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Okay, so we will start the section on informed state space search. In informed state space 
search- slides please. So, what we have here is- when we talk about state space search, 
we talk about the search space which is in the form of a set of states and set of state 
transition operators. Now, when we have informed state space search, it means that we 
have additional information, indicating the proximity of the goal from each state. So, as 
just outlined in the previous lecture, the notion of heuristics is as follows: that you have 
heuristics that use domain specific information to estimate the quality or potential of 
partial solutions, so that you know that if I have if the current state is the partial solution. 
Then, I know what is the potential of growing this into a full solution. What is the 
additional cost that I will require for doing that? Let us start with a few examples. One of 
most common heuristics for the 8 puzzle is the Manhattan distance heuristics. 
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Now, you remember the 8 puzzle, where you have all the tiles- the 8 tiles- arranged in a 3 
by 3 square and we have to slide the tiles to bring it to some configuration. To see the 
Manhattan mode heuristics for this problem, let us say that the tiles are like this- that I 
have- and I want to reach the configuration- my goal configuration- which is known, 
again. Now, the heuristic- the Manhattan mode heuristic- says, that find for every tile, the 
Manhattan distance from its current position to its final position. And Manhattan distance 
is a commonly used term, which says that it is the distance computed in terms of the 



distance on the x axis plus the distance on the y axis. It comes from the fact that 
Manhattan apparently has all roads which are either east to west or north to south. 
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So, to travel from place c to place b, the total distance that you have to travel is your 
distance northwards plus your distance eastwards or westwards, right? For example, for 
this 5- the initial position is here and the final position is here. So, I have to take at least 2 
slides to bring it here. Now, you see, that in order to bring this configuration to this, this 
tile 5 will have to be sided at least twice. It has to be slided at least twice. Similarly, the 6 
the tile 6 is also at a Manhattan distance of 2. If you look at the tile 3, it is at a Manhattan 
distance of 1, 2, 3, 4, right? If you have to move this tile 3 from here to its final position, 
then no matter in what way you do it, it is guaranteed, that at least 4 slides will have to be 
made.  
 
So now, if I just add up the Manhattan distances of each of these tiles together, the 
Manhattan distance that each tile has to take; if I add them up, then, can I say that I have 
lower bound on the number of moves that I have to make, in order to solve the puzzle? 
Yes. Why? Because every move, as we had said- what are the operators? Move the blank 
up, move the blank left, move the blank right, or move the blank down; but as a 
consequence of moving the blank, it is 1 tile which is being slided. So, every operation is 
sliding a single tile and we have seen that the Manhattan distance reflects the minimum 
number of slides that we have to make for a given tile, right? And at a single step, we are 
moving only 1 time, right?  
 
If we have to move all these tiles that many number of times, then the total Manhattan 
distance is giving me a lower bound on the number of tiles that I have-, number of times 
that I have to move a tile, right? It could be actually much more; actual number of slides 
can be more, but I have lower bound on the number of slides that I have, right? (Student 
speaking). Yes, but when you are moving 1 tile, the others are not moving, right? When 



you are sliding 1 tile, you are having a feeling of pipelining the whole thing, but it is not 
actually pipelining. You have to do it 1 by 1. Every move that you do, has a unique cost, 
right? So, even if they all shift by one- the 4 tiles shift by one- it is a cost of 4, not one. 
That is why what we have is a lower bound. Does it clarify your query? Let us look at 
another heuristic. This is the- slides please, slides please. 
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We have the minimum spanning tree heuristic for TSP. Now, this is what we do. We 
have the t an instance of TSP and we want to find out a lower bound on the cost of the 
tool. So, what we have is, we have these cities, okay, and we have to find out a tour to all 
these cities. So, what we are going to do is, we will first create a minimum spanning tree 
of this. And let us say that this is the minimum spanning tree. Let us say that the cost of 
this minimum spanning tree is c of s. c of the cost of the spanning tree, right, and let us 
say that the optimal cost of the tool that we are looking for is C*. Then, my first claim is 
that cs is less than C*. Now, let us convince ourselves that the cost of the minimum 
spanning tree is less than the cost of the optimal tour, assuming that all costs are non-0. If 
0 is also allowed, then instead of less than, I will make it less than equal to. 
  
Now, the reason that this is the case is, assume that you are given the minimum cost tour. 
If you take out any of those edges, you will have a spanning tree, right? Now, if the tour 
cost is less than the cost of the minimum spanning tree, then by removing 1 edge from the 
tool, you will further decrease the cost and have a spanning tree which has less cost than 
the minimum cost spanning tree, which is a contradiction, right? Therefore, we have cs 
less than C*. Is that all right? Okay. Let me repeat this. If I look at the minimum cost 
tool, suppose this is the minimum cost tool. If you remove an edge from the minimum 
cost tour, what are you left with? You are left with a spanning tree, right? Remember that 
in traveling salesperson problem, we are not allowed to visit the same city more than 
once, right? 
  



Therefore, if you just chalk out the examining part of the tour after taking out any 1 of the 
edges, what you have is a spanning tree, right? Now, if the whole tour cost you C*, then 
the cost of this tree will be less than or equal to C*, right? And the minimum cost 
spanning tree can have cost only lesser than this; lesser than or equal to this. So, the 
minimum cost- spanning tree cost- is going to be less than or equal to C*, okay? Now 
then, my claim is that this C* is again less than twice of c s. Why so, why so? Because let 
us see the following thing: if I look at twice of cs, that means that I am traversing each of 
edges twice, right? Now, I will show you that I can create a tool which cost less than this. 
How? Yes, because this is- if I have to traverse like this, let us suppose I go from this city 
to this city, right? Then from this city to this city, right? Then, from here to here, then 
from here to here. Then, instead of going back here and then taking this, I will take the 
shortcut, right? And then, I will take this edge. Then, I will take this edge and then, 
instead of backtracking along these, I will go directly to the next city, right? 
  
So, that could be this point, right, and then from here, again back here. Now, if these 
cities are in the Euclidian space, then you have the triangle inequality. That means that if 
I had to traverse this thing backwards, along this along all this thing, then the total cost 
that I would have to incur is going to be more than if I take this shortcut directly, from 
here to here. So, triangle inequality- the cost of all these edges; the sum of these edges is 
always more than the cost of taking the direct distance, from this city to this city. 
Therefore, this tour that I have constructed by just jumping from leaf to leaf like this, has 
a cost that has- that is less than twice of cs, right, and the optimal tour can only be better 
than this- better than or as maybe just as good as this, right? 
  
Therefore, I have C* is less than equal to 2cs, right? Now, this gives us a nice thing- that 
if I take that if I compute the tour in this fashion, by computing the spanning tree and 
then constructing a tool like this, right, and then, I divide that by half- divide the tour cost 
by half, then I get a lower bound on the cost of the optimal tour. Yes or no? Find this 
tour; this tour cost is less than twice cs. So, if you take half of that, it is going to be less 
than cs, right? And so therefore, that is going to be a lower bound on the cost of the 
optimal tool, and then, you use that bound in your TSP, right? 
 
Heuristics are fundamental to chess programs. Now, just to give you an idea about how 
chess programs will work, is that they will start from 1 board configuration. And if you 
would look at it in the naïve way, then you will start exploring all sequences of moves. 
And since the branching factor of chess is pretty high, so, you cannot really explore very 
deep. If you start exploring right down to the winning-losing configurations, that is going 
to take an enormous amount of time.  
 
So, what chess playing programs try to do, is that they explore up to a few moves, look 
ahead. Say, 20 moves look ahead. They see all board configurations at a look ahead of 20 
moves, right, and they evaluate each of those board configuration based on some 
heuristics. And then based on that heuristics, they decide which of the sequences of 
moves they will try to follow. There is more in it than I am saying here, and we will study 
little bit of that; about how you explore those kinds of trees when we come to game trees, 
but heuristics are very important there as well. 
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So, the informed search problem is like this: again we have our familiar 4 tuples, the state 
space, the start state, the set of transition operators, the set of goal states, and now, we 
have an additional function h, which is a heuristic function that estimates the distance to 
the goal. And our objective is as before: to find a minimum cost sequence of transitions 
to a goal state, right? So, the first algorithm that we will study here is A*. This is a very 
well known algorithm, which was proposed long back, perhaps around the time when you 
were born. So, this algorithm is of theoretical importance mainly, by the way, because, as 
we shall see, that it tries to maintain open and closed explicitly. And in practice, it will 
work for very few in very few cases and people actually we will study how to save the 
memory and still do something similar to A*. 
  
That is where all the engineering comes up. So here, we have- in the initialize step, we set 
open to s and closed to empty, and we have 2 functions. 1 is gs, 1 is hs, and the cost of 
the state s will be denoted by fs. Let me explain what this gh business is. The g value of a 
state, at a given point of time, will indicate the minimum cost path from the start state to 
that state, right? We can draw it out on a picture. So, if we have a state here: this is the 
start state, and then I have found out a path to our state n, then this path cost is gn, right? 
hn is the estimated cost is the estimated cost. This is the estimated cost of traversing from 
n to a goal state- to any goal state- and I will maintain fn as the sum of gn plus hn. And 
what does that give us?  
 
It gives us the cost of the best solution that goes through n, right? Now, you have studied 
“  “  No? in algorithms no? Okay. Please read it up. Please read up “  “ . Then, you will 
see that- then we can discuss that- what is the similarity with this? Anyway, we have gn 
here and hn here. Now, what are the things that can happen during the search? During the 
search, my g value can change, because I might find some alternative better path to the 
same state, right? And also, as you go down the path, when you from n to its successor m, 
the heuristic value of m might be better. So, it may give you a more accurate estimate of 



the distance of m to the goal. The cost can change the cost of the fm value- can change 
based on that- right? So, this is the basic notion of what we mean by the g and the h. 
Now, let us see how we use this in the algorithm. Initially, for the start state, the g value, 
gs is 0. 
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Because, from the start state to the start state, the cost is 0, and fs is the estimate of going 
from the start state to this state, because gs is 0. So, hs plus gs is the same as hs. Step 2: 
same as before, if open is- (Student speaking)- hs is the heuristic function which gives the 
estimate of the cost of reaching the goal from s, right? hs is the cost estimate of the cost 
of reaching the goal from s. Then, we have, the second step is: fail- if open is empty, then 
terminate and fail, just as we had before. Then again, we select the minimum cost state n 
from open, and save in closed, but here when I refer to cost, I am referring to fn. So, look 
at the f values of all the states in open, and pick up the 1 which has minimum f value. I 
will work out an example for this algorithm to make this thing clear. Then, step 4 is 
terminate. If n belongs to the goal set, terminate with success and return fn. 
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Should I bring this back? Is it okay? All right. So, let us go to the expand step. For each 
successor m of n, if m does not belong to open or closed, which means that we are 
expanding it for the first time- this is the first time that we are visiting the node. Then, we 
set gm to be gn plus cnm. Now, why is that so? If you have you have this the From the 
start state s, I have gone to n and this was my gn. Now, when I generate a successor m, 
the g value is going to be this whole cost. So, it is gn plus this cnm. cnm is the cost of 
applying the operator to move from n to m, right? So, gn plus cnm- that is the value of 
gm, right? 
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So, coming back to here, we have gm is equal to gn plus cnm, and then we set fm equal 
to gm plus hm, where hm is the estimated cost of reaching the goal from m, right? Then 
we insert m in open. Again, if m already belongs to open or closed, then, we set gm is 
equal to minimum of gm and gn plus cnm. We see whether we have obtained a better 
path to reach the state m, right? hm is going to remain the same. So, we find out what is 
the best gm that we have got so far, and then add that with hm, to get the new cost of fm. 
Now, if fm is decreased- which means that we have indeed found a better path to that 
state- and we find that m belongs to closed, then we will move m to open. Otherwise, we 
will simply update the cost of m. 
  
If m is there in open, we will simply update its cost to the new value of fm, right? Now, 
this is similar to what we have done previously for the uniform cost search, except that 
now, states can move from closed to open, because of the heuristic function. The 
heuristic estimate, at an earlier stage, could have been worse than, as you progress further 
along some paths, and may have been good always, along some other paths. So, 
therefore, something which was considered not so good at some point of time, suddenly 
might become good, because the other paths which were promising, as we went down, 
their heuristic costs increased, and we found that no, these are not good enough, right? 
We will see examples of this nature of nodes coming back from close to open, okay? 
Then, let us go further down. Otherwise, we go to step 2, right? Fine. 
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Let us work out an example to see this. So, I have this graph, which is the same as the 1 
that we had seen before, and let me quickly write down the costs that we had. This was 
the cost that we had: can you see clearly? Now, in addition to this, let us assume that we 
have some heuristic values that we find from the nodes. So, that is some function which 
tells us at each state- what is the estimate of the goal. So, let us say, in 1, I have the 
heuristic value of 12 and at 2, I have heuristic value of 10. That means that at when I am 



in state 2, I have an estimate that from 2 to goal will cost me at least 10. That estimate is 
given to us. That is the heuristic function that is given to us, right? 
  
Now, note that though I am writing down these numbers besides the states, you do not 
know these values until you are actually- you have generated this state, and applied the 
heuristic function on that state. So, for example, if you have reached a particular state of 
15 puzzle, then you can use the Manhattan heuristic on that state, to find out a lower 
bound on the number of moves that will take you to the goal. Similarly, in case b, after 
you have generated a partial tool, it is then that you know, that what is an estimate of the 
remaining tour. So, these are heuristic values. And what will be the heuristic value of the 
goal? 0. 
 
Now, let us start with our lists. We will have open here and closed here. Initially, open 
will contain 1, with a cost of- no, no, no, no. 12, because you have the estimate.  
So, your cost initially is not 0 from the start state. It is the fn value which is gn- gs plus 
hs, so gs is 0 always at the start states.  hs is 12, which I have from here. So, I have this 
thing with a cost of 12, right? When the first step, I will expand the state 1 and put it in 
closed. So, I will have the state 1 with a cost of 12, which goes into closed and that will 
lead me to generate the successors 2 and 5. 2 will come with a cost of how much? 12. 
Why? Because the g value is this 2 and the h value is this 10, and the f value is g plus h. 
So, it is 10 plus 2, 12, right? What does this 12 indicate? It indicates an estimate of the 
cost of a solution path that goes through 2, right? This 12 does not tell me the solution 
from 2 is 12, no?  
 
The estimate of the solution from 2 is 10, but I have already incurred a cost of 2 for 
coming from the start state to this. So, the total solution cost is 10 plus 2, 12. The 
estimate of the total solution cost is 12, clear? And then, here, I have how much? 13, 
right? So, in the next step, I will be picking up the one with minimum f value. That is 2. 
So, 2 with a cost of 12 comes out, and what do we have here? We will have 5 with a cost 
of 13. And for 2, we will now have 3 with a cost of 19. That is 16 plus the g value, which 
is 3. Now see, it is not that every time I will add these things up. What I am doing is, see, 
the g values of these nodes are being maintained. So, I know that the g value of 2 is 2. So 
I take- when I expand 2 to get 3, I will take the gn value, which is 2 added with this 1 to 
get 3. That is going to the g value of 3. g3 is 3, and h is what I compute when x takes 3. 
  
So, g plus h is 19 and also, I will have 6 with a cost of 12. That is, 7 plus 5. g value is 5, h 
value is 7. Next, I will be picking up 6. So, 6 with a cost of 12 is here. I have 3 with a 
cost of 19, 5 with a cost of 13 and now I am expanding 6. So, will have 7 with a cost of 
17. Yes? Why 17? Because the g value is 6 and the h value is 11. So, 17. And also, I will 
have 10 with a cost of 13, and also 5. But what will be the cost of 5? It is coming as 22. 
The current value of 5 is 13, so that is no use. We just discard it. We do not do anything 
about it, because the new cost of that- we have found the new g value is actually larger 
than the existing g value. So, this is no good, right? 
  
Now, I have 2 nodes having cost of 13. Let us say without loss of generality, then  I will 
pick up 5, okay? If I pick up 5 with a cost of 13, then what do I have here? I have 3 with a 



cost of 19, then 7 with a cost of 17, then 10 with a cost of 13. And then I have 9 coming 
up, by expanding 5, which comes with a cost of 12 plus 2, 14, right? Next step, I will be 
picking up 10 with a cost of 13. So, if I pick up 10 with a cost of 13, then I will have this 
3 with a cost of 19, right? 7 with a cost of 17, 9 with a cost of 14 and by expanding 10, I 
will get 11 with a cost of 13, right?  
 
Next step, I will be picking up 11 with a cost of 13, right? That will give me 3 with a cost 
of 19, 7 with a cost of 17, 9 with a cost of 14 and 12 with a cost of 13. Next step, I will be 
picking up 12 with a cost of 13 and since that is the goal so we terminate, and we declare 
that the minimum cost is 13. Minimum- previously also, we had found that the minimum 
cost was 13.  
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Now, let us compare this with what we had for uniform cost search. So, for when we 
worked out the one for uniform cost search, you can check that we had; this is the one 
that we had for uniform cost search.  
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 38:08) 
 

 
 
 
Then, I had 11 nodes expanded, those are the nodes that you have not closed. You had 11 
nodes expanded, and if you compare that with the heuristic search, when we had made 
use of this heuristic information, you see that we now have- how many?- 6 nodes 
expanded, and then when we picked up the seventh node, we found that it was a goal. So, 
we had to actually expand 6 nodes, right? It has reduced the total effort of the search, but 
how? How did it deduce it?  
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What it did here was that, there were some nodes which looked extremely promising at 
the beginning, like, if you look at 3, it came up here with a cost of only 3, but then, if you 
have to follow along 3, then if you go to 3 to 4, well, the cost is still good. It is 2 plus 1 
plus 2. So, if you just ignore the heuristics, then this cost would be 5, which is still less 
than the cost of the optimal solution. So, that means 3 would have been expanded, 4 
would have been expanded, right? 8 would have expanded, and if you recall, if you go 
back to the previous example, you will see that all these nodes were actually expanded, 
when we did not have the heuristic information. But the heuristic information here told us 
that look from 3, you will have a cost of 16, at least.  
 
Therefore, at this point, only the cost of 3 became 19, and as you can see, that 3 never got 
expanded. 3 never got expanded, as a result, 4 never got generated, 8 never got generated, 
and they were also not expanded, right? So, what this essentially did was, it performed a 
look ahead, and was able to tell us, a priori, that this path is not going to be good. Now, 
let us do some analysis on the set of nodes that will be expanded by these algorithms. If 
you look at the uniform cost search algorithm, then I will say that all those states which 
can be reached with a cost less than the cost of the optimal solution; all those states will 
have to be expanded by any algorithm.  
 
Now, let me reiterate. Suppose I you give me an algorithm a; you give me an algorithm a 
and you claim that this algorithm is always going to find the optimal solution. We do not 
have any heuristics. We are talking about the uniform cost search paradigm, so I do not 
have any heuristics. I am given a problem which means a start state and a set of states 
transition operators, and you give me an algorithm a and claim that this fellow is always 
going to give me the optimal solution. And then, I am trying to say that look, I think that 
the complexity of your algorithm will be such, that it will expand all states which have a 
cost less than the minimum solution.  
 
You know why? Because suppose there is some state. So, this is our start state, and there 
is some state here- some state n- and the cost of n the cost of n is less than C*. And if 
your algorithm a does not expand n, then I am going to give the algorithm a another 
instance of the problem, where the entire state space will be similar, except that just 
below n, I will add a goal, right, and whose cost will be say cn or just cn plus some 
epsilon, where cn plus epsilon is also less than C*. I can always find such an epsilon. And 
then, because nothing else has changed in the state space, the algorithm a will be unable 
to find this goal, because it is not expanding n, and if does not expand n, then it will never 
discover this goal. Therefore, it will give you a sub-optimal solution. It will still give you 
C*, but you have a goal which has better cost. 
 
Now, is this analysis clear? Once again? Okay. My claim is that if cn is less than C*, and 
C* is- what?- optimal cost, then n must be expanded. This is my claim. Then, n must be 
expanded. This is my claim. Now, how do we establish this claim? We say that, let us 
assume that we have an algorithm a, which does not expand n. So, let algorithm a does 
not expand n, right? Then, what we can do is, we can keep the remaining state space 
identical. We do not make any change to the remaining state space, except that below n, 
we just add a goal and give it a cost which is between cn and C*. We can always do that, 



because cn is less than C*, so you can have some epsilon which you add to cn, and then 
this h cost is that epsilon, right? 
  
So, this goal will have cost cn plus epsilon. Now, from the point of view of a, nothing has 
changed, because the entire remaining state space is similar, and in that in that scenario, a 
was not expanding n. So, a will still not expand n, and if it does not expand n, then it will 
not see this goal. It will not be able to see this goal, unless it expands n, clear? 
Understood? (Student speaking.) You create another state space, yes. You create another 
state space, which is similar to that previous state space, except that we have a goal just 
below this. (Student speaking). No, not yet. So, for this class of problems, where we do 
not have heuristic functions, the claim is that all states which have cost less than C*, will 
have to be expanded. And if you think of it, Dijkstra’s does exactly that, right?  
 
It always expands the minimum cost state in your frontier. Therefore, when you have 
when you have found the goal, then all the states that you have in your frontier or in your 
heap, they all have cost more than the cost of the __. And because you are dealing with 
positive edge cost, in case of Dijkstra’s, so you know that by expanding the remaining set 
of states, you are not going to ever come to another state which has lesser cost than the 
ones that you already have, right? Now, so this is what we have in the case of uniform 
cost search. 
  
What will happen in case of A*? In A*, we have also the heuristic function. The heuristic 
function gives us an estimate of the cost to the goal. Now, can I characterize the set of 
states which A* will expand, given a heuristic function h? (Student speaking). Yes, so let 
us make the claim first, then we will reason about it. The claim is that if I have fn less 
than C* then n must be expanded. See, again, at this point of time, we are assuming 2 
things: we are assuming, one, that the heuristic function under-estimates, that is, hn is less 
than or equal to, where f star n is the … And second thing is, if you go by this rule, then 
what we have here is, if fn is less than C*, then n must be expanded by an algorithm, 
because if it does not- if it does not expand the state n- then, what we can do is, we can 
again create another state space, which is exactly similar to the existing state space. But 
below n, we will put another goal. 
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We will put a goal, and because fn is less than C*, so therefore, what we can do is that 
there will be some heuristic cost hn here, right? So, we will associate that heuristic cost 
with the cost of the transition to the goal. So, suppose we have what? The transformation 
that we are going to do is as follows: we have n here, and then, we will create a new goal, 
say g, right? Now, this had an hn component, and this had some gn component from 
above. So, fn was gn plus hn. What I am going to do is, I am going to make this h cost h 
n, equal to hn. In that case, what is going to be the f value of this? fg. 
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It is the- gn will be the g for this state, will be this gn plus hn. So, it is going to be fn and 
the h value is 0. f g will have the same value as f n. So, now I have another goal. I have a 
goal which has the same cost as the node n, and the algorithm, if it does not expand n, it 
will not be able to discover this goal, right? So, by a similar reasoning, we establish that 
if you have a cost- if you have a state whose cost is less than that of C*- then, every 
algorithm which guarantees finding the optimal solution, will have to expand that, right? 
Now, note that I have not written less than or equal to. I have written strictly less than; 
the ones which are strictly less are surely going to be expanded, but if you have less than 
or equal to, then we do not know, right? 
  
Now, I have not mentioned here, if you come back to the slide algorithm A*, then, here I 
was selecting the minimum cost state n from open, right? Now, if you have many states 
having the same cost, which one will we select? What we do there is, if you have many 
costs, many states with the same cost, select the one which has minimum g value- among 
those states, which have the same f value, select the ones select the one which has 
minimum g value, because the others have already incurred a more cost in terms of g and 
we do not know that accuracy of the heuristics, right? Okay. 
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So, with that, we will conclude this lecture. In the next lecture, I will start by analyzing 
some results of A*, and then we will study how we can create variants of A*, which will 
work better than A*. A* does not well work very well in practice. That is because it 
requires too much of memory. It is storing the whole of open and the whole of closed and 
it eases up too much of memory. So, it does not work in practice, but there are variants of 
that which are used. So, we will study some of those in the next class. 
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We will continue with our discussion on A* and heuristic search engine from this class 
onwards. We will this The topic of this lecture is heuristic search- A* and beyond. So 
quickly, to recap what we had done in the last class: we studied the algorithm A* which 
maintains 2 lists- open and closed- and also 2 functions. One is the g value, which 
computes the distance of the state from the start state, and the h value, which is the 
heuristic estimate of the distance of that state from the goal state. And fs is the sum of gs 
and hs, and that gives us the estimated cost of a solution, which goes through the node n. 
So, the first step was: if open is empty and we have still not yet found the goal, then we 
terminate with failure, otherwise we select the minimum cost state n from open and save 
it in closed. If the selected state is a goal state, then you terminate with success and return 
the f value of that state as the cost of the goal. 
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Otherwise, we expand the node n, and to generate the set of successors and for each 
successor m, we compute its cost, based on the g value of that node and the h value of 
that node, and if the node already belongs to open and closed, we update it only if the 
cost is decreased. And if the node is already in closed and its cost has decreased, then you 
must bring it back to open. Now, in uniform cost search, we had seen that if you have 
only positive cost, then you cannot have a case where a node comes back from closed to 
open.  
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Here, in the first iteration, you may expand one. Second iteration, you are expanding 2 
states. Every iteration, only 1 new state is getting expanded. Third iteration: 3 states are 
getting expanded and so on, until you expand all n states. And that is the set of states 
which A* will expand. (Student speaking). Because you are not saving them, because we 
are not saving them. So, we are again; we are doing a DFDB on the state space, with the 
new cost cutter, right? So, it is all in the interest of saving space, because space is the 
thing which will kill you, in this kind of state spaces.  
 
So, this gives you in the worst case, as you can see, order of n square, where n is the set 
of states which A* expands. n is the set of states that I was mentioning- all states with 
cost less than C*. This is going to be, in the worst case, quadratic in time, as compared to 
A*. The time increase is only quadratic, but the space is exponentially saved, because it 
can grow in order of b to the power of m, where b is the branching factor, but here you 
are doing in linear space, right? So, it is asymptotically optimal.  
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Okay. So, there are several extensions of this basic memory bounded search strategies. 
Maybe sometime later, in some later lectures, I will just touch upon the other kinds of 
strategies that we have. But from the next lecture onwards, we are going to move into 
problem reduction search and game trees.  


