
Artificial Intelligence 

Prof. P. Dasgupta 

Department of Computer Science & Engineering 

Indian Institute Technology, Kharagpur 

 

Lecture No - 21 

Reasoning Under Uncertainty 

 

 

We are going to start a new topic from this lecture and this topic is also a very important 

topic in AI. Namely, we will be studying reasoning under uncertainty. 
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We have to rush up our school fund on probability; there will be quite a bit of probability 

coming up for you, so, let us get started. Why do we need reasoning under uncertainty? 

Let us see a few examples to get a clearer picture about why this is at all necessary. 

Firstly, the problem of handling uncertain knowledge. Suppose we are given the rule that 



for all p symptom, p toothache implies disease p cavity. This says that whenever 1 has a 

toothache, then, that person has the disease which is a cavity in the tooth.  

 

Now, this is not correct, because toothache can be caused in many other cases, so, we 

cannot say that whenever we have to take it is because of cavity. If we have to actually 

analyze the case, the problem of toothache, then, we have to comprehensively specify 

that what are the different causes for which this can happen. Cavity is one, gum disease is 

one, impacted wisdom is one, and so many other cases, for which we can have a 

toothache.  
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Now, enumerating all of this is a problem because all of this may not be known and you 

can miss out quite a few, like, for example, you can have toothache also, if somebody has 

hit you on the teeth, which you would probably not put in this root, right? But for 

diagnostic system, unless you have the complete set of causes, then, this rule will 

formally not be correct because we are using implication here. Let us try to model this in 

the other direction. 
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Suppose we want to say that for all p disease, p cavity implies symptom p toothache. We 

are saying that whenever there is cavity, then, the symptom is toothache. But this is not 

correct either, because all cavities do not cause toothache. So, even if someone has a 

cavity, that person may not have a toothache. This is a kind of scenario which is very 

difficult to represent unless we use some kind of statement which says okay, sometimes 

the cavity can cause toothache.  

 

And if we have toothache, then, sometimes it is because of the cavity. Now, what are the 

reasons for using probability? 1 is that without using probability, the specification 

becomes too large. As we were seeing, we have to explicitly enumerate the complete set 

of antecedents or consequents for an exception-less rule, which in practice is very 

difficult to achieve. 
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It can also be because of theoretical ignorance. The complete set of antecedents is not 

known; we do not know what are the different kinds of diseases which can cause 

toothache. And the third 1 is practical ignorance, where the antecedents is known but 

there, truth is not known. So, if we do not have a mechanism of determining the truth of 

those antecedents, in practice, we will never be able to apply those rules. So, to apply a 

rule, the antecedents will have to be there in the knowledge base. Now, if 1 of the 

antecedents is something which we cannot experimentally measure, then, we will never 

be able to add that antecedent into the fact base.  

 

And therefore, we will never be able to apply that rule. In the cases where something is 

difficult to measure, we can leave that to chance, based on previous experience about 

percentage of cases where that actually happen. Before we come to the axioms of 

probability, let me explain a few subtle points about this. See, 1 thing is that when we are 

unable to model a set of rules exactly and completely, then, we resort to things like 

probability. People also have resorted, instead of using probability, to other kinds of 

logic, like fuzzy logic. Now, the difference between possibility, which is part of fuzzy 



logic and probability, which is the classical bayesian analysis that we do- the difference is 

very subtle.  

 

For example, suppose we are talking about how the obesity of a person is related to 

cardiac diseases. So, we are saying that if the person is fat, then, with certain probability, 

that person will have a cardiac problem. Now, when we are talking about a given person, 

then, we have to talk about what is the probability that he is fat. Now, the scenario is that 

we do not know that person; we have not seen that person, and based on some other 

information, we have some certainty that yes, this person is fat, with so much probability.  

 

Suppose we want to reason about the probability of cardiac diseases among Indian 

people; now, we have statistics about what fraction of Indian people are fat, so therefore, 

we can have a certainty or a probability that a given x is fat, and then, with that, if we 

multiply it with the probability that if this person is fat, if x is fat, then, x will have 

cardiac disease with, say, 90% probability. Then, okay- let me write it down. Becoming 

complex, okay. 
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Suppose we know that probability- that this- we know from the population of x from 

Indians; if x is Indians, we know what percentage of Indians are fat. We know that if x is 

an Indian, what is the probability that is fat? Then, we are given that if x is fat, then, x 

has- let us call that CHD with probability of 0.7. Then, we ask that what is the probability 

that x has CHD? This we can say that it is 0.2 times 0.7, which is equal to 0.14. (Student 

speaking). Yes. (Student speaking). Plus- (Student speaking). 0.8 into- (Student 

speaking). Why should we have this? (Student speaking). Yes. Right, so, we also have to 

consider the case where x is not fat, but still has a heart disease. 

 

So, that probability will also have to be added with this, so, we will see how we do that 

analysis once we go into the Bayesian analysis. But the point I am trying to make here is 

that this is a probability that we are given and we can apply that to determine the 

probability of some other event. But fuzzy logic deals with a slightly different 

philosophy. There, we can see the person x is given to us, but we are trying to say he is 

fat, but how fat? How fat is not a true/false value. You cannot say that this person is that. 

If the weight is above this, then he is fat. If the weight is below this, then he is not fat. Fat 

is actually a gradation, right? From thin to fat, we have a distribution. 

 

So, fuzzy logic tries to reason in that sense. It tries to look at the truth value not as 

Boolean, but as a value between 0 and 1. So, you say that x is very fat. Then, that means 

that truth of x being fat is 0.8 and x is moderately fat, which is 0.6, and so on. Now, you 

see, it is not a question of whether x is fat or not. It is a question of how fat is x and the 

rules, therefore, also has to be graded that way, right? So, that is a different kind of 

analysis which people do. So, I just want to introduce at the beginning, because later on, 

when we talk about these different kinds of reasoning, you have to be sure that which is 

what. 1 is probability and the other is the gradation of the truth. 

 

Axioms of probability. Let me ask a simple puzzle; this is a puzzle which goes like this: 

that we are given that the probability that 1 person carries a bomb into the aircraft is 0.1.  

So, probability that someone carries a bomb into the aircraft is 0.1; then, what is the 

probability that 2 people carry a bomb into the aircraft? It is 0.01, right? Now, 1 professor 



sees that okay, the probability of 2 people carrying a bomb into the aircraft is 

significantly lesser than the probability of 1 person carrying a bomb. So, what he does is, 

he carries a bomb with him; he carries a bomb with him into the aircraft. So, the question 

is, does that reduce the probability that another person will come up with the bomb? 

(Student speaking). Right. Why is that? What is the difference between these 2?  

The difference is conditional probability. 
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The probability that 2 people carry a bomb into the aircraft is this, fine. But probability 

that another person carries a bomb into the aircraft, given that 1 person has carried it, is 

again 0.1, right? So, that is what we have as conditional probability. 
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The important thing is to realize that which events are independent and which are 

conditional to each other. That will be the code thing that will found the basis of all our 

inferencing. These are school book axioms of probability PA or B is PA plus PB minus 

PA and B. Then, we have Bayes rule. Everyone remember Bayes rule? Okay. So, let us 

move into the next- belief networks. Belief networks are networks with the following: we 

have a set of random variables as nodes, we have directed links. 

 

The intuitive meaning of a link from node X to node Y is that X has a direct influence on 

Y. Cause-effect relationship between this. Now, each node has a conditional probability 

table that quantifies the effects that the parent have on the node and the graph has no 

directed cycle, because we assume that there is a cause-effect relationship between the 

events and there is no feedback. Networks with feedback has been also studied, but in 

this particular lecture, we are going to consider that.  
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Let us start with an example. This is an example where we have a burglar alarm installed 

at home. The alarm is fairly reliable at detecting a burglary. With some probability, 

whenever there is a burglary, the alarm will go; it will ring, but it also responds at times 

to minor earthquakes. So, if there is a minor earthquake, then also, the burglar alarm can 

ring. Actually, this particular example is due to (unclear word) who was or who is in fact 

resident of LA, and that is why he is interested in earthquakes.  

 

They have it quite frequently, right? 2 neighbors, on hearing the alarm, call the police. 

John always calls when he hears the alarm, but sometimes confuses the telephone ringing 

with the alarm and calls then too, right? And many likes loud music and sometimes 

misses the alarm altogether, because of the music, right? 
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This is what we are given, so, we will model this as a belief network. This is an example 

of the belief network. Slides please. Let us see what we have here; these are the events, 

so, burglary earthquake alarm, John calls and Mary calls, and this ordering that we have 

done is our choice of doing this. You can construct for the same scenario, different belief 

networks, but the correct 1 will have certain desirable property, so, we will study this 1 

first and then later on, we will see that if we model the same thing in a different topology, 

then, we will get a different kind of probability.  

 

So, what this says is, it says that burglary is an independent event and the probability that 

a burglary occurs is 0.001. Probability that an earthquake occurs is 0.002. These figures 

are all from Los Angeles; the probability of earthquake is more than the probability of 

burglary, then, we have this alarm and this table tells us that given that it is a burglary and 

given that there is an earthquake, what is the probability that the alarm goes up? So, if 

both burglary and an earthquake has taken place, then, it goes off with 0.95 probability. 

 



If there is a burglary and there is no earthquake, then also, with 0.95 probability, the 

alarm rings. If there is no burglary but there is an earthquake, then, the alarm goes off 

with probability 0.29. Sometimes, when there is no burglary but there is an earthquake, 

the alarm mistakenly goes off. If there is no burglary and no earthquake, then, the 

probability that the alarm goes off is very less- 0.001. If you sum up all these 

probabilities, then, you will find that you have one. (Student speaking). No, I think this 

should be 0.01. (Student speaking). Wait. Just a minute. If these cases were exhaustive, 

then, you would get one, right? 
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If these cases where exhaustive, then, you would get one, but these are not always 

independent. That is why you will get this thing- this overlap is there. Okay, I will come 

back to this and explain this later. Here, we have John calls and given the alarm takes 

place, the probability that John calls is 0.9, and if the alarm does not go off, then, the 

probability of John calls is 0.05, because this is when John mistakes the telephone ring to 

be the alarm. And when we look at Mary calls, then, when there is an alarm, then, Mary 

calls with 0.7. The remaining 0.3 is because of the music, and when there is no alarm, 

then also, Mary might call, but with a very small probability. 



 

This is the belief network. Now, how do we use this network? First, we will see how we 

can use this network to answer different kinds of queries and we will also see how we can 

construct this network. Now, the joint probability distribution of a set of variables is 

given by this. Now, let us see what we mean by this. The probability that we have that X1 

to Xn take a given value, is given by the probability of each Xi, given that the parents 

have taken place. Let us see an example. Probability of the event that the alarm has 

sounded but neither a burglary nor an earthquake has occurred and both Mary and John 

called- let me write this down here. So, I have probability of John calls and Mary calls 

and there is an alarm but no burglary and no earthquake. 
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What we do here is, we will start baking up this as follows. We will break this up, as 

probability of J given A and times probability of- okay, why J given A? Because if you 

recall, in the belief network that we had here- slides please- in the belief network that we 

had here, we had J only. Alarm was the predecessor of John calls. That is why, for the 

probability of John calls only, given the alarm is what is (unclear word). 
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We have here PJ given A and then PM- text please- given A, because Mary calls given 

alarm and then probability of A given not B and not E and then times probability of not B 

and probability of not E. It is the product of also this. So, what does this mean? This 

means that when I have a set of literals here, then, the probability of the conjunction of 

this in the belief network is given by the probability of each of those events, given the 

values of the predecessors of those in the belief network. Now, if some of these were 

missing, like, if A was not there, then also, we will have to bring this here and then listen 

about probability of A. 

 

If we just wanted to know about probability of J, for example, then, we will have to first 

look at probability of J given A times probability of A. (Student speaking). Yes, and also 

for not A. Then, plus probability of J given not A times probability of not A. In this case, 

because we were given A, that is why these terms disappear. So, we will have this and 

then, again, this probability of A will be broken up similarly in terms of the probability of 

A, given what were the pre-predecessors of A, B and E. 
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So, B and E. Then, probability of A given not B and E; probability of A given B and not 

E, and so on. We have to break it up like this and analyze them. So, the idea is that for 

any event, if you have to compute the probability, then, we have to compute it in terms of 

the predecessors of these events in the belief network, and those probability values are 

the ones that are given in the table. For example, when we have PJ given A, that 

probability is given in the belief network, so, if you look at the belief network, then, 

probability of J given A is 0.9, right? For this, we will take this down as 0.9 times 

probability of M, given AM. Given A here is 0.7, and then if you look at this probability 

of A given not B and not E not B and not E, is this 1.001? 

 

Probability of not B is what? 1 minus 0.001, right? And probability of not E is 1 minus 

0.002. Slides please. (Student speaking). Here- text- yes. (Student speaking). No, this is 

not product; this will also have to be done with PB and E and then, plus, with- right. 

Now, this makes sense, that when we have the joint probability distribution of a set of 

events, then, what we have here is the product of the P Xi given parents of Xi for each of 

them. (Student speaking). Yes, the belief network is attempt to model the cause-effect 

relationship between the events along with their probability value. There are 2 phases in 



this reasoning; the first phase is to learn or the model the belief network. How do we do 

that?  

 

One way could be that we know the events and we know the cause-effect relationship 

between the events. Suppose for a medical diagnostic system, the doctor tells us that if 

this happens, then, that will happen with so much probability, and so on. And we just 

write it down in the form of a belief network. That is 1 way of constructing the belief 

network. And then, when we actually do the diagnostic and we want to find out that if 

that person has fever, then, with what probability does he have leukemia? Then, we can 

find out those probabilities by analyzing the belief network. That is the use of the belief 

network.  

 

But there has been also a significant amount of research on learning of belief networks 

from experimental data and 1 of the most interesting work that has been done in the last 

couple of years is on the following things: If you have a genome: a genome is the DNA 

sequence that we have, and there is a thing called DNA microarray, with which you can 

do experiments and find out that, for a given sample, which are the genes that are being 

expressed. Suppose we take a cancer patient and we analyze for a given protein injection, 

that what is the set of genes that are being expressed. We have some 20 samples of them, 

so we know that these genes have been expressed and similarly, we have for the healthy 

people also, a set of genes which are being expressed. 

 

Then, what we try to do is, we try to find out cause-effect relationships between these 

genes, because expression of 1 gene produces some protein, which in turn, causes some 

other gene to express. For example, when we are born, we are born with only 1 cell and 

that cell multiplies and creates all the organs, etc. How does this happen? It happens 

because there is a genetic pathway through which it happens. So, depending on what we 

have in the cell sap, certain genes will express more at that time. There are genes in our 

body which are expressed only during the first couple of weeks of fertilization and 

thereafter, they are not expressed anywhere any time in the future. So, what happens is, 



those genes will create some proteins which will cause other genes to express and slowly, 

this sequence of expressions will cause the entire organism to develop. 

 

There is a lot of research to model this in terms of Bayes networks and to discover that 

what is this cause-effect relationship. What are the steps that we have to do there? We 

have to first decide which way the links will go; we have the set of events- the events are- 

this gene expresses, this gene expresses, etc., but we do not know which causes which. 1 

thing is to learn the direction of those links and the other is to learn the probabilities of 

those links. Learning that from experimental data is a subject on its own, which we will 

not address into in detail. 

 

 But once we have the belief network, then, we can always reason and find out the 

probabilities of more complex events from the belief network, which is what we will 

study in more detail. The key feature of the belief network is conditional independence. 

Now, we have noted here- okay, let me go back to this slide- we have noted here, that the 

joint probability distribution in a belief network is given by probability of Xi, given the 

parents of Xi, and take their products and you will get the probability of X1 to Xn. Now, 

how does that come from? Where does that that formula come from? It comes from here. 

So, I start with PX1 to Xn, so, I can use Bayes rule to break it up like this, then, I can use 

Bayes rule on this part to again break it up like this.  

 

This 1 will again break up into Xn minus 1, given the remaining ones and the probability 

of Xn minus to through X1, which recursively can get broken down and then, we will 

have this as the result. Now, what is this ordering that we have? This ordering of the 

variables is 1 topological order of the belief network. So, the larger indexed variable is 

towards the bottom right, so, when I am analyzing Xi, then, all this Xi X1 to Xi minus 1 

are all variables which are topologically having a lesser number than Xi, right? 
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These set of variables is the super set of all those variables which can influence the value 

of Xi, but all these are not going to influence Xi, not directly. I can express the cause. The 

cause of Xi expressing in terms of the parents of Xi in the belief network. So, the belief 

network tells me that okay, it is these parents of Xi whose values are instrumental in 

determining the value of Xi. You could have other factors influencing  it transitively- 

parents, parent and any ancestors, like that. But if I knew the values of the immediate 

parents, then, I can get the probability of Xi by looking up the probability table that is 

there in the belief network.  

 

Of these, which are not parents of Xi can be dropped, because this term is going to 

remain the same and that is what we mean by conditional independence. It means that 

this term can be simplified to just the parents of Xi P, Xi given parents of Xi. That is the 

conditional independence and that makes our analysis much simpler than having to do 

with all the variables together. How do we construct the network? I will just outline this 

today and we will discuss it in more details in the later classes. Choose the set of relevant 

variables Xi that describe the domain: that is selecting the set of event.  

 



Choose an ordering for the variables; this is very important- the ordering has to be such 

that we have the cause-effect relationship in the proper direction, but what happens if you 

choose an incorrect ordering? We will discuss that later. You will still be able to 

construct a belief network, but there will be certain problems. We will come to that later, 

then, while there are variables left, pick a variable X and add a node for it. Set parents of 

X to some minimal set of existing nodes, such that the conditional independence property 

satisfied. 
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So, a minimal set which, such that I can write probability of X, given all its predecessors, 

is equal to the probability of X, given its parents, so, that is what we mean by conditional 

independence. And then, define the conditional probability table for X. This can be given 

or it can be extracted from the experimental data. Now, see, this step 2 is the most 

important step. If you are able to do this properly from your existing knowledge, then, 

learning the conditional probability table is much easier, because then, you can actually 

just check out what is the probability of X, given the parents of X, by just analyzing 

experimental data.  

 



But if you do not know this ordering, this ordering is incorrect, then also, you will get 

conditional probability tables, but they will not be- what will happen is that this set of 

parents of X is going to be very large, and the larger the parent set of X, the larger is the 

size of your conditional probability table. If you have 2 parents of X, then, you have 4 

entries in the conditional probability table. If you have ten parents of X, then, you have 2 

to the power of 10 entries in the conditional probability table. So, if you have the ordering 

appropriately done, then, you will find that the number of parents of X for every X will 

be limited, otherwise it will become large. We will see in the next lecture, that how we 

are able to deduce this to some extent.  


