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Today, we will start the chapter of learning. So far, what we have seen in this course is, 

we started off by learning some methods of problem solving- automated problem solving- 

namely, through search. 
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And then, we saw the second most important thing in AI, that is, deduction. Then, we 

studied some applications of deductions, in the sense that we studied planning problems 

and also extended the deduction capabilities to cases where we do not know the exact 

rules, but we use probabilistic inferencing. Now, what remains in the computational part 

of AI? As I say, that the beginning of the course, that this course is mainly focused 



towards the computational aspects of AI or the main computational pillars around which 

AI has been built. 1 of the main things that we have left out so far is learning and the 

capability of a system to learn by itself from a given set of examples. 

 

I will start by introducing some paradigms of learning. The main paradigms of learning 

and then, today, we will look at learning of decision, which is 1 of the ways of learning a 

function. The paradigms of learning are mainly of 3 types; the first type is called 

supervised learning. In supervised learning, both the inputs and outputs are given. What 

are we trying to learn? We are trying to learn some function; that function can be 

Boolean, it can be real valued, whatever. Our attempt is to learn some function. What is a 

function? It is a mapping from inputs to outputs, right?  

 

In supervised learning, the training set that is given to us consist of valid input-output 

pair. Therefore, we have this output for this input; we have this output and our objective 

is to learn the function in a succinct way. 1 thing that we could do is, we could just store 

them in a table, and then, if we are asked to report the values, then, we just look up the 

table and return the values. But then, the problem will be that if we are given some value, 

some input, which does not belong to the table, then, we will not be able to answer. 
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Learning the function means that we should also not only be able to answer queries from 

the training set, but also be able to answer queries outside the training set. And these 

outputs are typically provided by a friendly teacher; that is why we call it supervised 

learning. We will see some methods of supervised learning in this chapter. The second 

paradigm of learning is called reinforcement learning. In reinforcement learning, the 

agent receives some evaluation of its actions, such as a fine for stealing bananas, but it is 

not told the correct action, such as how to buy banana.  

 

We are not teaching the agent the correct actions, but there is some kind of cost criterion 

which the agent attempts to optimize and depending on the actions and the kind of cost 

feedback that it gets, it starts learning the function. For example, a person who does not 

know any traffic rules- it does not know how to drive- now starts learning driving on his 

own. And then, he gets a ticket for parking in the wrong area; he gets a ticket for 

speeding and that is the way in which he learns that yes, these are the rules of the game, 

so, that is called reinforcement learning. And the third paradigm of learning is purely 

unsupervised learning, where the agent can learn relationships among its percepts and the 

trend with time. 
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So, if you do not have any supervision nor any feedback, then, what do we learn? We just 

learn some relationships among the inputs or the percepts. We see that whenever this 

happens, then, that also happens. That is the kind of learning which is unsupervised. So, 

we will mainly study in this chapter, supervised learning and reinforcement learning. 

(Student speaking). In reinforcement learning, you get a feedback corresponding to your 

actions, so, there is a cost associated with it and if you do something wrong, you get a 

larger penalty; if you do something right, you might get a reward.  

 

So, it is a sort of reward based learning, but you are never told what is right, what is 

wrong. The feedback is in terms of the cost, so, that is reinforcement learning. An 

unsupervised learning does not even have that. It is just from observations; whatever 

relationships that you learn about the universe. Things like data mining can come under 

unsupervised learning. You have lot of data and you try to just discover patterns in them. 

You are not given any information about what is the domain of the data. You do not have 

any information about what are the rules that play in that domain.  

 

So, you do not know anything of that sort, but you just try to attempt to learn some 

relationships between them. That is unsupervised learning. So, in this, we are not going to 

focus much on unsupervised learning. The first kind of learning that we are going to 

study is the learning of decision trees. Let me first introduce what is the meaning of a 

decision tree. A decision tree takes as input an object or situation described by a set of 

properties, and outputs a yes-no decision. Let us take an example. Suppose we want to 

decide whether to wait for a table at a restaurant, and if you go to Dreamland or Sahara 

on Friday or Friday evening, or, you know, Saturday, then, you will see what we mean by 

whether we want to wait or not. There can be real rush. 
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Let us see what are the features or the properties that can affect the decision; that is very 

important. We must first decide that what are the variables which will affect our decision. 

Variable number 1 is alternate, which signifies whether there is a suitable alternative 

restaurant. In our case, well, there are quite a few alternatives, but you might find all of 

them equally packed. Whether a restaurant has a lounge for waiting customers does not 

apply to the campus, but in Calcutta, you might have, whether it is a Friday or a Saturday. 

Those are the rush days, right?  

 

Then, whether you are hungry. That can influence a decision. How many people are in it? 

None, some and full. Well, if you are in a city and in a busy area in office time and you 

find that the restaurant is empty, then, you may actually decide not to go in there. On the 

other hand, if you find- there are some people that might be good, if it is full, then, you 

might feel that it is going to take a lot of time. 
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Price, the restaurants’ rating, right. Now, I think there is something wrong with the 

version of power point that I am using here, and the 1 where I developed these slides. 

Actually, this is supposed to come as star, but it as come as boxes. This is 1 star, 2 star 

and 3 star. That is the rating- whether it is raining outside. If it is raining, then, you may 

not want to go and look for another restaurant, whether you have a reservation and the 

kind of restaurant- Indian, Chinese, Thai, fast food, etc., right? And finally, the wait 

estimate as given by the waiter, that whether it is 0 to 10 minutes, 10 to 30, 30 to 60, 

greater than 60. So, you see, this variable out here is a is a real valued variable, but for 

the purpose of taking a decision, we have broken it up into intervals of 0 to 10, 10 to 30, 

30 to 60 and greater than 60.  

You could alternatively use some fuzzy measure we have. A decision tree will look 

something like this- at every level, you have 1 of the variables and this branching is for 

the different kinds of decisions that you may have. For example, for patrons, you may 

have 3 possible choices- that is, none, some and full. In this case, let us say that if there 

are no patrons, then, your decision immediately becomes no. If there are some patrons, 

which means you have space in the restaurant, then, it is always yes; otherwise, if it is 

full, then, you ask for the wait estimate. If the wait estimate is greater than 60 minutes, 



more than an hour, then, the decision becomes no. If it is 30 to 60, then, you look for an 

alternate. 
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If it is between 10 to 30, then, depends on whether you are hungry. If it is 1 to 10 

minutes, then, you are always willing to wait. Again, if your wait estimate is between 30 

to 60, look for an alternate, and if there is an alternate, then, you look for whether it is 

Friday or Saturday, because if it is Friday or Saturday, then, you may have the same 

situation in the other restaurants as well. So, the decision will be to stay here. Otherwise, 

if it is not Friday or Saturday, then, you are more likely to get a place in some other 

restaurant, so you just walk out. And on the other hand, if the alternate is no, you do not 

have an alternate, then, you check whether you have a reservation. 

 

If yes, then, you stay. If no, then, you look whether it has a good lounge. If it does not 

have a lounge, then, you go away. If it has a lounge, then, you stay. This is how a 

decision tree will look like. Now, we could have made this decision tree in many other 

ways. For example, we could have first looked for wait estimate and under that, we could 

have looked for patrons and hungry, etc. So, the order in which we check for these 



variables can vary. The point is that how do we arrive at proper decision tree? And first 

of all, what do we mean by a proper decision tree?  

 

Let us see what is it that we have to do. We would like ideally, that this decision tree to 

be as small as possible. It should not be the case that for every person, we have to 

examine all variables. Like for example, here, if there are no patrons, then, you 

immediately arrive at the decision. You do not have to examine any other variables, 

right? Now, the larger your decision tree, the more problem you will have in representing 

it. Why? Because if I have n variables and I have to examine every variable on every 

path, then, I will have a tree of size exponential. So, if every decision is yes-no, every 

variable is a Boolean variable, then, I will have 2 to the power of n leaf nodes, and the 

tree will have a size of the order of 2 to the power of n. 

 

If the branching is more than that. For example, if you have a real valued variable or a 

variable like patrons, which has actually 3 possible values, or you have something like 

wait estimate, which has 4 different choices, then, the branching is even larger and your 

tree is even larger. Note that if you are allowed to create a tree which is of arbitrarily 

large size, then, we can fit in any pattern into it. But that is not the objective of the 

exercise. The objective of the exercise is to create a decision tree which is small and 

elegant and helps us in arriving at the decision. How do we learn such a decision tree? 

Let us first see what is the input. The input will be a set of cases, a set of samples.  

 

For example, we can have an input. Let us say I will write the example here. Let us say 

example X1 and then, I have all the variables here, so, it is like a truth table. I have this- 

sorry, this is actually lounge, then, Friday, then, whether we are hungry, then, whether 

there are patrons, and similarly, the other attributes and then, here, we have the yes-no 

decision. Suppose I have yes here, no here. Then, here, I check what is the decision. For 

example, for the wait estimate, you can have some value here that says its 0 to 10. This is 

1 example that somebody has observed.  

 



Previously, somebody had seen that well, in a particular case, where an alternative was 

available, there was no lounge, it was a Friday, the person was hungry, there were 

patrons. It will not be yes or no; it will be something like, let us say, full. If it was full, the 

wait estimate was 10, then, that person decided to wait. So, this is 1 case which we know 

from previous experience. Then, similarly, I have case 2, I have case 3 and I have some k 

cases like this. These are k examples that I have; k samples that I have. For each of these 

samples, I know what was the value of these variables, and I also know what was the 

decision that was taken.  

 

This is our training set; this is our training set and obviously, if this training set was of the 

order of 2 to the power of n, then, our function is almost totally specified. If this is 

actually a truth table, in the sense that for all possible combinations of values of these 

variables, we are given the decision here, then, this is indeed a truth table and then, the 

function is completely specified. If the function is completely specified, then, there is 

nothing to learn actually and you can actually represent that Boolean, that function 

Boolean or whatever in a succinct form and we know that there are logic optimization 

techniques which can help us in doing that.  

 

But the learning part comes here, because this training set is incomplete- it does not give 

you the decision for all possible combinations of values of the variables. So, then, what 

are we attempting to do? We are attempting to take this set and create a decision tree. A 

decision tree which will be small and which will be succinct. And why do we expect the 

decision to be tree to be small? Because it is not the case that every decision is affected 

by all of these variables; some of these variables can be overriding, if you know that, say 

that, the restaurant is empty, then, you do not care about any of the other variables and 

you will just simply go away.  

 

What it means is that many of the variables can become do not cares in many of the 

decision situations and we want to appropriately utilize this do not care situations to 

reduce the size of the decision tree. So, it is also a kind of logic optimization kind of 

problem, except that we are not given the complete data. (Student speaking). No, what we 



need to do, therefore, is to be able to create a decision tree which can classify all of these 

data correctly. 
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See, the problem which samples is that these samples need not always be consistent; 

there are always eccentric people who, when finding everything to their choice, will still 

walk away. And there are also eccentric people, who, finding all the odds against them, 

will still wait in the restaurant. Therefore, the samples can be noisy, the samples set can 

be incomplete and it is under this kind of scenario that we have to find a decision tree 

which best fits the data and is also small within that domain. This is the objective that we 

want to achieve. You can never be sure that what you have learnt is actually the correct 1, 

because the training data is incomplete, so, you can never be sure about that.  

 

But what we should be able to do is, that decision tree should be able to classify the set of 

examples with some margin, because of the noise of the data. And it should also be small, 

because then, it indicates our stand that there will be lot of variables which will overwrite 

others, which is typically the scenario in most of the real world cases, so, that is the 

objective of learning decision trees. Now, let us see how we go about doing this. The idea 



is to be able to choose the features 1 by 1, so that they are able to appropriately classify 

the yes from the no.  

 

When we say that I have a good classifier, then, if I know the value of that variable, I will 

be able to distinguish from some of the yes cases from the some of the no cases. If I am 

able to do that- if I am able to do that for all cases, then, that variable alone can do the 

classification. I do not need anything else, if there is some variable which, if you take this 

branch, you get all the yes cases; if you get this branch, you get all the no cases, then, that 

variable alone is your decision tree. You do not need anything else. But we may not be so 

lucky.  

 

We try to choose a variable which will be able to at least separate out some of the yes 

cases from the no cases. For example, let us say- suppose we see that if we split it on 

type, on the restaurant type, and let us say that originally I had that 6 yes cases- 6 no 

cases and 6 yes cases. This is our training data set. In the training data set out here, I had 

6 yeses and 6 no. 6 instances where the decision was yes and 6 instances where the 

decision was no. Now, I am trying to see that if I split the cases based on type, then, what 

is the scenario that I have?  
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Let us say that if I go for French, then, I have 1 yes and 1 no. If I go for Italian, then, I 

have again 1 yes, 1 no. If I go for Thai, then, I have 2 yes and 2 no. If I go for fast food, I 

get 2 yes and 2 no. If this is the scenario, then, is this a good classifier or bad? This is bad 

because this does not help us in distinguishing between the yes cases and the no cases. In 

each of these cases, half of the people said yes, half of the people said no. So, actually, it 

leads us to believe that the type was not a factor in deciding between yes and no. Type 

was not an important factor in deciding between yes and no, because in each of these 

cases, half of the people said yes, half of the people said no. 

 

So, for every positive case, we got a negative case. On the other hand, suppose we look at 

patrons; suppose we look at patrons and we find that for none; so, patrons can take 3 

values- none, some and full. For none, I have 2 nos; for some, I have 4 yes, and for full, I 

have 2 nos. And no 4 nos and 2 yes. So, that accounts for these 6 nos and 6 yeses. 

Suppose it is this classification that patrons has given as- so, now, this is a good 

classifier. Why? Because we know that if there are no patrons, then, that immediately 

takes us to the decision no.  

 

If there are some patrons, then, it immediately takes us to the decision yes. There is no 

conflict between the people who find this to be some, but if it is full, then, we still have 

some people saying yes and some people saying no, which means that this now becomes 

a sub-problem and we again have to classify this sub-problem and let us say, then, we 

check for at this state. Let us say that we check for hungry and then, let us say hungry- if 

it is no, then, I have 2 nos; if it is yes, then, I have 2 yes and 2 nos. 
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This is again a good classifier, because if it is no, then, you immediately arrive at a 

decision no. If the restaurant is full and you are not hungry, then, your decision is going 

to be no. On the other hand, if you are hungry, then, half of the people are willing to wait 

and half of the people are going to go away. Again, here, you use another classify, right? 

Now, in this case, we were somewhat lucky because each of these were able to segregate 

out some of the yes and no cases. We may not be so lucky always, so, it is a difficult task 

to choose between the variables. 

 

But once you choose a variable, then, how do we proceed after choosing the variables? 

Then, corresponding to each of the decisions, we will simply classify the examples and 

then, on the reduced sample set for each of them, we will recursively run the decision tree 

generation algorithm again. So, is it intuitively clear how we create the decision tree? 

Now, to arrive at the decision, to arrive at the choice of the variable, there is some 

information theoretic measures for choosing this.  

 

I am not going to describe the computation of that in this lecture. But it is there in Russell 

and Norvig’s book, and I recommend that you take a look at that. There is a information 



theoretic measure for the information content that you are able to increase by applying a 

decision on 1 of the variables. So, you do that for each of the variables individually; 

check which 1 of them adds the maximum amount of information according to that 

formula and choose that variable. So, intuitively, that formula is going to capture the 

variable which is able to act as the best classifier for the set of samples that you have.  Let 

us now look at the decision tree learning algorithm. This is a pseudo-code for the decision 

tree learning algorithm.  

 

If samples is empty, then, we return default. What is default? Default is the default 

decision that we are going to take. We will always have a default decision. Later on, we 

will see that in case where we do not have any information, then, the default decision will 

be the majority among the samples that we have. For example, here, when- text please- 

when we had this decision, suppose we did not have any other attributes to classify this. 

Then, here the majority was no. So, we would say that if there is no other classifiers 

except patrons- suppose we only have patrons as the variable other; we are not given any 

other variables, then, we use patrons to do this classification and for the case where it is 

full, our decision will be no, because of the majority. 

 

Now, coming back to the code, if samples is empty, then, we return default. If you do not 

have any more samples to classify, else, if all samples have the sample classification like 

we had for the patrons’ case, then, return that decision. So, if you have all yes, then, 

return yes; if you have all nos, then, return no. Otherwise, if attributes is empty, if there is 

no other attributes to split the set of samples, then, return majority value among the 

samples. So, if we have 5 nos and 3 yeses, then, return no, otherwise, this is the main 

part. We choose an attribute from this remaining set of attributes and the remaining set of 

samples. 
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This is the step which will use that formula to choose the proper attribute and then, we 

initialize tree to a new decision tree with root test as best. This is recursively going down 

from the top node to the successor nodes. So, at every level, we have a set of samples; we 

have a remaining set of attributes and our objective is to split these samples based on a 

chosen attribute. That chosen attribute is best, so, we create a sub-tree with the root test 

best. In the root of the sub-tree, we will examine the value of the variable best.  

 

Then, for each value vi of best- now, see, best may not be a Boolean; it may be a multi-

valued variable like we had patrons, like we had wait estimate; it can be a multi-valued 

variable. So, for each value vi of best, we do we split the samples based on the value of 

variable vi. Is it clear? So, suppose we look at the variable best and it can have 3 possible 

options. So, for each of those options, we split the sample sets into the options that fit into 

that. 
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Suppose I have none, some and full as the values of patrons. Those examples which have 

none will be pushed into the none set, those which have some which will be pushed into 

the some and those which are full will be pushed into the full. These are the samples. 

Then, we create a sub-tree, so, these are the children of the best. Best is the variable 

around which we are splitting and the children will be simply recursively generated by 

the recursive call to decision tree learning algorithm with the reduced set of samples 

which is samples psi.  

 

The reduced set of attributes, which means attributes minus best, because we have 

already taken a decision on best. And also, majority value of samples means that why do 

we need this? I will come back to this. What does this mean? It means that at the root 

level, I have, say, k samples, out of which, whichever is majority- yes may be majority or 

no may be majority- whatever is that; that is the value that we put here and the reason we 

put here: I am going to come back in a moment; then, add a branch to tree with label vi 

and sub-tree. Do you follow?  

 



Are you with me about what we did in this algorithm? Okay, we started at every level 

with a set of samples which we are calling samples and a set of attributes. Then, from this 

attribute set, we choose 1 which is called best. And then, we took this sample set and split 

it up, depending on the values that this best can take. So, here, I will have samples 1, 

samples 2, samples 3 and samples 4. Then, I will recursively call the D tree decision, tree 

learning algorithm here and pass this samples 1 here- this attributes, this set, minus this 

attribute, namely, best and I am passing another thing- majority values of samples. Why? 
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(Student speaking). We may not have any more sub-tree below this and if you look at the 

previous slide- (Student speaking). No, it is not sample set, because you have the samples 

I set already passed as the parameter, so, you can compute the value from that also. The 

problem that you will have is, if you do not have any attributes left, then, what you need 

to do is that you will just take sample psi and take its majority and return. And the other 

scenario that can happen is that you run out of samples, then, we return this default. See, 

this is the third parameter.  

 



So, if the sample set is empty, then, we return that value. Now, let us understand what we 

mean by this. Suppose we are splitting on this value variable best, and for some value of 

best, we do not have any samples for that scenario. Suppose you have that weight 

estimate. It is 0 to 10, ten to 30, 30 to 60 and greater than 60. Let us see that we never had 

a sample for greater than 60. None of the samples have the wait estimate greater than 60. 

In that case, what will be report as the decision when the time is greater than 60? Based 

on the the samples that are given to us, we cannot.  

 

For those cases, what we do is, we look at the parent sample set and whatever is the 

majority value there, that is the value that we used here. It is just that we decide to use 

that; it may not be correct, but then, we do not have any sample which covers that case, 

so, we will never know for sure. Is it clear? This is the decision tree learning algorithm. 

Then, after this, I will just quickly like to add on a little bit of analysis on very important 

question. The question that we want to answer here is, for the decision tree to be properly 

learned, how many examples do we need? 

 

There has to be some minimum number of examples which will enable us to learn the 

proper decision tree. Now, suppose there is a proper decision tree for a given domain, 

which we do not know. That is the right decision tree is there, we may not know that, but 

it is there, and that decision tree governs the set of decisions for that domain. Now, we 

are just given a set of samples, so, what we are given is like this: let us say that this is the 

actual decision tree function that we want to learn. Now, you appreciate that this is a 

function; this is a function which is Boolean, because it has a yes no answer. So, let us 

look at an error epsilon around the function.  

 

That will encompass the set of functions which we have here. What are these functions in 

this region? They are all functions which are within an error of epsilon of the original 

function. Now, I have not yet defined what is that error. Let me first try- let me define the 

function first. Let us first give some definitions. Let X be the set of all possible examples, 

let D be the distribution from which examples are drawn. I will come back to this later. 

Let H be the set of possible hypothesis. So, this is the set of possible hypothesis, means 



that this is the set of all possible decision trees that you can construct out of the set of 

examples. 

 

These are all the possible set of hypothesis that you can fit the set of the samples into it. 

And let N be the number of examples in the training set, namely X. Now, we define error 

H as probability that HX not equal to FX, given that X is drawn from the distribution D. 

Are you with me about what we are doing? This HX denotes the set of- this is a particular 

hypothesis that we have been able to create out of the set of samples. 
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Now, the probability that this is not the actual decision tree, is the error H that we are 

talking about. And then, we will say that this particular decision- the set of examples, is 

sufficient to keep this error bounded by epsilon. If we have error H less than equal to 

epsilon, where epsilon is some small constant within which we want to keep this; now, if 

you increase the size of the examples and give all possible- say, if you produce the entire 

truth table- then, we can learn h, learn the function exactly, so, our error will be 0. Now, 

if you make n very small, then, we can have many different hypothesis which will fit the 

same data and so, our error will be more. Is it clear?  



The probability that the hypothesis that we choose is not the actual 1 will be more. So, 

now, if you look at this diagram diagrammatically, then, suppose this H is the enter set of 

hypothesis and then, we create a circle of radius epsilon around F. So, all the hypotheses 

that we have in this region- they are all acceptable. But once that we have here, we will 

call them as HBad; these are the hypotheses which we do not want to arrive at. And our 

objective is to decide that what should be the size of the training set, so that we are 

always learning hypothesis which are in this set and not outside this. Now, what we do is, 

we first calculate the probability that a seriously wrong hypothesis which we call HB, 

which belongs to HBad, are the bad cases. So, we first compute the probability that some 

HB here is consistent with the N examples that I have given to us. 
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If this is consistent with the n examples given to us, then, we can always end up learning 

HB, which is going to be bad for us. So- (Student speaking). No, see, we are given only n 

examples, but there can be many other examples which we are not given. In those 

examples, in the other ones, this hypothesis will produce incorrect value, so, that is the 

error that we are talking about. It will produce vastly incorrect values. We do not want 



that to happen. Let us see how we go about this analysis. Probability that HB agrees with 

N examples is less than or equal to 1 minus epsilon to the power of N.  

 

Why? Probability that it agrees with 1 example is 1 minus epsilon and the probability and 

it agrees with all N examples is 1 minus epsilon to the power of N. Do we have it? Then, 

probability that HBad contains a consistent hypothesis is the sum of these probabilities. 

So, it is less than or equal to HBad. Cardinality of the HBad set times 1 minus epsilon to 

the power of N, because if 1 hypothesis has this probability, then, if we take the total set, 

then, it is the cardinality of that set times this.  

 

This, we can write, is less than or equal to cardinality of H times 1 minus epsilon to the 

power of N and this is less than or equal to this, because recall that HBad is actually a 

subset of each, right. We can write this and what we want here is, we want this 

probability that HBad contains the consistent hypothesis to be within some limit delta. 

Now, given this, we can compute that if we are given this, then, from this, we can derive 

the expression for N which is greater than or equal to 1 by epsilon ln, natural log of 1, by 

delta plus. 
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Now, we can get this by applying that this; from this 1 minus epsilon, we can have 1 

minus epsilon is less than or equal to 1 by e to the power of epsilon that is being 

substituted here, so, I will have 1 by e to the power of N epsilon, and then, I take the log 

to get N down and that gives us this expression. What we have been able to do is that by 

applying this formula, we will get the value of N, which is going to give us the minimum 

number of examples that are needed, so that we can keep the probability that HBad 

contains a consistent hypothesis within a limit of delta. So, this is used to compute the 

number of sample sets that are required for a given domain when we know the function. 

 

 

 

 

 


