you had ing at most m*. So, we could drop less than m square many Z’s

from h, which means that by union boundPr[(f N g)(G) is wrong]. This is smaller than 1/10 s.

So, on the yes instances, the probability of or the error we have introduced is less that is what we
have shown. Let us now go to the no instances. So, first observe that on the no instances, h is less

than f and g. So, this Si U Tj indicators their OR is indeed equal to the AND of fand g; f'is for

S;’s and g is r of T;’s. So, on the no instances also, they match. So, this you can see by the way no

instances were defined. They were defined by this k - 1 partite method.
So, f and g being, I mean, you have to look at 2 cases 1 or 0. If it is 1, then it means that there is

an S; and there is a T;, which are both k - 1 cliques. If f and g is 0 on some in no instance if it is

0, then basically there is no S; and no T; simultaneously cliques. So, there is no chance of their
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union being a clique. So, we only have to look at the other case, which is probability on the no

instances.

So, we have to look at this square cap g. Can it be greater than? So, what is the chance that when
we are doing this process to get square cap f square cap g in that process either we drop a clique
indicator or we drop a sunflower and because of that a false value becomes true of the OR. So,
what is the probability of that happening? So, this will again be by the sunflower analysis like we

did in case 1 in the square cup case. It is 1/10 s.

If (f N g)(G)= 1, while the AND was not,f(G) A g(G)= 0. So, how did this error happen? So,
we do 2 things. In step 1, we drop a clique indicator and in step 2, we drop a sunflower. We
replace a sunflower by some clique other clique indicator by the intersection basically. So, the
first step cannot turn 0 to 1 because first step is just dropping. So, if it was 0 before, then it will

remain 0.

However, in the second step, when you are replacing a sunflower by something some smaller

clique indicator that may become 1. So, we replaced C g C by CZ such that this labeling is

Z,

one to one on Z but not one to one on Z ;for all the 1’s. So, then this probability follows by what
we did for f M g. It is the same probability analysis like this we have analyzed before and that
will give you 1/10 s. So, we have done both the operations square cup and square cap.

(Refer Slide Time: 58:17)
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So, what we learn combining the two is that we compute square cup and square cap less than S
many times in the circuit C. So, this means that the probability on yes instances of this final (m,
[) function f S tilde, this being wrong and on the no instances, this being wrong. Both these

probabilities are smaller than one tenth. Because for single operation we had shown 1/10 s.

So, by union bound on S many, you get 1/10. So, this finishes lemma 2. So, this means that we
have rewritten monotone circuit at least for yes and no instances in these input distributions as an
OR of few clique indicators. So, the only thing remaining is proof of the sunflower lemma that

will finish next time.
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