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Lecture- 11 
Resolution – Refutation Proofs 

 
Let us continue with our study of proof mechanisms in first order logic. So far, what we 

have seen is proof by using generalized modus ponens, which was different from 

propositional modus ponens, in the sense that we have to unify the left hand side of the 

rules, in order to derive the right hand side of the rules. 
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So, we are going to study resolution refutation proofs, which is a complete proof 
procedure for first order logic. But first, we must understand that what is the 
completeness issue for modus ponens. For that, let us look at this example.  
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We have for all x, px implies qx, right; we also have for all x, not px implies rx, right. 
Then, we have for all x, qx implies sx, and for all x, rx implies sx. Now, we should be 
able to conclude sa from this. Why? Because it is either pa or not pa, right? It is either pa 
or not pa. Therefore, it is qa or ra; if it is qa, then also, we have sa. If it is ra, then also we 
have sa. We should be able to deduce sa from this, but we cannot do it by generalized 
modus ponens, because modus ponens will not observe that this and this- the left hand 
sides together- cover the entire domain of the predicate, because it is either px or not px. 
That this and this together gives us true or of this, is not observed by generalized modus 
ponens. And the problem is that this kind of thing that when you when you have not px 
implies rx, cannot be converted to horn form, because we have negation on the left hand 
side.  
 
What is the problem of having negation on the left hand side? Now, recall that the basic 
way in which we were attempting to do the proofs was, start with what we have in the 
knowledge base; from that, we try to deduce newer and new things. Whatever you do not 
have at this moment in the knowledge base, you cannot say that it is false. You cannot 
say that it is false, because so far, you may not have it in the knowledge base, but through 
the deduction procedure, it may come into the knowledge base; you may be able to 
deduce that into the knowledge base. Therefore, apriori, you can never say that not of px 
or not of pa is true, because at this point, pa may not be there in the knowledge base, but 
through reduction, we may be able to find pa and put it in the knowledge base.  
 
You could say not pa when, after your entire forward chaining is over, you have deduced 
whatever you could, and in spite of that, you were not able to deduce pa. Then, you can 
say that ok, I am not able to infer pa from what knowledge I have, right, but deduction of 
not pa was not possible there. Therefore, if you have not of some predicate on left hand 
side, then the mechanism of unification that we talked about is not going to work, 
because we will never have a predicate; we will never have a state of the knowledge base, 



where it contains not of something. This is the problem that we have in modus ponens. 
Now, is it clear what I mean to say? In the knowledge base, what we are maintaining is- 
we are maintaining the set of facts that we have been able to deduce.  
 
If we have been able to deduce pa, we will put it in the knowledge base, but how do we 
deduce not of something? We do not have a mechanism of storing the not of something in 
the knowledge base. What we find is, whatever truths that we have in the knowledge 
base, we use that to deduce new things. Now, here, we have this rule, which says not of 
px implies rx, so when can we apply this rule when the knowledge base gives us not of 
px? But, if we go by the modus ponens kind of inferencing, then the knowledge base will 
never tell us not of px, because if pa is not there in the knowledge base, now, it is not able 
to say that not pa is true, because pa could be coming into the knowledge base as a result 
of the deduction. 
 
 Being able to infer not of pa and then use this rule not of px implies rx, will not work, 
because the only way of doing reasoning there, was to take the left hand sides of the rules 
and try to unify them with what we have in the knowledge base, and then deduce the right 
hand side from that. And we did not have negation here. The moment we have negation 
on the left hand side, this procedure will not work anymore. Then, the knowledge base 
can become non-monotonic, in the sense that if you insert not of something at some point 
of time; later on, you deduce that fact, then you have to take out this not and not only do 
you have to take out this not, you have to take out whatever was deduced from this not, 
and that makes things quite complex. 
 
 But there are actually knowledge bases which use nonmonotonic reasoning, and they do 
maintain the consistency of the knowledge base as the direction procedure continues. But, 
as of now, if we just use modus ponens, we have this problem. So, this tells us that modus 
ponens is an incomplete reasoning procedure. It is not able to deduce whatever that can 
be deduced. For example, here, sa can be deduced, which we know from reasoning. From 
human reasoning, we know that sa can be deduced, but we cannot deduce it with modus 
ponens. So, it is an incomplete procedure.  
 
There was a lot of research on the completeness of a proof procedure, and then Godel's 
completeness theorem partially solves this matter. It said, for first order logic, any 
sentence that is entailed by another set of sentences can be proved from that set. In other 
words, what this says is that, if there is any sentence that you can deduce from a given set 
of sentences, then, we will have a proof procedure that is able to do this deduction. In 
other words, the problem of deduction or to find out whether it is entailed, whether it can 
be deduced, is solvable- this is what Godel says.  
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But he did not suggest a proof procedure, and in 1965, Robinson published his resolution 
algorithm, which was proved to be complete proof procedure for first order logic. But 
there is a catch in the whole thing. This entailment in first order is semi-decidable, so 
what does this mean? It means that we can show that sentences follow from premises, if 
they do, but we cannot always show if they do not. Let us understand what this means.  
Suppose there is some sentence that we want to deduce. Now, if it is the case that what 
we have in the knowledge base implies this particular sentence, then we will be able to 
deduce it. But if it is not implied, then we may not terminate, and that applies to all proof 
procedures of first order logic. That was what was the outcome of these 2 results- Godel's 
completeness theorem and Robinson’s resolution algorithm.  
 
So, when we say that the resolution algorithm is complete, it means that whatever can be 
deduced will be deduced by the algorithm. But whatever is not implied or whatever is not 
entailed from the set of facts and sentences that you have in your knowledge base; 
whatever cannot be entailed, for those cases, the algorithm may not terminate, right, and 
there is no algorithm which can guarantee both. There is no algorithm which can 
guarantee both the yes answer and the no answer. Can be deduced: yes, cannot be 
deduced: no, right? Both of these answers cannot be guaranteed by any algorithm; that is 
the hardness of the problem itself, okay? That is why we say that entailment in first order 
logic is semi-decidable; it is decidable on 1 side, is not decidable on the other side.  
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We will not go into the details of the validity problem of first order logic, but we will just 
get a glimpse, or try to see why this becomes so difficult. With this example, I will show 
you why this becomes difficult. But I also encourage you to study Church’s proof of the 
of the fact that the validity problem of the first order predicate calculus is partially 
solvable. This proof is available in several books including Russell Norvig and ___ 
Manna’s book. So, you should, at some point of time, have a look at how this proof 
looks- like, it is not a very big proof, but it requires a little bit of breaking your head into 
it. Now, let us see this formula. What we have here is a conjunction of predicates p, each 
having a different argument. We have p f1a, g1a, and p f2a, g2a, so, let me expand it out 
and write. This has p f1a, g1a and p f2a, g2a, and like this up to p fna, gna.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:16:29) 
 

 
 
And we have for all x, for all y, p of x y implies p of f1x, g1x, and p of f2x, g2x. And 
then, this whole thing this whole thing from here to here implies, there exists z- now, let 
us see what this says. It says that this is the starting point: we are given a value a, this a is 
a constant- this a is a cons actually, I should have written it in capital letters: this a is a 
constant. So, we are given that p of f1a, g1a is true; p of f2a, g2a is true, and so on, and p 
of fna, gna, is true, right? And we are given this rule, which says that for all x, for all y, if 
p of xy is true, then, we have p of f1x, g1x, is true and p of f2x, g2x is true, and so on; p 
of fnx, gnx is true, right? And then, we say that if this whole thing is given to us, can we 
deduce that there exists some z, where the arguments of p will become equal? Now, let us 
see- how would forward chaining work?  
 
It will start with the knowledge base having p; having this part, it will have p of f1a, g1a; 
it will have p f2a, g2a, and it will have p fna, gna, right, this is what the knowledge base 
will have. And then, you will repeatedly use this rule, because you will take each of this p 
xy, and then you will deduce this whole set of statements from that. So, when you take 
say p f1a, g1a, then, x will be instantiated with f1a, y will be instantiated with g1a, and 
then, you will have p of f1 of f1a, g1 of f1a, right, and so on, you generate this whole 
stuff. Again, you will use that repeatedly.  But whether these functions will eventually by 
repeated application of this functions whether these 2 functions will take you to a 
common value z, is the question that we have to answer.  
 
Now, these functions can be arbitrarily complex functions, right, and to determine 
whether they will actually converge to a common value, is a difficult problem. And this is 
where the unsatisfiability will create, because see, these will these can keep on growing, 
without you being able to infer whether they will arrive at a common value. So, actually, 
the proof which tries to establish that this is partially solvable, starts with a formula like 
this, and then develops it to lead you to the proof that- you will not be able to, if you are 
able to deduce this, if you are able to find the z, then you are done. 



And if you progressively systematically expand these, then if there is a z, you will find- 
because you can recursively start enumerating this- the values for which this p holds, 
right, you can recursively start enumerating that. So, if there exists a z, then eventually, 
you will find it, but if there does not exist a z, you will keep on applying this repeatedly, 
and you will not come for it, you will not terminate it. So, I am not going into the detail 
proof in the class, but please study that. Here is the generalized resolution rule, so let us 
study this closely.  
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We are given, say, 2 rules, which has p1 through pn1 it implies r1 through rn2, and we 
have s1 through sn3, which gives us q1 through qn4, and for some j and some and for 
some k, we have unify pj qk is theta. It means that 1 of these this pj out here and this qk 
out here- they unify, and they unify under the substitution theta. Now, do you see what 
we have here? We have this qk here and this pj here, and they unify with substitution 
theta. If they do, then we can deduce p1 through pj minus 1, so, excluding this pj, and pj 
plus 1 through pn1, right, and this s1 through sn3- this whole thing together, will imply r1 
through rn2, and on this side, oops, I have missed out the q1 here.  
 
It is q1 through qk minus 1, or qk plus 1 to qn4- there is a q1 here, which I missed out. 
Now, try to see- how do we get this? How do we get this, okay? Let me rewrite let me 
rewrite this stuff. The first 1 which tells us p1 through pj; pn1 implies r1 or rn2. We can 
remove the implication, and write this as not of p1, or not of p2, or not of pj, or not of 
pn1 implies- sorry, we have eliminated the implication.  
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So, not of this thing, or r1 or r of n2, right? This is the first one. This 1 to this 1 dash, 
same thing, but we have written it without by eliminating the implication. Recall that we 
eliminate implication by writing a implies b is not a or b, which is equivalent to not a or 
b- that is how we got this, right? Then, likewise, if you look at the second one, we have 
s1, so we will have not of s1 or …, or not of sn3, right? Or q1- this is the second state. 
And we are given that our pj here- so, we have unify the pj here, this pj- it unifies with 
qk; this qk, with the substitution theta, right? Then, if these 2 become the same- if this pj, 
mind you, it is pj which unifies, not not pj, right?  Then, when these 2 under the 
substitution- these 2 will become the same under the substitution theta; this will become 
the same.  
 
If they become the same, then either this is true or this is true, because we have not here. 
If we call this, say j, then this is either j is true or not j is true, so it is either of these 2 
which is true. If either of these 2 is true, then we can say that the or of this whole thing is 
true, right? So, we can deduce the or of this whole thing, and when you take the or of this 
whole thing, and again turn it back into implicational form. If you take the or of this 
whole thing, what are we going to have? 
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We are going to have not of p1 or not of p2, or not of pj minus 1, or not of p j plus 1, 
right, …- not of pn1. And then, if you take these nots, then we will have not of s1 through 
not of sn3, right? Then, with this or of- we have the r1 through rn2 and we have, with 
that, q1 through q k minus 1 or q k plus 1, or … qn4. How did we arrive at this? We 
observed that this- if we take this and this, then, either this is true or this is true. So, 
actually, what do we have? We have this whole thing, and this of whole thing, and if you 
have 1 literal, which is the complement of the other, then it becomes the or of the whole 
thing, right? So, we are able to get this stuff. Now, we if we translate this back into 
implicational form, then we will have p1 through p j minus 1 conjunction of del, right? 
And then, p j plus 1 through pn1, and s1 through sn3, will imply this whole thing will go 
to the left hand side of the implication.  
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This or will become the implication, and we will have this conjunction- the disjunction of 
these things. That is what we have out here, in the um out here that we have p1 through p 
j minus 1, and p j plus 1 though pn1, and s1 thorough sn3. Clear? This is the generalized 
resolution rule, and I will ask you to verify that this rule will encompass all the rules that 
we have seen so far. I mean, all the rules, in the sense that it will also encompass modus 
ponens that we have seen. Now, let us see our earlier examples and see whether it is 
solved by this. Do you remember the example that we had? Or, let me write it down once 
again? Yes, we had this example. We had, for all x, px implies qx and for all x, not px 
implies rx. Then, we have, for all x, qx implies sx and for all or x for all x, rx implies sx. 
We will use this now, here.  
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So, we start with pw implies qw, and qy implies sy, right? Now, here we have the 
substitution of y being replaced by w, to give us pw implies sw. This is simple modus 
ponens; there is no resolution rule being applied here. Then, when we come here, this is 
where we find slightly different thing. This is a sentence- this true implies px or rx, is a 
sentence, which you cannot expresses in horn logic, because you have or on this side, 
right, but we can always express that for resolution. So, you have true implies px or rx, 
which says that either px or rx must be true every time. If we substitute w by x, then we 
have px implies sx, and therefore, we have true implies sx or rx. Then, we have rz implies 
sz, and again, if we use a in place of x, and z a in place of z, then this becomes ra implies 
sa, right, and this becomes true implies sa or ra. 
 
So, that gives us true implies sa or sa, which is sa. The difference that we had with modus 
ponens was that, we were not being able to use rules of this form in modus ponens and 
we are now being able to use them. Is this clear? Any questions? Right. Now, how we do 
this thing in an automated way? We will allow the user to write the formulas in first order 
logic, using the normal constants of first order logic in any way. And then, we will try to 
reduce the formula into a canonical form- into a form from which resolution will be able 
to work. Now, what kinds of canonical forms do you have for normal satisfiability, cnf- 
conjunctive normal form, injunctive normal form, right? So, these are standard normal 
forms into which you can deduce a Boolean function. There are other canonical 
representations, like binary decision diagrams.  
 
For this, we will also convert to something which is called a clause form, and clause form 
is like cnf, where you have a conjunction of clauses, and each clause is a disjunction of 
literals. That is what we mean by conjunctive normal form in propositional logic. Here, 
we have these quantifiers, so, we have to find out some mechanism of getting rid of the 
quantifiers, before we can apply those kinds of strategies. So, the first step; this is the 



definition of the clause form, where we will have only universal quantifiers, followed by 
a conjunction of clauses; each of these clauses can be a disjunction of some predicates. 
All first order logic formulas can be converted to clause form, and we will demonstrate 
this conversion on this formula, okay? We will demonstrate the conversion on this 
formula. Now, follow the steps closely.  
 
Step 1: we will take the existential closure and eliminate redundant quantifiers. So, if 
there is any quantifier which is redundant, that will be eliminated, and we will take the 
existential closure of those variables which are not quantified. For example, here, we 
have this- there exist z, but there is no z here; there is no z in the formula, we have this- 
there exist z.  
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So, there exist z, can be safely dropped, right? This is the elimination of a redundant 
quantifier. Also, here, we have this x 1, and there is no quantifier on x 1. In the absence 
of the quantifier, we will put an existential quantifier here. We will see whether there 
exists some x 1, for which this whole thing holds. That is step 1, clear?  
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Step 2: rename any variable that is quantified more than once. This y has been quantified 
more than once- see, we have this- for all y here, we have this for all y here:  
Now, this y and this y need not have the same value, because they are separately 
quantified. If this ‘for all y’ was not there, then these y’s would be the same y, because 



they would come under the scope of the same quantifier. Because they are under different 
quantifiers, therefore, these 2 ys are different. So, we will rename 1 of them. We will 
rename this y to z, and here, we will have for all z, qxz implies px, clear? So, any 
quantifier- any variable which is quantified more than once- for that, we will just give it a 
new name. If you change the name of the variable, it does not change anything, as long as 
it is quantified, okay?  
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Step 3: we will eliminate implication. This is straight forward. We know how to do that. 
This implication is eliminated by not of px, or this whole thing, right? Not a or b. 
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Step 4: move the negation all the way inwards- we will move this negation all the way 
inwards. Here, this negation was not directly on the predicates- this negation was on this 
whole formula, on the sub-formula. So, we will move it inwards. By moving it inwards, 
we have this- there exists y for all y becomes, there exists y, and we have q xy and not of 
p fx1, right? So, this not this not has been moved inwards, right?  
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Step 5: push the quantifiers to the right. Here, this, there exists y was quantifying this 
whole formula, but then, this part- this not of p fx1, does not have y. So, we can associate 
this there exist y directly with this predicate q xy. That is what we mean: we move it 
inside, and align it with the predicates which they are quantifying. So, it is, here, there 
exists y q xy. Likewise, this for all z, is not quantifying this px, because it does not have 
z, so we have moved it inwards, right? Then, this is an important step: eliminate the 
existential quantifiers using Skolemization. 
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We had briefly seen what we mean by Skolemization: we replace a existentially 
quantified variable by some ground thing, by some ground term, or some something else, 
in order to get rid of the existential quantifier. But, we can do it with only something 
which is not there in the knowledge base at the moment. So, what we do is, we pick out 
the left most- there exists yby and replace it with b of some x1 through xi1 through xin. 
Where these are all the free variables of there exists by, that are universally quantified to 
the left of there exists y by, right? Now, let me explain this through an example. That 
suppose, we have there exists y by, right, and you have some for all x1, for all x2, for all 
x3, here.  
 
Now see, what does this say- that for all x1, for all x2, for all x3, there exists xy, there 
exists such a y; so, given a value of x1, x2 and x3, there will be a y which satisfies by. 
This is not the same as writing- there exists y for all x1, for all x2, for all x3by. What is 
the difference between these 2?  
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In the first one, there has to be a single value of y, for which no matter what is the value 
of x1, x2 and x3, by will be satisfied, right? But here, it says that for all values of x1, x2 
and x3- for each of those combinations of x1, x2, x3- there has to be some y. So, if x1 is 
a, x2 is b and x3 is c, then we can have 1 y. If x1 is p, x2 is q and x3 is r, then we can 
another y. Those 2 ys need not be the same y, right? Therefore, when we replace this y 
with a skolem, we will write we will replace this by a function of x1, x2, x3. Given the 
value of x1, x2, x3, y is that value which satisfies by. Now, the value of y which satisfies 
by, for this x1, x2 and x3, is the function of these 3.  
 
So, we can have a mapping from triplets of x1, x2, x3, to the value of y which satisfies 
by. For a different value of x1, x2 and x3, you will get a different y, possibly, a different 
y, right? Is this clear? What we mean by Skolemization? (Student speaking). Here? No, 
because it is a function. For any given value of x1, x2, x3, there will be a y. There can be 
more than 1 y, like we had. You remember that there exists x likes x ice cream, and we 
replace x by man, there can be more than 1 x who likes ice cream, but man is 1 which 
satisfies, right? There could be others also. Similarly, we are interested in finding out 
whether there exists any such y. If we are able to find out a function which gives you 1 y 
for every combination of x1, x2, x3, then this formula is valid.  
 
So, it is the question of this; the question is whether such a function exists, that is- what is 
going to determine whether this whole formula is valid or not? If it is if it it is valid, 
provided that there is a function like this, which gives, for every value of x1, x2 and x3, 
or value of y, which satisfies by, but, I agree that there can be otherwise which will 
satisfy the y. What we have here is, we eliminate the existential quantifiers. Slides please. 
We have these existential quantifiers. So, this is the formula- we write it down- that pick 
out the left most, there exists y by, and replace it by this b of x1, f of x1, through xn, 
where this xi 1 through xi n, are the free variables of by, that are universally quantified to 
the left of there exists y by. Now, 1 thing that no 1 none of you asked me here was- text 



please, text please. Yes, we had- none of you asked us, that look, this y- if this y, if this 
predicate does not have x1, x2, x3, then how does it matter? I mean, why does it have to 
be a function of this x1, x2, x3?  
 
In this case, we do not need this. We need this when you have- here also, okay? Then, 
Skolemization of this whole thing is going to give us b of- , right? This x1, x2, x3 could 
be in the same predicate, or it could be some- it could also be a collection of predicates. 
For example, this b could be a formula of the form, say by x1, right, and then, some say 
b1 and b2 x1 x2 and b3 x2 x3. See, even in this case, though they do not appear in the 
same predicate, but there is a binding which is there like this. Therefore, this y- if you 
have for all x1 through x3, here, and you have there exists y, then to skolemize this y, you 
will have to put function of x1, x2, x3, right, because though you do not have x1, x2, x3, 
all in this formula, in this predicate, there is a binding which has this. So, this whole thing 
is our b, right? Fine. So, this x1 through- xi 1 through xin are all the distinct free 
variables of- there exists y by, that are universally quantified to the left of there exists y 
by. 
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In this case, for example, in our example- we have this; there exists y q xy, and we 
replace this y by gx. Why? Because this x is universally quantified here, so the value of y 
that we have here has to be a function of that x, because there exists y is inside this for all 
x. So, given the value of x, the value of y will be a function of that x, so, we have this gx. 
This is the skolem function- we call this the skolem function. For the x1, there no such 
requirement, because there is no other variable in this predicate, which is universally 
quantified from the outside, so, we simply replace it by a constant a, which does not 
appear anywhere in the knowledge base. Also, this function g that you have here, has to 
be a new constant, new function constant- it should not be 1 of the existing ones in the 
knowledge base, right?  
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Finally, we move all universal quantifiers to the left. Now, we do not have any existential 
quantifiers, so we can move the universal quantifiers to the left. Previously, we could not 
do this, because the existential quantifiers were there, and you can not move a universal 
quantifier across an existential quantifier. But here, now, we do not have any problem, so 
we have moved it to the left. So this- for all z, has come to the left. So, on the right side, 
we now have just a set of predicates which are quantified from the outside. And now, 
what we are going to do is, we will distribute and over or, to bring it to clause form. See, 
up to this part is what is mainly the jugglery with first order logic- that we have to do. 
Once you have all the quantifiers to the left side and they are all universal quantifiers, 
what you have on the right side is like a set of predicates, which are quantified from the 
outside.   
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So, we can use our Boolean algebra on these, to convert this stuff into our cnf form. That 
is what we do here. We have distributed the and over or, and that gives us a set of 3 
clauses. 1 is not px or qx gx, the second class is not px or not of pfa, third class is this, 
right? And then, we simplify this- this is an optional step to obtain this: not of px or qx gx 
as 1 clause, and not of pfa as other clause. How do we get this from this? Try to solve it. 
Take this down as an exercise, and just try to see how we deduce this thing from this. 
This is- it is not difficult, it is just give you an idea of it will give you an idea of how to 
use unification, in order to get rid of the third clause, okay?  
 
So, in the next lecture, we will we will see how we can use resolution refutation with 
some examples, to deduce or to prove certain sentences in first order logic. Yes, the slide 
please. Thank you. Just to We come to the end of this lecture here.  


