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Learning: Neural Networks 

 

In the last lecture, we looked at decision tree learning. Now, we will digress a little and 

look at kind of learning which comes under statistical learning. So, specifically, we will 

look at learning using neural networks. I will briefly introduce the structure and the basic 

definitions of a neural network and we will see how we can use neural networks to learn 

different kinds of functions. 
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So, a neural network consist of a set of nodes which are neurons connected by links. Each 

of these nodes has very simple processing capability and there are lots of them and they 

are connected links; each link has a numeric weight, associated weight, each unit has a 



set of input links from other units. It has a set of output links which goes into other units, 

it has a current activation level which I will define shortly and has an activation function 

to compute the activation level in the next time step. 
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Now, when we talk about such nodes and etc., for the time being, we will assume that 

these are all done. This is just a model for computation. It is not that we actually have a 

processor which is doing all this kind of stuff, it is just that this is a model of computation 

that we are looking at, where we have set of nodes having very limited computational 

capability and we have these interconnections. So, a typical picture of a node is going to 

be like this- you see it clearly, right? 

 

 

 

 

 

 

 



(Refer Slide Time: 03:25) 

 

   
 

These are the set of inputs that we have, so, it is like, Aj is an input to this particular node 

or neuron; there is a weight associated with every link. So, the weight from a neuron j to 

neuron i is given as Wji, so, this is directed link from j to i and it has weight Wji. Then, 

we have a sigma function here, which computes the total input that it receives from the 

other neurons. I will define what is the total input and then, there is this activation 

function g, which is a function of the total input that the neuron i receives. The sum 

function of this and that defines the activation Ai of the neuron i. And then, this 

activation value is propagated through the output links to other neurons. 

 

The total weight- the total weighted input- is the sum of the input activations times their 

respective weights. What does that mean? It means that if I have a neuron i- suppose this 

is our neuron i- and I have neuron j here feeding into this, this has a weight of Wji. Then, 

the input that i receives from j is the activation of j times Wji. This is the input that it 

receives from this. And if I want to compute the total input that i receives from all of its 

neighbors- preceding neighbors- then, I sum this over j, for all j which feed into this 

network, this node.  
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And then, in each step, we compute the activation ai which is a function of the total input. 

So, it is a function g of sigma of j Wji Aj. Is this clear? Now, this function can be of 

different types; it can be a threshold function, which says that Ai will be 1, if the total 

input exceeds some value. if the total input is more than 0.7, then, Ai will become 1; if 

the total input is less than 0.7, then, Ai will become 0. So, we could have something like 

that and so on. 
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Now, let us see that how do we use a neural network like this for learning. So, this is a 

single layer network. I have 1 layer of input units here. These are the input units of the 

network and I have 1 layer of output units of the network. These are nodes of the 

network. 
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There is a Wji which is the weight of the link from ij to the output i Oi. If the output for 

an output unit is O and the correct output should be T, then, what do we mean by the 

correct output? So, what we are trying to do is, we are trying to read; we are trying to 

learn a function from the inputs to the outputs. Again, this structure of the neural network 

for a function which has 4 inputs and 3 outputs is like this. Now, what will happen is that 

we will be given a set of training data set, just like we had in the decision tree scenario. 

We will be given training sets; those training sets will be valid input output pairs. So, it 

will be a set of a cases where we are given i1, i2, i3, i4 and for a given value of i1, i2, i3, 

i4, what are the values of O1, O2 and O3?  

 

We will be given several such cases and the objective is to make this network learn that 

function. That at the end of the training, if I repeat any example from that, if I give the 

inputs corresponding to any of the sample data sets, then, the correct output should be 

displayed in the output. Also, if I give some inputs which was not there in the training set, 

then also, correct output should be displayed. Now, again, just like the previous case also, 

we can never be 100 percent sure whether it is giving the correct output for the others, but 

the objective is to make the neural network to learn the function, so that it is able to 

extrapolate also correct values for the input scenarios, which were not given in the 

training set.  

 

Obviously, we have to define an error term and the objective will be to learn, so that this 

error is minimized. So, if the output for an output units is O and remember that the output 

is actually a real valued stuff, because our activation values that we have are real value; it 

can be real value, it can be 0 and 1 also. If we use a threshold function, then, the 

activation will be 0 or one. If you use some other kind of function which gives real values 

as output, you can give that also, and then, in case that case O will be a real (words 

unclear) and if the correct output is T, then, the error is given by T minus O. Now, the 

weight adjustment rule is Wj tends Wj plus alpha into ij into Err.  

 



Now, let us see what- I will explain this in a moment, so, what we are trying to do is, we 

are going to train the neural network in the following weight. So, we will present it with 

some input value. Initially, the weights are randomly assigned; they are all randomly 

assigned weights. I will give some input from the training set and then, I will see what 

output it produces. Based on the output that it produces, I will compute the error, because 

in the training set, the correct outputs are given, which is T. So, I will compute the error 

and depending on the error, I will readjust the weights on the inputs. Now, let us see in 

very crude terms, that what would that mean?  

 

Suppose I had- I will start by given a giving an example where the inputs are all 

Booleans. So, let us say that I have these 3 inputs and these 2 outputs and I have a 

complete connection, so, it represents a complete bi-partite graph. Now, let us say that 

this is one, 2, 3; this is one, 2, so- this is i1, i2, i3 and this is O1, O2. Now, I have given 

some value, let us say, 0, 1, and let us say that at this point of time, this produces a value 

of 1, whereas this is our O and the value of O1 and actual value, which means the correct 

value, T1, should have been 0. That means that what we need to do is- and let us say that 

the function that we are using here is a threshold function. 
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So, it is a threshold function, which says that if the total input is greater than 0.5, then, 

this is going to be high, otherwise, it is going to be low. So, that means that V1- that the 

total input should be- for this case, should be below 0.5, so that the unit remains at 0, the 

correct value. Now, how can we do that? What we are going to do is, we are going to 

reduce the weights on the edges, which connect to the 1 values. So, we will pick up these 

2 edges and reduce their weight. What effect is that going to have? The input value will 

go down, because our input was sigma over j Wji times Aj. So, Aj is 1 for these 2 and if 

we decrease Wji, then, the total input is going to go down. But at the same time, if we 

unilaterally decrease the weights here, then, the total weight balance is going to change.  

 

So, what we are going to do is, we are going to reduce the weights on these and at the 

same time, increase the weight on this, so that the total weight constitution remains fixed. 

It is just transferring weights from the ones which we want to reduce to the ones where 

we want to increase it. If we do that, then, for this case, we will move a little bit closer to 

the goal and we repeat this case over all the training sets, with the hope that at the end of 

the training, we will be able to correctly classify the samples and be able to produce the 

right kinds of outputs. Now, as it turns out, I am going to come into the formal analysis in 

a moment, but as it turns out, that this kind of a single layer of neural network is able to 

learn only functions which are linearly separable.  

 

Now, let us understand what is linearly separable; linearly separable functions are ones 

where you can have a plane in the Euclidean space which separates the positive cases 

from the negative cases; the yes answers from the no answers. For example, if you look at 

say, an AND gate; suppose we want to learn the AND function. This has 2 inputs; i1 and 

i2. If you look at the 2 dimensional plane with this being i1 and this being i2, then, if both 

are 0, then, we have 0. So, this is a no answer. If 1 of them is 0; if i1 is 0, i2 is 1, then 

also, it is a no answer. If both- if i2 is 0 and i1 is 1, then also, it is a no answer. If both are 

one- that is the only case where we have a yes answer.  

 



Now, this is linearly separable, because I can have a plane which drives through 

this.Now, you might be wondering that what does this have to do with the learning here. I 

will come to that in a moment. Let us look at the OR function. If we have the OR 

function, then, what we will have is, this will be 0. So, I have i1, i2 here. Again, this will 

be 0 and these 3 will be 1. 
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Again, this is linearly separable, because we can have a plane like this in contrast. Let us 

look at the XOR function. So, for that, this is going to be, 0 this is 1; this is 1 and this is 

0. Now, there is no way that we can drive a plane between yes cases and no cases. So, 

this is a case which our single layer network will not be able to learn. It will not be able 

to learn the XOR function. 
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Now, what has this got to do with our weight adjustment, etc.? Why can it not learn this 

why? Can it learn the other ones? So, let us simply look at the single layer network, 

where, if the total input is positive, we will switch on the unit; if the total input is 

negative, we will switch off the unit. So, activation will be 1 if the total input is positive, 

activation will be 0 if the total input is negative. So then, we have this sigma of j equal to 

0 to n, where n is the set of inputs Wjxj, where xj is the input. If this is greater than 0, 

then, the input switches on; otherwise, it switches off. 

 

Actually, the equation W dot x is greater than 0, where W is the weight vector and x is 

the input vector. So when this happens, then only we switch the unit on. Now, if you look 

at this function, this actually defines the hyper plane; this defines a hyper plane- see this 

x. For 2 dimensions, this is going to be just a single line; if you have multiple dimensions, 

it will become a hyper plane, because each of these x can be k dimensional vector. So, 

this hyper plane is separating out- is acting as a threshold. If that is greater than 0 is on 

the other side, anything which is less than 0 is on this side.  

 



And so, because that is the decision for switching the neuron on or off, so, that is the 

plane which separates the positive cases from the negative cases. Our objective is to learn 

the values of the weights, so that the the weight vector that we construct along with the 

input vector will actually come to this plane; the weight vector will coincide with this 

weight vector which separates these 2. That is intuitively the objective that we are trying 

to do. Let me quickly derive this particular equation for updating the rules, then, we will 

see some example cases of this learning and its applications also.  

 

First, we define the error. For the error, we are going to use the the root mean square 

error, RMS, which is the standard error that people wish to minimize between functions. 

You have studied RMS error? What we are going to do is, we are going to keep this as 

the error term. So, y minus this whole square where perceptron is, the network is the 

simple network node that we talked about. It is the simple neural network node that we 

talked about; it is popularly called perceptron. Now, our objective is to update the 

weights in such a way that in each step, this error will reduce. What we are going to do is, 

we are going to do gradient descent. 

 

You remember gradient decent? What does gradient decent do? It has some objective 

function and we take steps, so that that objective function gradually decreases. Of course, 

we have the problem of getting stuck in local minima; we have the same problem here 

also, but let us see how can we do gradient descent to minimize this error function. Every 

step is going to reduce the error and we want to do this monotonically; that is why 

gradient descent- we want to monotonically reduce the weights. Remember that we are 

going to put different training sets and each time, we are going to bring down the error 

for the (words unclear).  

 

To reduce this error, let us first see what we have as delta E over delta Wj. I want to see 

that what is the change in error with respect to a change in the weight that I receive from 

j. So, this is given by Err. What is Err? It is half Err square. So, if I do this, then, it is Err 

times- see this- 2 and half will get cancelled out, because of the differential. This 2 and 

half will get cancelled out and I will have Err times delta Err by delta. I will have Err 



times- now, I substitute this out here. Delta by delta Wj of g of y minus i; think I missed a 

g here, it should have been this- should be a g here; this is g of g is the activation function 

of y minus- this is the total input- j equal to 0 to n Wjxj. No, the difference, the error, is in 

terms of the output that we get.  

 

So, this comes to minus of Err into g dash in, where in is this total input times xj and g 

dash is this derivative. See the other terms; see this, besides xj, it has other terms also- xi, 

the ones which are non j. Now, those terms are going to get eliminated, because this is a 

partial differential. So, the only term that we will have out here is the 1 which 

corresponds to Xj and we will also have the derivative of the whole thing. Now, could I 

make myself clear? No? This minus is getting propagated outside this because this is a 

constant, it gets eliminated, so, I have this term. 
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Now, is this clear? How we arrive at this? See, this is a constant, so, it gets eliminated 

and then this g- because this is a function, it becomes g dash of this whole thing- and 

then, the partial differential moves inside and when it moves inside, then, everything 

which is non j gets eliminated and I am just left with xj. Are you with me? This is the 



formula that tells us the weight updation rule. From this, what we will get is- okay, so, let 

me write down what we have obtained so far. We have obtained delta E. Yes- (Student 

speaking). See, this is the- I think this is- wait, yes- (Student speaking). Now, what is the 

confusion? The output is g of the total input and this is the incorrect input that we are 

getting, this is the correct input that we should get and this is the incorrect input that we 

have got, because our weights are not yet tuned.  

 

Yes, I think what we are trying to do here is to minimize the error in the input, because if 

you are able to bring the total input to the correct value, then, the output will obviously be 

the correct one. Let me reflect on this a little more and I will clarify it. Maybe in the next 

lecture, because we are going to revisit good part of this when we look at back 

propagation learning. So, for the time being, let us say that we have obtained that delta E 

by delta Wj is given by minus of Err times g dash of in, where in is the total input into the 

perceptron times xj.  

 

From this, we set Wj to be Wj plus alpha into Err into g dash in into xj, where alpha is the 

is called the learning rate. See, rather than adding this whole error term into Wj, we are 

adding only a fraction of it. So, we are not just jumping into the same this thing, because 

that would amount- is something like you know, quenching, but we do not want to do 

that; we just have to incrementally tune the weights, so that over all the samples- we 

arrive at a set of steady state values of the weights. 
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Therefore, this alpha is called the learning rate and we just add a fraction of this error into 

Wj. Is it clear? And we do this for each of the Wj. This was just computing delta E by 

delta Wj for 1 j and we do it for each of the js, so that we have updated the weights into 

of all the links that are feeding into this. Now, I will digress a little bit from this; we will 

come back to this analysis again when we look at 2 layered networks, where we will 

study method called back propagation learning, where instead of learning in just 2 layer 

networks, we will learn in multiple layer networks and the interesting thing will be- what 

are the internal nodes? What do will they do?  

 

Here, we have just the output layer and the input layer and we are tuning the weights 

between the output and input layer, so that the output layers come closer to the desired 

values- the weights become closer to the desired values, so that it is able to give the 

proper output for all the training examples and others. Now, let us look at slightly 

different problem- we will look at the problem of recognizing text. Let us say that we are 

given a matrix of dots. This is the matrix of dots that is given to us and on this matrix, we 

can have different letters by setting these to 1 and 0. For example, if we set this to 1, this t 

1, then, that gives us A. Similarly, you can have B, C, D, whatever.  



 

Now, what we want to do is that if somebody writes A slightly differently- maybe instead 

of writing it this way, it writes it that instead of lighting this dot, it lights this dot; slightly 

different, this 1 is off and this 1 is on. We should be able to classify all those cases. I will 

train it with a set of different A, B, C, D, etc., and then, it should be able to make out a 

slightly different perturbed A, it should be able to make out the slightly perturbed B and 

so on, and be able to say that yes, this is still an A, this is still a B and so on. Now, how 

do we model this into a neural network framework? 1 option is that we create a neural 

network where these are the inputs; each of these dots is an input which can take a value 

0 or one.  

 

And I have a set of output nodes and each of these inputs will be feeding into those 

outputs. I will be (word unclear) receiving these output nodes, receive inputs from each 

of these elements; so, I have again that 2 layer kind of complete network that we have. 

So, it is that complete bi-partite graph that we have here as well. What we are going to do 

is, we are going to- this is going to have at least twenty 6, could have more also; at least 

twenty 6. Then, we are going to train this network, so that whenever we have A, 1 of 

these glows; wherever we have B, some other 1 of these glows; whenever we have C, 

some third 1 glows, and the others remain off. 

 

Now, 1 way of doing this which was suggested, was doing what is called competitive 

learning. Competitive learning sets up a competition between these nodes and whichever 

is the winner is the 1 which will be declared as the value. Which means that whenever we 

give yes, there should be 1 particular node which should become the winner for all As 

and 1 particular node should become the winner for all Bs. Which 1 of these will classify 

the As and which 1 of these will correspond to Bs? We still do not know. So, initially, all 

weights are random. How the learning will progress initially- all weights are random, so, 

when I present it with the first A, 1 of these will win. Let us say that this 1 wins for A. 

Now, what we want is that in future, whenever we present A, even with slight 

perturbations, this is the 1 which should win. 
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So, what we will do is, we will strengthen this so that its activation value will further 

increase when we present an A. How do we do that? When you have an A, then, there are 

some when you presented it with an A, then, some of these units were one, which means 

that there are some of these links which correspond to the ones and some of the links 

which correspond to the 0s of the input. We will do that weight transferring, so, we will 

take a fraction of the weights from the 0 ones and transfer that weight and distribute it 

equally to the ones that we have here. What we are going to have here is that the total 

weight will always be one, so, for every unit, the total weight of the edges incident on 

that sum of the weight will be one.  

 

Whenever we redistribute the weights, the total weight will still remain one. But now, we 

have moved weight away from the 0 inputs to the links corresponding to the 1 input. So, 

next time, when we give A that activation of this, the total input to this will be more. So, 

it will stand a larger chance of winning. On the other hand, what do we do with the ones 

which had loosed the competition? For the ones which loosed the competition, we will do 

the same, but a much lesser fraction for the winner; the fraction of weight that we transfer 

will be larger than compared to the losers. For the losers, we will take out weight from 



the 1 inputs and transfer it to the 0 inputs, but the fraction of weights that we transfer will 

be much lesser. Having done this weight adjustment, we then again present it with 

another sample and repeat the procedure. And the idea is that our expectation is that 

eventually, these nodes will start classifying some particular letter.  

 

There will be 1 which will always come up for A one, which will always come up for B 

one, will always come up for C and so on. But just like- this is also gradient descent. 

Why? Because if you take any particular node, it is being dragged on to something. What 

is it being dragged on? So, 1 view of looking at this is that each of these is a vector; this 

is a vector, this is a Boolean vector and it has so many different dimensions. If there are 

some twenty dots here, then, is a twenty dimensional vector. Let us think of the twenty 

dimensional hyper plane. If you look at the twenty dimensional hyper plane, then, in that 

plane, each of these samples is a point, because every vector is a point in that twenty 

dimensional hyper plane.  

 

I have the A as 1 of the points in this hyper plane, so, just remember that this is just not a 

circle; it is actually a hyper plane and this is 1 point which corresponds to the A. Then, 

similarly, we may have another point on the hyper plane that corresponds to B and 

another plane which corresponds to P. The 1 which corresponds to R is going to be close 

to P and so on. And where are our vectors here? Each of these vectors- the weight vectors 

that we have- they also correspond to points in this plane. So, I will have some vector 

here. Initially, say 1 is here, 1 is here, 1 is here, 1 is here. So, what is happening is that 

when I present an A, let us say that this fellow wins. So, the weight adjustment rule is 

moving it towards A and for B- if this 1 wins, this is going to move towards B. And also, 

the weight adjustment rule is going to take to a much smaller extent the ones which are 

here to slightly away. 

 

As we were saying, that the ones which are- (Student speaking). Yes, now, why do we 

move them away? We move them away because of certain scenario. This part is clear? 

That the weight adjustment is actually taking it closer to this, to the vectors that 

correspond to the actual thing and when you move it closer, if you give a slight 



perturbation of A; if you give a slight perturbation of A, let us say A dash, which is here 

or even if A double dash, which is here or even if A double dash, which is here, then, it is 

more likely that this fellow will win once it moves closer to it. 
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This vector will not only have learned the A that you presented but also learn As which 

are close to them. That is a good thing about this. There can be some problematic 

situations for which we have the other kinds of roots. Suppose we have A here and I have 

say, B here, and incidentally, it turns out that both of these are pretty close to this one. 

Now, what is happening is that every time this 1 wins- okay let me not; not this case, 

forget about this case. I have xB here, sorry, B here and then, I have A here and other 

ones here. And now, see, the problem is that every time you present A, it is this 1 which 

is going to win and it is going to move slightly towards this direction.  

 

And every time you present B, it is this only which is winning, because this is absolutely 

the opposite way. And if this 1 again wins, then, that means that this is going to again be 

dragged on to this side. So, it is going to oscillate between these 2, whereas there is 

another vector which is not being used at all. So, whenever you have a losing one, 



whenever you present A: this 1 wins, this 1 loses. So, you push this away slightly, then, 

that is going to have the effect in the long term of moving this slowly around, so that at 

some point of time, it is going to come pretty close to B. Yes, B is also going to push it 

away. So, if you have a scenario where you are presenting A and B alternately, then, 

again, you would have a bit of a problem. 
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You have to mix up your training in such a way that it eventually starts classifying. The 

intuitive idea of moving it away is this: to move away those vectors which were not being 

used at all, which are not winning on any cases. If we can move them away slightly, then, 

maybe somewhere down the line, they will move close enough to some 1 else and 

actually start participating in the classification. Having vectors- having outputs- which 

are not winning in any case is not useful, right? As you can still imagine, that there will 

be cases where we will get stuck in local minima and you will have 1 vector which is 

moving around between 2 of them. 

 

But in many cases, we will be able to do this and if we put in more vectors, more outputs, 

then, it is more likely that we will- another option is that if you have a particular output 



which is not playing a role, you randomize the weights to that, so that it now moves into a 

entirely different place and maybe starts participating. So, this is 1 paradigm of learning 

that we have learned today. In the next class, we will be talking about learning algorithm 

called back propagation learning.  

 

 


