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In the last lecture, I had briefly outlined the meaning of what is a belief network or a 

Bayesian network. In this lecture, we look into the Bayesian network in details and also 

try to understand that why do we require such networks and what are the things that we 

can inferred in it. 
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When we talk about reasoning under uncertainty, then, what we have is, we have a set of 

events and some events can be casually related to other events with certain probability, 

because there might be certain other factors which we do not know of; there can be 



certain other factors which we know of, but we do not know the exact degree of influence 

that it has. All these unknowns are partially known factors, can be modeled in the form of 

probability and we can reason under uncertainty once we have some idea about those 

probability. So, what we are interested in knowing about is the joint probability 

distribution.  In other words, that suppose I have events X1, X2 and X3, then, I am 

interested in knowing the probabilities of different combinations of these X1, X2 and X3 

in practice. 

 

And we are also interested in finding out the probability of 1 or more of these variables, 

given that the other variables are true or false. For example, we might be interested in 

knowing in our burglar’s alarm example, that what is the probability that John calls when 

there has been an earthquake, right? Given that the earthquake variable is true, we are 

interested in determining the value of probability of John calls, right? Effectively, let us- 

we should understand that what we have is a set of variables, let us say X1, X2, X3, and 

we are interested in the joint probability distribution. So, we are interested in things like 

pX1X2X3. Now, this distribution actually encompasses the probabilities of setting these 

different random variables to 0s and 1s. 
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For example, this distribution will be able to give us the probability that X1 equal to 0, 

X2 equal to 1, X3 equal to 0, right? It will also be able to give us the probability of X1 

equal to 1, X3 equal to 0, and so on, right? It is also going to give us the probability of X1 

and X2 and what is this? This is the probability of X1, X2 and X3 plus probability of X1, 

X2, X3 bar, right? And from the same distribution, we should also be able to find out 

what is the probability of X1 given X2 and X3. 

 

So, we know mechanisms of the elementary probability to compute each of these, 

provided we are given the distribution of X1, X2 and X3. Now, is it clear how we can 

deduce each of these? Now, Bayes network is a succinct way of representing these 

distributions. Let us see what is the succinct way. How can we reduce the size of this 

representation? Now, if we did not know about any of this relationship between these X1, 

X2, X3, suppose they were all.  

 

We do not know about their inter-causal relationships and we store this probability 

distribution explicitly. Then, what is the size of that? Of the distribution table, for a set of 

variables- X1 through Xn- it is going to be 2 to the power on n. Why the size of this is 

going to be 2 to the power of n? Because that for each- these X1 through Xn can take the 

values of true or false, these are proportional variables. So, we can have a true or false set 

to each of them, so, the number of entries in the distribution table is going to be 2 to the 

power of n. This is a n dimensional table and we left 2 to the power of n entries in it. 
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Now, storing that kind of a information is quite difficult, so, people try to see if we know 

about the inter-causal relationships or we are able to deduce the inter-causal relationships, 

then, can we get a more succinct representation, right? And to do that, let us first look at 

the way in which we can rewrite this joint probability distribution. So, what we have is 

probability of X1, X2 to Xn. We can write this as probability of X1, given X2, through 

Xn times probability of X2 Xn. And then, we can again rewrite this; we can unfold this 

term also in a similar way.  

 

If we do that, then, what we are going to have is probability of X1 given times probability 

of X2 given- this is X3 to Xn- and so on, until we have probability of Xn minus 1 given 

Xn times probability of Xn. Now, there are several ways in which these individual terms 

can be simplified. For example, if we have a case where we have some p of Xi given Xi 

minus 1 through Xn, Xi plus 1 through Xn and if it turns out that Xi is independent of all 

these variables, so, this is going to reduce to simply p of Xi, provided that Xi is 

independent of all this.  



Also, it could be the case that 1 of these- 1 or more of these variables- subsume the 

others, because let us understand in what way can they subsume. We will introduce a 

terminology called conditional independence. So, we will have this kind of scenario, 

when it is totally independent, but we will also look at a scenario where it is conditional 

independence. Now, for example, if you recall that burglar’s alarm example, we had 

alarm here in the network, and then, we have 2 causes for the alarm possible. Causes- 1 is 

an actual burglary and the other is earthquake and the effect of the alarm is again- can be 

2- 1 is John calls and the other was that Mary calls. 
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Now, let us look at the probability of John calls, given alarm and burglary. Now, see, my 

claim is that I can rewrite this; I can rewrite this as probability of John calls, given only 

alarm and my claim is that if you know that the alarm has gone off, then, it does not 

really matter whether the burglary has taken place or not, because the John calls is 

affected only by the fact whether the alarm has gone off or not. So, for John, all it matters 

is whether the alarm has gone off or not.  

 



So, if you are given that the alarm has gone off, then, the probability of John’s calling is 

not dependent on whether the burglary has actually taken place or not. Therefore, this is a 

scenario of conditional independence. It is this alarm that actually subsumes this burglary 

and so you do not require this burglary anymore in the conditional probability. It is this 

fact that we know, that John calls when he hears the alarm; it is this fact which has 

prompted us to say that okay, that if alarm is known, then John calls is independent of 

burglary.  

 

Now, these are the kinds of things that we attempt to discover from the domain and use 

them to deduce the size of the conditional of the joint probability distribution, and the net 

result of that is what we have in Bayes network. We try to order the variables in such a 

way that we can make maximum use of these conditional independence, so that in each of 

the tables that we stored in the- besides the entries of the Bayes network is place. Now, 

let us do 1 thing: we will return to this example and see what happens if we use a proper 

ordering and what happens if we use a improper ordering. 
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Let us recap: the example was that we have a burglar alarm at home, which responds to 

burglary or earthquakes. There are 2 neighbors, who on hearing the alarm, calls the 

police. John always calls when he hears the alarm but sometimes confuses the telephone 

ringing and then also calls, and Mary does not always call, even when the alarm goes off, 

because Mary is fond of loud music. 

 

This was the belief network example that we were looking at, so, in this case, the 

ordering of the variables is John calls, Mary calls, alarm burglary, earthquake, or Mary 

calls, John calls, alarm burglary, earthquake. This is the ordering in which we are 

considering the joint probability distribution. 
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Effectively, what we are doing is, we are starting with probability of John calls, Mary 

calls, alarm burglary, earthquake, and then rewriting this as probability of John calls 

given Mary calls, alarm burglary, earthquake. Now, if you are given alarm, then, all these 

others are irrelevant, because John calls will depend only on the alarm. If the alarm was 

not given, if we do not have this variable here, if it is unknown, then, these may not be 



independent. Then, the fact that Mary has called is increased evidence that the alarm had 

went off.  

 

Suppose alarm was not here; suppose we had only John calls, given Mary calls, a 

burglary and earthquake- then, the fact that Mary had called is increased evidence that the 

alarm had gone off. So then, John calls and Mary calls are not independent, but given 

alarm, they are independent. Are you getting my point? And then, we have probability of 

Mary calls alarm, so, the first term will reduce to probability of John calls, given alarm 

only. Now, let us look at what we can do with the second one. The second 1 will be Mary 

calls, given alarm burglary and the earthquake. 
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Again, if the alarm has gone off, if we know about the truth of the alarm variable, then, 

burglary and earthquake do not matter in terms of Mary’s calling. I mean, not in this case, 

of course it could have been the case that when Mary also detects the earthquake and 

hears the alarm, then, she might infer that it is a false alarm which is gone off. But we are 

talking about that, so, in this case, again, this alarm renders Mary calls to be conditionally 

independent of this. Again, we will have- okay, we had another term out there, which 



was- and that term can now be expanded and therefore, what is going to happen to this 

alarm, given burglary and earthquake?  

 

Here, none of them can subsume the other. Even if we know that there is no burglary, the 

alarm can go off because of the earthquake and vice versa. So, this does not reduce any 

further, so, we will again expand up this to probability of B given E and probability of E. 

Now, this term- we know that the probability of burglary has got nothing to do with 

whether there has been an earthquake or not. I mean, it is true that burglars will not be 

willing to do a burglary when there is an earthquake going on.  

 

But well, for the example that we are having here, we will consider this to be 

independent, so, this is going to reduce further to probability of burglary. So, the total 

thing that we have- let us see- will be probability of John calls, given alarm, probability 

of Mary calls, given alarm, then, probability of alarm, given BE and then, these 2. This is 

exactly the Bayes network that we have, so, we have the parent of John calls is the alarm, 

the parent of Mary calls is the alarm, parent of alarm is burglary and earthquake and 

burglary and earthquake are the top level events which are not casually dependent on any 

things. 

 

Let us see what happens if we try some other ordering. Suppose we look at the other 

ordering, where the ordering that we are going to look at is earthquake followed by 

burglary, then, alarm. So, this is exactly the opposite what we took last time, followed by 

Mary calls. Let us start constructing the belief network with this in mind. We will have 

earthquake here and we will be looking at probability of earthquake, given burglary 

alarm, John calls, Mary calls, right? Now, let us see. 

 

 Does earthquake depend on burglary? Can we make it independent of burglary? We are 

trying to find out the probability, we are trying to reason about the probability of 

earthquake, given burglary alarm, John calls and Mary calls. (Students speaking). Yes, is 

it not? Therefore, this is not going to be independent, so, we are going to have will alarm 

affect earthquake? Yes, because whether the alarm has gone off or not is increased 



evidence. If the alarm is gone off, then, is increased evidence, however minor of the 

earthquake having taken place. 
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Then, let us look at burglary. Given an alarm, I think the earthquake will be independent 

of John calls and Mary calls. So, then, let us look at burglary, given alarm, John calls and 

Mary calls. The probability of burglary for the same reason- it will depend on alarm, but 

given alarm, it is not going to depend on John calls and Mary calls. Then, let us look at 

alarm, given John calls and Mary calls. Now, this is going to depend on this: definitely, 

this is going to depend on this, but what about probability of John calls, given Mary 

calls? It depends, so, this is going to be the belief network.  

 

Now, this is not much different in size as compared to the original belief network, but it 

requires us to produce probability values which are very confusing. For example, we 

have to produce the probability value of earthquake given burglary. How are we going to 

produce that kind of probability? If we construct it in incorrect way, then, problem 

number 1 that comes up is that you are required to specify the conditional probability of 

some very confusing combination of events, which is very difficult in practice. There is 



another problem, so, let us look at a slightly different ordering, where we have alarm 

burglary. 
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Let us start with this one. We will have, first of all, alarm. It will depend on burglary of 

course. Is it clear to you why the alarm becomes conditionally dependent on burglary? 

Then, we have earthquake, John calls and Mary calls. Let us look at the different kinds of 

things that we will have, when we look at alarm, given burglary, earthquake, Mary calls, 

John calls. This is going to be dependent on all of this; none is going to subsume the 

other. We will have earthquake to burglary and then, we will have the ones that we had 

previously, namely these 3. We will also have from Mary calls to burglary and Mary calls 

to earthquake and John calls to burglary and John calls to earthquake. So, this is going to 

be the Bayes network for this ordering.  

 

See, the problem here is that if you look at the conditional probability table here, because 

I have 4 parents, so, I will have to store 2 to the power of 4 entries here. This fellow will 

have 3 parents, so, 2 to the power of 3 entries here. These conditional probability tables 

are going to be quite large, because you will have many parents of the same node. So, if 



you use an improper ordering, this is another side effect that takes place, but we can 

always say that this particular 1 and this 1 and the 1 that we started off with, they are all 

valid Bayes networks, in the sense that we are able to recover if we are able to produce 

the probability tables for these- the conditional probability tables for each of these- then, 

we can recover the joint probability distribution from all of them. 

 

We can recover the joint probability distribution from all of them, so, all of them are 

valid representations of the joint probability distribution. But in this case, we were having 

to produce conditional probability values which are not natural and which are difficult to 

obtain experimentally and in this case, the size of the representation is quite large as 

compared to the 1 that we started off with. 
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From here, from what we have seen so far, let us quickly see the way in which we can 

construct a Bayes network. The way in which we have talked about right now- 

 

 

 



(Refer Slide Time: 29:53) 

 

   
 

 

(Refer Slide Time: 29:54) 

 

   
 

We first choose the set of relevant variables that describe the domain, then choose an 

ordering for the variables, which is, as we now know, a very important step. While there 

are variables left, pick a variable X and add a node for it. The way in which we did was, 



we started from X1 and then picked up X2, then picked X3, and so on. Set the parents of 

X to some minimal set of existing nodes, such that the conditional independence property 

is satisfied. Define the conditional probability table for X. So, this is the way in which we 

can construct the Bayes network. 
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As we have seen, the conditional independence relations play a very important role in the 

Bayes network structure. We will now formally make some definitions about conditional 

independence, which will be very useful when we start querying the Bayes network. The 

first step is to construct the Bayes network. Then, why do we construct the Bayes 

network? We construct the Bayes network because if we have any queries related to the 

joint probability distribution which includes queries like okay, if I have cavity and if 

there is a past history of extraction, then, what is the probability that I will have to go for 

extraction again? 

 

These are the kinds of diagnostic inferences whose probabilities we want to evaluate and 

that is what we are trying to do using the joint probability distribution. So far, we have 

only studied how to construct the Bayes network. Next, we are moving into how to use 



the Bayes network to infer about other combinations of events. If every undirected path 

from a node in X to a node in Y- X and Y are sets of nodes in the Bayes network is d-

separated by a given set of evidence nodes E. Evidence nodes are the nodes whose 

variable values are given, like when we say the probability of John calls given alarm, so, 

alarm then becomes an evidence node, because we are given that alarm has gone off or 

probability that many calls given not alarm, then also, alarm is an evidence node. 

 

So, if we have a set of nodes X and the set of node Y and every undirected path from X to 

Y is d-separated- we are going to define what is meant by d- separated by a given set of 

evidence nodes E, then, X and Y are conditionally independent given E. Now, the 

definition of d-separation is like this: a set of nodes E d-separates 2 sets of nodes X and 

Y. If every undirected path from a node in X to a node in Y is blocked, given E:  
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Now, we have to define what is blocked. A path is blocked given a set of nodes E. If 

there is a node Z on the path for which 1 of the 3 condition holds, Z is in E and Z has 1 

arrow on the path leading in and 1 arrow out. 
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We are going to come back to this. I will first give some examples, then, it will be easier 

to understand this. Just keep this in mind, that a path is blocked given a set of nodes E if 

there is a node Z on the path, for which 1 of the 3 conditions hold. That is that the node Z 

is in E and Z has 1 arrow on the path leading in and 1 arrow out. So it is like this, that we 

have in the path a, node Z and 1 arrow is leading into Z and 1 is leading out of Z, then, 

this path is blocked by Z or Z is in E and Z has both path arrows leading out. So, it could 

be that in a Bayes network, you can have paths like this, also this is also a path, say, if we 

take this path. 
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Now, in this path this Mary calls is 1 which is a d-separating or blocking this path, 

because it is in the evidence. Set E and I have 2 edges coming out of the node Z. This is 1 

scenario. The other scenario is that the path has Z like this and the path is like this, so, the 

path is not necessarily a directed path. 
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Then, neither Z nor any descendent of Z is in E and both path arrows lead into Z, so, we 

have Z and both path arrows are leading into Z and neither Z or any of its descendents are 

in E, so, the path is like this, but this is not in E and neither of its successors are in E. 

Now, these are the cases where Z blocks the path and we say that if Z blocks the path, 

then, the set of nodes E d-separates 2 sets of nodes X and Y, if every undirected path 

from a node X to a node in Y is blocked, given E.  

 

Let us take an example. We have the following scenario: we have a car radio, we have 

the car battery, we have the ignition, we have the petrol gauge and we have the event- 

whether the car starts or not. For example, if the car does not start, then, it could be that 

either it is out of petrol or it could be that the ignition is not working properly or it could 

be that the batteries down, but if the batteries down, then, the radio will not work either. 

So, if the radio is working, then, it is evidence- increased evidence- that the battery is 

fine. 
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This is the set of event that we have and the Bayes network structure is given here. Now, 

whether there is petrol and whether the radio plays are independent, given evidence about 

whether the ignition takes place. Suppose we are given that the ignition takes place. 

Then, whether there is petrol and whether the radio plays will become independent. Is it 

clear? Why is it- (Students speaking). So, formally, the node ignition which is part of the 

evidence will d-separate the radio and the petrol, so, the path from radio to petrol is d-

separated by ignition. 

 

This is which of these cases? Out of these cases, it is this 1, right? Because the node Z is 

in E and this is the node ignition, we have 1 arrow coming into it, 1 arrow going out of it. 

But is it intuitively understood that why radio and petrol are independent? Once we know 

whether ignition has taken place or not, see, because if ignition has taken place, given 

that ignition has taken place or not taken place. Then, the probability whether it starts or 

not is not going to depend any more on the battery. If you know whether the battery is 

good or not does not matter anymore, because we are given whether the ignition has 

taken place or not. 

 



The probability of starts becomes independent of battery, similarly, the probability of 

whether there is petrol or not becomes independent of battery and of radio. Petrol and 

radio are independent if it is known whether the battery works again for the same reason. 

If you are given whether the battery works or not, then, petrol and radio will be 

independent. Petrol and radio are independent given no evidence at all. (Students 

speaking). Yes. (Students speaking). No, radio is directly from the battery, it does not go 

through the ignition.  

 

You can run the radio even when you have not turned on the ignition. (Students 

speaking). Yes, but if you know about the battery status, then, radio and ignition become 

independent, so, the dependence is through the battery and that is how we have depicted 

it here. In the slide, if you look into the slide- slides please- if you look at the slide, then, 

we have slight guess that the dependence between radio and ignition is through the 

battery. If you do not know about the status of the battery, then, obviously, radio and 

ignition are co-dependent. 
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But if you know about the battery status, then, they are independent, then, the radio has 

got nothing to do with the ignition. But petrol and radio are independent, given no 

evidence at all. If you do not know of any evidence, then, they are independent. Why? 

Because starts is going to d-separate them. So, you do not know. If you do not know, do 

not have any evidence about whether the car starts or not, then, there is no dependence 

between petrol and radio, right? However, if you are given evidence about the car 

starting, then, petrol and radio are not independent. Why? Because if the car starts, then, 

the radio not running is- (Students speaking).  

 

Will have less probability and also, why are petrol and radio going to be dependent once 

we know whether the car starts? (Students speaking). If the car does not start but the 

radio is on, then, that is increased evidence that we are out of petrol. If the car does not 

start but the radio is working fine, then, that is increased evidence that we are out of 

petrol, so, petrol and radio are not independent anymore, right? Now, we have seen the 

example of all 3 of these d-separating scenarios, right? Please recap this thing at home 

and try to think of some events where you have these kinds of separations. When we do 

the tutorial, we will do 1 example on Bayes network.  

 

Let us see what we have next. If the car does not start, then, the radio playing is increased 

evidence that we are out of this, is what I just now said. Now, we are interested in doing 

different kinds of inferences using belief networks, right? I am just introducing them 

today and we will pick them up from here in the next lecture. So, 1 is diagnostic 

inferences, where we try to find out- go from effects to causes. Like, for example, given 

John calls, we can infer that probability of burglary, given John calls, is 0.016. This is 

from effects to causes. We can also have causal inferences which are from causes to 

effects, like probability of John calls, given burglary or probability of Mary calls, given 

burglary. 
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For example, when we are talking about medical diagnostics, then, a diagnostic inference 

will be that if you are given evidence about the causes, then, what is the probability that 

this is going to be the effect? And when you are talking about causal inferences, then, 

given the symptoms, what is the probability that this is the disease? Then, inter-causal 

interference inferences between causes of a common effect, so, given alarm, what is the 

probability of burglary? It is 0.376. If we add evidence that earthquake is true, then, 

probability of burglary, given alarm and earthquake goes down to 0.003. Why is that so? 

(Students speaking). Because earthquake itself is a very rare event.  
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And the probability that you are having a burglary at the same time as the earthquake 

takes place, is even less probable. This is the- between causes of a common effect, if you 

want to reason about, then, mixed inferences like setting the effect John calls to true and 

the cause earthquake to false gives probability of alarm, given John calls and not 

earthquake is this. In terms of Bayes networks these are- how are these dependent? In the 

first one- diagnostic inferences- we are inferencing the probability of a parent, given the 

child.  

 

The second 1 is inferencing the probability of the child given the parent, and the third 1 in 

inter-causal, we are examining the probability of a parent given a child and a sibling. And 

in mixed inferences, we are examining the probability of an event, given its parent and its 

child. These are the 4 main kinds of inferences that we will talk about and we will 

examine some algorithms, such that given a Bayes network, how do we determine these 

probability values? With that, we come to the end of this lecture.  


