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We shall continue our discussion on designing algorithms from recursive definitions. And 
we have seen that, what we were trying to do so long was given a recursive definition of 
a problem, we are trying to get an initial solution. 
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The final solution will be obtained after a more detailed analysis as we saw in the 
previous days. So, today we will continue with some of the problems which we were 
tackling in the previous day and we had seen how we obtained the final program for the 
factorial problem, the Fibonacci numbers problem and the towers of Hanoi problem in 
the previous class. Today we will concentrate on the two important sorting algorithms 
namely merge sort and quick sort and try to see how we can use whatever knowledge we 
have of arrays and functions and recursive programming in C to obtain these programs.  
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If you will recall the merge sort algorithm goes like this. The recursive decomposition 
was given a list L, this will produce a sorted list L, a new sorted list, this will return a 
new sorted list. And the base condition was if the size of the list is 1 then the returned list 
is the original list itself otherwise we split L into 2 non-empty sets L1 and L2. We 
recursively merge sorted L1 to get L1 dash, merge sorted L2 to get L2 dashed and then 
did a merge routine of two sorted sub lists of L1 and L2 and this is what we returned as L 
dash. So, we understood how merge sort this recursive decomposition works but we still 
do not know how to make lists and how to return arrays or how to make a list of 
elements. So with our knowledge of arrays, we will be trying to solve this problem.  
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So how do we, given an array A or data or A which contains our elements so say 4 3 2 1 
15 and 9 and n is 1 2 3 4 5 6, n is equal to 6. Now our data structure for storing a list will 
be an array and in order to indicate which part of the array we are going to use, we will 
use the indices of the array. For example this is array index 0, this is 1, this is 2, this is 3, 
this is 4 and this is 5. So whenever we have to pass this list we will just pass the indices 
of the list and we will make sure that when we split the list, we just split it in the middle 
or in a position so that we are not required to interchange the elements at all. So what we 
will do is initially we will instead of passing a list, we will call the merge sort routine like 
this. The array A will be passed as an array name and the indices i and j for which merge 
sort requires to be done will be passed.  
 
Now suppose I pass A, 2 and 4 then this means this corresponds to this list, this part of 
the list, A, 2, 4 corresponds to this. Similarly A, 0, 3 corresponds to this list, the first 4 
numbers. So we can use the array and the indices of the array to pass out the list that we 
require and instead of returning anything we will sort the elements in the array itself. So 
if we sort in the array itself, we need not return anything. So based on these two ideas, we 
can now rewrite our merge sort routine, the original merge sort routine this way. 
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So the new merge sort routine will be like this A, i, j. Now what is the base condition 
when i is, when there is only a single element. So when i is equal to j, we get the base 
condition. So if i is greater than equal to j you are supposed to return that element. Now 
that element already exist in the array, so we need not return anything, we just simply 
write return else the next step was to split the list into two equal parts or two, any two 
parts. So we will have to choose an index between i and j, so we will have to choose any 
index between i and j, suppose for the time being we choose the middle element. 
 
So we write mid is equal to i plus j by 2. So now we have obtained the middle element of 
the list. Suppose initially it was 0 to 5, so it will be 0 plus 5 by 2 which is 2. So you will 



get two here and now we are left to sort the two parts of the list, so you can simply call 
merge sort A, one half will be from i to mid, the other part will be A mid plus 1 to j. So 
now we have split the list into two equal parts and then called merge sort on one part, one 
half called merge sort on the other half and we expect the array from i to mid will be 
sorted after the return of this merge sort. We expect the array from mid plus 1 to j will be 
sorted after we return from this. And then all we are left is to call the merge routine. The 
merge routine will again the whole list and the position where it was split up or the two 
different lists. To pass the two different lists, what we have to pass? We have to pass the 
array A, we have to pass i, we have to pass j and we may pass mid but if we know that we 
are going to calculate the middle element, we can compute mid in the merge routine also.  
 
So either we pass mid here or we compute the mid in the merge routine and do not pass 
it. So if we just use an array then we can implement merge sort by manipulating the array 
indices which will denote the lists that we have. So this is the idea of the basic merge sort 
routine. We are yet still left to write down the merge routine. So, any questions regarding 
this? 
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Now let us come to the merge routine. The merge routine takes the array A, the index i, 
the index j and mid. And what does it supposed to do? It is supposed to sort it. Now let us 
see how we would do it by hand, just a quick recollection. Suppose the initial list was 4 3 
7 1 8 12 1 and 5. So from array index 0 to 7, we had it and we split it into two parts here 
and after we merge sort this, we are supposed to get back 1 3 4 7. After we merge sort 
this we are supposed to get back 1 5 8 12.  
 
Now comes the merge routine. Now in the merge routine, we will start comparing the 
first two elements and as we discussed earlier, the smaller of the two will be the first 
element. So here since there is a tie by default let us take this one then whichever 
becomes, whichever gets chosen the index of that is incremented and then again this 



index and this index is compared, the smaller of the two gets chosen and the 
corresponding index gets incremented. Again the smaller of the two gets chosen and the 
corresponding index gets incremented, again the smaller of the two gets chosen and the 
corresponding index gets incremented, the smaller of the two gets chosen and again this 
index is… Then this is chosen but once this crosses the mid value then the rest of the 
elements from here can just be copied out. 
 
So we are to solve it in two parts, one is we compare the indices and increment it and 
then whenever we reach the end of list, we copy into end we copy the rest of the elements 
at the end and we can use an additional array to store the sorted list of this part getting 
merge sort, alright. So using this technique we can write out the merge sort routine, the 
merge routine and based on this the merge sort routine will get completed.  
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So let’s go to the computer and see how the program looks like in more details. This is 
the main program where we input the data, this is not so relevant. The main part is here 
this part, can you see. This part where after reading in the elements you call merge sort 
with the array called data here, the array is called data, 0, n minus 1 and after this call we 
print the result. Now we come to the merge sort routine. The recursive routine as we 
discussed just now, it has got an array a, the index i and the index j. a is declared to be an 
array, you need not give the values as we have discussed earlier i and j are integers, mid 
is the value, this k I don’t think it’s required.  
 
If i is greater than equal to j return otherwise mid is i plus j by 2, merge sort a, i, mid, 
merge sort a, mid plus 1, j and merge a, i, j here we did not pass mid because we know 
that mid is i plus j by 2 we will compute mid in the merge routine. So the recursive merge 
sort routine is fairly simple, it does, this is the recursion breaking condition here, this is 
the splitting of the two lists, these are the two recursive calls. It does not matter in which 
order you do it, you can call, you can put this first and this second or this first and this 



second. It does not matter because they are going to work on different portions of the list 
and then you merge a, i, j.  
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So let’s go to the merge routine. The merge routine takes in as parameters the array a, the 
index i, the index j. It uses a temporary array b to store the elements during merge 
sorting, the mid is computed, L and start are temporary variables. So we do some 
initialization, the start is i, i is the start of the list for which merging is to be done, mid is 
computed i plus j by 2. The first pointer, we mention that we will start with two 
comparisons. Here we start with k which starts from mid plus 1 and L which starts from i. 
So we will continuously compare a k with a l and appropriately increment or decrement 
and we will form the array b. So this is the part where we form the array b. And what did 
we say? As long as i is less than equal to mid and k is less than equal to j, alright. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 17:45) 
 

 
 
As long as i is less than equal to mid and k sorry this should be ya, so the array b will be 
starting from l, the array b will be starting from l. So if a [i] is greater than equal to a [k] 
then b [l] is made to a [i] and l is incremented and a [i] is incremented, otherwise b [l] is 
assigned a [k] and l and k both are incremented. Is that okay? So as long as i is less than 
equal to mid and k is less than equal to j that is both the arrays are not, both the sub parts 
of the arrays are not filled up or not exhausted. We continuously compare a [i] with a [k] 
and we put in b [l] the value which is greater because we are sorting in descending order, 
so that is why we are doing it this way.  
 
Now after this part is over either i will be greater than equal to mid or j will be greater 
than equal to k or k will greater than equal to j. This will come out based on any two of 
these conditions. If i is greater than mid, what does it mean? It means that we have 
completed from a[i] to a mid that part has already been put in b. So the elements which 
are still remaining that is from k onwards up to j will be now put into the array b in the 
for loop. So b [l plus plus] is equal to a [k plus plus] that means b [l] is equal to a [k] and 
l is equal l plus 1 and k equal to k plus 1. If this is not the case then the other array, this 
must have happened, k must be greater than j. If k is greater than j then for i equal to 
whatever is the current value of i and as long as i is less than equal to mid, we put them 
these values back into the array b. So, b [l plus plus] equal to a [i plus plus]. And now the 
last part, we copy back these relevant values of b back into the array a. 
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So what we do is copy back into the array a and we will copy back from the start position 
to j. The start was stored as initial value of i if you recall here. The start was stored as the 
initial value of i and so we will copy back from l equal to start till l is less than equal to j l 
plus plus, we copy back into the array. So this completes our merge routine. So in the 
merge routine, we have first initialized and found the middle value. We have formed the 
array b by comparing the indices with a [i] and a [k] and correspondingly put the element 
in the array b. If one of the arrays get exhausted, if one of the sub parts get exhausted the 
rest of the elements are put back and then array a is filled up with the current values of 
array b as after sort.  
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So this completes merging. So after it is merged that portion of the array a from i to j is 
now sorted a i to a j is now sorted. So once a i to a j is sorted, this means we have now, 
we can return back from the merge sort. So we are now executing it, n let us take 4 
elements. So we get the sorted numbers, the numbers read actually 5 2 4 and the sorted 
numbers are 5 4 3 and 2. 
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Now in order to understand how the splitting and the recursive calls are made, we can 
simply put in a right statement here, here entered with i equal to… and j equal to… So as 
soon as we enter the merge routine we will see what is the value of i and what is the value 
of j. So this way we can find out exactly how the split occurs. This is how it ran, we 
initially ran it with 5 3 1 4. So initial call was i equal to 0, j equal to 3 then it split up into 
two parts, mid was computed and 0 1 was one case and 1 2 3 was the other case. 
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So 0 1 was called first because that’s what we did. So 0 1 was called, the mid was 
computed and mid of 0 and 0 plus 1 by 2 gives 0. So 0 0 was called, 0 0 is a recursion 
breaking condition so after that it came back to this routine which I have called it and this 
routine now called it with other one 1 1. So this also completed because this is a recursion 
breaking condition, so it came back here because this originally I have called it 0 1 and 2 
3, so the 2 3 call now came. So this is a 2 3 call, the 2 3 call in turn made at 2 2 call and 
when the 2 2 call was over this 2 3 call made a 3 3 call.  
 
When the 3 3 call was over, it returned back to the 2 3 call and this 2 3 call returned back 
to 0 3 call and we got the execution completed. And whenever you execute, you can put 
in print statements at various places to understand exactly how the recursion takes place. 
So let’s get back now. So I hope the merge sort routine is fairly clear, how we can use 
arrays and indices of arrays to do it.  
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So now we will see how the quick sort routine can be done. Let us recall the original 
quick sort algorithm. the quick sort algorithm took in a list l and returned a sorted list. 
similarly the base condition was if the size of the list was 1 that list itself was returned, 
otherwise we selected an element from the list and we split this list l based on this 
element x into two parts. L1 which is greater than equal to and L2 which is less than… 
then we quick sorted this and we quick sorted this and we realize that if we just 
recompose by joining them up, we are going to get back the final sorted result. This part 
of the decomposition splitting is often called in textbooks, it is called the partition 
routine.  
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So if we write it down with the partition function then that same function will look like 
this, list quick sort L if n is equal to size of L. if n is equal to 1 else L1 and L2 are 
obtained by partitioning L, the selection of element can go inside the partition routine 
itself and then we quick sort this, quick sort this and concatenate.        
 
So now just like in the merge sort, we will use arrays and array indices to define our 
quick sort routine. So how will we do that now? The quick sort A of the array A, the list 
is indicated by the array indices. If i is greater than equal to j return else partition A and 
the list has to be denoted, so from i to j and say where the list is partitioned is returned in 
l.  
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Now in order to return the value of a variable you have to put and in C that is why I 
purposely put it here also otherwise you could have made the partition routine return a 
value, anything you could have done. So we will return this here and then we will call 
quick sort. Now this partition routine unlike the split routine which does actually nothing, 
this partition routine will actually modify will exchange the values in the array A to make 
sure that those from i to l are all less than equal to those from l plus 1 to j based on the 
element that we have selected. Whatever element we have selected for partitioning, the 
elements which are less than equal to the selected elements will lie between i to l and 
from l plus 1 to j we will have those elements which are greater than the selected element 
x that is the idea of this partition routine.       
        
That is the position l will be returned after the function and you call quick sort A, the rest 
is quite easy L, A. what else do we have to do? We have to do concatenation. Now i to l 
is sorted in the array, l plus 1 to j is sorted in the array, so automatically the array is 
sorted concatenation need not be done anymore because the array itself is sorted from i to 
l and l plus 1 to j, so concatenation is automatically existing there so we just simply 
return.  



So this is the idea of the basic quick sort algorithm where we have replaced the list by the 
array A and the indices of the arrays. This is how we have done it. So once this part is 
clear, we are now left to solve the problem of partitioning. Now again we can use the 
ideal like we used in merge sort to partition.  
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Let us take an example and understand how we will be partitioning. Suppose 3 7 1 8 12 1 
5 and we have to partition this, this is i, this is j. The first thing that we have to do is 
select an element on the basis of which partitioning will be done, alright. So let us say we 
will select x is equal to A [i], you could have selected A [j] also it does not matter. Some 
element we will select A [i] you can select, A [j], any element you can select, whether 
selecting the element makes a difference or not we will come to it later but the question is 
the algorithm is correct by selecting array element.  
 
Let us suppose here we selected A [i] then we now start putting into the array elements 
which are greater than equal to 1. So we use two arrays let us call it b1 and b2 and we 
start from here. If this is less than the selected element, we put it in b2. If it is greater than 
the selected element we put it in b1 or greater than equal to. 
 
So first you start from here 4 goes here, 3 goes here, 7 goes here, 1 goes here, 8 goes 
here, 12 goes here sorry 12 goes here, 5 goes here, one more 1 had come sorry 4 3 7 1 8 
12 1 5. After having done this now what do we do? We put back these elements back into 
the array A and we put it like this. We put 4 here, the first we put back 4, then 7 then 8 
then 12 then 5 then 3 then 1 then 1. And what do we return back, which index do we 
return back? We return back this index, the place where the partitioning occurs. The 
partitioning occurred at this place that is the size of b1 will tell you where the partitioning 
occurs. So this is one very simple routine to do partitioning, you take two temporary 
arrays, you select any one elements from here, take two temporary arrays and just put 
them the elements greater than equal to on one part less than on another part and then put 



them back into the original array and you will get what you want. And you have to return 
this. So this is one function, so let us have a look at this quick sort routine very quickly.  
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The main quick sort function, this is all reading and all this similarly quick sort is called 
here q sort (data, 0 and n minus 1) just like in merge sort. The main quick sort routine is 
here and this is what we were discussing q sort a, i, j, a is an array, i and j are indices, k is 
a temporary variable which will be the location which is returned. Well, if i is greater 
than equal to j return, partition a, i, j and get the value of k but since we have to get the 
value and it is called by value we pass the address to get the value and here interestingly 
we have done it k minus 1 and k plus 1.   
 
Can anybody tell me why we have done k minus 1 and k plus 1? Because after we do the 
partitioning, the element on the basis of which the partitioning was done can already be 
put in the array index k. So the element on which the basis that element x which was 
selected will be put into the array element k and once that is put into the array element k, 
the rest of the elements can be done from k minus 1 to k plus 1, that is why. If you had 
kept this as k also it won’t have mattered. And here is our function for partitioning and in 
this partitioning function, we have used one array instead of two arrays. 
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What have we done by using this one array? In the two arrays that we discussed, we put 
b1 and b2. Now the elements which were greater than equal to we put in b1 and the 
elements which were less than we put in b2. Here we just use one array and what we do is 
the elements which are greater than equal to we put from bi onwards and the elements 
which are less than equal to we put backwards from bj. So in one array we can handle the 
whole thing. So that’s exactly what is done here, p is initialized to a[i] that is this is the 
elements which is selected, m is initialized to i plus 1 because p will be put in its proper 
position after partitioning and n is initialized to j, so one starts from the beginning, the 
other starts from j. This is the size of the list n, so for q equal to i plus 1 till q is less than 
j, we compare if a [q] is greater than equal to p we put in bm, alright. Otherwise we put a 
[q] in b [n], n is the end of the list as you noted. So those which are less than are put 
backwards from the end of the list and this n is decremented as soon as one element is put 
in.  
 
Those elements which are greater than are put in the front of the list b and m is 
incremented as and when they are put in. And the counter will tell you what are the 
elements which are finally put in but this ends the for loop. The for loop ends here and 
this counter will tell you how many elements are actually going into the front of the list.   
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So at the end of this you know where the first original element which was selected where 
that element, this will be bi plus count that is the first element will be put in. And the 
content of l, l will be returned as i plus count because l will get back the value here where 
the partitioning occurred. If count as we mentioned say in b1, the number of elements in 
b1 was the value of count, so the content of l is i plus count and that is what is returned. 
And before returning again we copy the values of array b back to the array a. So this way 
we can write out this quick sort routine. Sorry, have to compile. We give in the elements 
and we can get it sorted.  
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Similarly you can just put in lot of statements inside to find out exactly how the 
partitioning is done but we will come back to a more important issue here. In quick sort 
we have used here instead of this two arrays, we actually showed how we can use one 
array. In that array from the front we will put in these values and from the back we will 
put in these values that’s what we did. But quick sort can be written without an additional 
array very easily. We can do it by using this array itself. So let us see how we would do 
that. We choose our element p or x here to be 4 that is a[i], alright. We choose it to be a[i] 
and we start with this index x and two indices the start and the end.  
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And we compare for the element here, we go on comparing as long as, suppose we are 
going to sort in ascending order for the time being. So suppose if this is less than p, we 
proceed because these sides we won’t sorry, we are sorting in descending order. So, as 
long as this is greater than p we proceed and this side we go on proceeding because as 
long as it is less than or equal to p. So here this is not greater than p, so we continue. This 
is greater than p, sorry as long as it is greater than p we continue. So we wait here, we 
stop here, this is not greater than p and here as long as it is less than or equal to p we will 
continue but as soon as it is greater than p we will stop. And once we see these two, these 
are two candidates for exchange because this will exist this side and this will exist this 
side. So we simply exchange them and after exchanging this becomes 5, this becomes 4 
because the elements which are this side are less than or equal to elements which are this 
side are greater than, let us say this is our argument.  
 
And s now comes here and e now comes here. Now since this is still less than or equal to 
p, it will wait here but this one is less, so this will continue. It will come here, it will wait 
here because this condition is that this element is greater than p. So, now we exchange 
these two and proceed. So here what do we do? This is greater than, so we continue. This 
is less than and this is greater than, so we exchange this two.  
 



And when do we stop? When s becomes greater than or equal to e. When this index 
crosses this index we can stop. So by the sequence of comparisons and exchanges, we 
can do the partitioning in the array itself and we need not do the partitioning with them 
by using an additional array. So the program for that is not difficult to write, I will just 
show you the partitioning routine. This is the partitioning routine which takes in an array 
data, index left and an index right. It initializes the i which we call s to left, j to right and 
the pivot element on the basis of which it will be done is data left.    
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And it will go on doing this while i is less than equal to j. and as long as i is less than j 
and data i is less than pivot, here we have done sorting in the other way it will increment 
i. And for j what will it do? As long as data j is greater than equal to pivot, it will 
decrement j and after these two positions are decremented and incremented and if i is still 
less than j these are two candidates for exchange, they will be exchanged. And this will 
continue in this outer loop as long as i is less than j. So that way we will be able to 
partition the routine and the pivot position that is you can now return if data j after the, 
see at the end of it i will be equal to j.  
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So if data j is less than equal to pivot, we return j otherwise if data j is greater than pivot 
we return j minus 1. So this way we can return the element by the partitioning routine 
without using an additional array. So this way we see that we have now been able to write 
down using arrays and indices of arrays, two routines the quick sort routine and the 
merge sort routine. And these are as we discussed first, these are only initial definitions 
where we have still to answer question as to where to exactly split in the merge sort 
routine to get the optimal result or in quick sort which element do we select, so that quick 
sort works best. We have not answered these questions and to answer these questions we 
have to do much more analysis for which we have to study some more mathematics 
which we will do in our subsequent class. 
 
So today we will stop here and I will request you to just quickly go through textbooks to 
see the exact routines of merge sort and quick sort which may vary from text book to 
textbook and just implement them in your lab and see exactly how the recursion occurs.                 
                            
 
 
 
 
 


