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We shall continue our study of asymptotic analysis of algorithms. And today after having 
seen growth functions the order notation, the upper bound, the lower bound notations we 
will now try and analyze some of the algorithms or programs that we have written till 
now and see what this analysis means and also study some of the techniques of analyzing 
or trying to find out these asymptotic growth functions. So we will pick up quickly these 
problems, the maximum of n numbers, the exchange sort, the tournament sort, Fibonacci 
numbers, the merge sort and the quick sort, these are the one that we have done. 
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We have also done towers of Hanoi, permutations, the standard problems which we shall 
come to later on when the time permits. The maximum of n numbers was something 
which we did in the pervious class and without writing the routine again we found out 
that f(n) is of the form A n plus b and we can say this is order n. 
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Just before we continue with this, if f(n) is equal to k which is a constant then it is said to 
be order one, this constant is usually called order one. it is the same as order zero, order 
three, order four, order five, all of them mean the same thing but the language which we 
use is constant complexities order n, when we say order one. When we say order n, we 
say it is a linear time algorithm. Now if a function is varying with n and you have to read 
all the inputs, anyway it cannot be better than linear time. But is the constant minimum is 
something we can analyze a bit later on but presently we are only bothered about 
asymptotic analysis.  
 
So finding the maximum, finding the minimum, all of them are linear time. And you 
really cannot find the maximum of n numbers in less than linear time. So that part is over 
if it is un-sorted, if it is sorted then obviously you can find it in constant time. If its 
already sorted and you know finding maximum of n numbers is obviously constant but an 
unsorted arbitrary list of n numbers, finding out the maximum is the best possible order 
that you can get asymptotically, the order is linear.  
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So, the next one which we will come to is the exchange sort. The exchange sort, the core 
part of it there are two loops, for i equal to 1 i less than n or if you wrote 0 then you 
would have written n minus 1. For j equal to i plus 1 to j equal to n that is less than n j 
plus plus. If data i is less than data j then this is what you do. So if you make a quick 
analysis then this part will be executed once, this will be executed n times, this will be 
executed n times, this will be executed n times. In a loop, this will be executed n into n 
minus 1 whatever this similarly. And the inner loop will be executed means, what order 
of complexity you can find the exact, you can put 1 1 1 and find the exact value but if 
you have got the hang of order of analysis, you can say it will be of the type of a n square 
plus b n plus c.  
 
Very quickly you can say it is going to be of this type, though the constants will be 
dependent on what you do and you can say that exchange sort is order n square 
algorithm. So this is an order n square algorithm. Is that okay? 
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Let us come to this tournament. You remember, this diagram of a tournament in which 
we found out we had these n numbers and we used an array of size 2 n minus 1 and we 
compare 2 input in the index of the half place. So building up of this tournament we did 
in a loop from back, compare these two 14 and 15 and put it in 7. 6 and 9 and put it in 9, 
15 and 1 and put it in 5, 8 and 9 and put it in 4 here and this is what we did. So this loop 
is of order n. If this is 2 n minus 1, this will be approximately proportional to 2 n minus 1. 
So building up the tournament is of order n time. So tournament build, if you do not 
understand please stop me.  
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Tournament build is order n. find out the maximum element is constant time after 
tournament build. Get next max, what did we do? We went along the maximum and if we 
assume the, we know the minimum then you make it less than the minimum and then you 
go up. Now how many comparisons do you make when you go down? log n and when 
you go up, log n. So to get the next max, you make two log n. two log n, so next max and 
if you repeat this next max continuously then you will require some, this is f(n) isn’t it, 
which is An plus b. Find_max, Next_max this is what you will continuously do plus n 
into this was of the form a log n plus any terms which are less linear time terms etc etc 
Bn plus whatever it may be happen, it may continue.  
 
So this term will be of a, this is a one say this is a one say this is a dash, this is b dash. So 
this whole term very quickly you can see that the highest order term will be a n log n. No, 
now b dash, b dash n, b dash n is not here sorry b dash may be some constant time may 
be required, there is not n sorry then this would have been n order n because log n is not 
there. So this, the whole sorting of n numbers will be done in order n log n time which is 
much better.  
 
So now let us see, one we have got f(n) is equal to n square. The other we have got g(n) 
which is equal to n log n. these are the two orders, order function. Now clearly g(n) is 
upper bounded by f(n) and g(n) is not lower bounded by f(n) but these two are not of the 
same order. Therefore this is much better than this. there are various other issues relating 
to order specially when you consider complexities of the type n to the power say log n, 
how does it compare with n to the power 500? How will you compare these two? Take 
the logs on both sides and compare and you will get a comparison between both of them. 
If you cannot directly compare these two, take log on both sides and compare. This will 
be better than this.  
 
See this one, its growth is a polynomial where this growth, this log n will increase with n. 
So, this one will grow faster than this one. So between these two algorithms, this will be 
better than this. In fact for any constant n to the power k, for any fixed constant may be 
even 2 milli ampere, it will be better than this in order terms. So we have got this 
tournament sort is order n log n algorithm, therefore its more efficient in asymptotic 
worst case complexity than a exchange sort but if you take 100 elements may be you just 
don’t know because the constants may be very big here.  
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Let us come to the Fibonacci number and here we come, in the previous two cases we 
had very simple loops which we could analyze. In the Fibonacci number problem, how 
will we find out, what is the complexity of this? Can anybody help, any suggestions. 
What is the complexity of this? If n is equal to 0 then it is one check constant time, it is 
constant time. If n is equal to 1 it is constant time, otherwise otherwise what?  
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So we have been able to say for Fibonacci numbers f(n) is equal to let us write it out like 
this. If n is equal to 0 or 1 then f(n) is equal to constant k is order 1 else what? It is the 



time to do this plus the time to do this plus another constant which is say one. So now the 
complexity equation again becomes a recursion and the complexity equation, the time n 
for Fibonacci is equal to let us say constant we can make it one, we are doing asymptotic 
analysis for n less than equal to 1 and is equal to T of n minus 1 plus t of n minus 2 plus 1 
for n greater than 1. We have not found the solution, we don’t know the order yet, this is 
what we have. No, can you tell me what order this is? This is called a recurrence relation 
or a recurrence equation. This one can be solved. Do you know the answer to this one? 
Can you solve it in terms of Fibonacci n?  
 
See it looks very similar to Fibonacci numbers itself. by the way do you know what is the 
value of fib (n), 1 by root 5, n 1 minus 1 by root 5 to the power n plus 1 plus 1 by root 5 
to the power n the whole 1 by 2 root five or something like that. It is like this something 
like this, it’s called a golden number but this T(n) can be written in term of fib (n) you 
know. Can you make a guess? Is T(n) equal to fib (n)?  
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Just, what is T(n)? T(n) is equal to 1, fib n plus 1, is it equal to fib n plus 1. How will you 
prove this yes or no, how will you prove it? Substitute here by induction, fib n plus 1, so 
this will be T(n) if T(n) is fib n plus 1 then this by induction must be fib of n plus fib of n 
minus 1 plus 1 which will be fib of n plus 1 plus 1 which is not true. Now looking at this, 
can you make an adjustment? Put fib n plus 1 minus 1, then you will get 1 minus 1 here, 
you will get 1 minus 1 here and you will get 1 minus here.  
 
T(n) is equal to fib of n plus 1 or not? This is not true right, if it were true by induction 
this would have happened. T(n) minus 1. So by induction this should have been fib of n 
plus fib of n minus 1 plus 1. Now fib of n plus fib of n minus 1 is fib of n plus 1, so you 
will get fib of n plus 1 plus 1 which is not true. But if you put it just 1 minus 1 here, you 
will get a minus 1 here, will get a minus 1 here, you will get a minus 2 here and this will 



give you fib of n minus 1. So even if you don’t know this, you can say T(n), this much 
you can say. Isn’t it? Now fib of n plus 1 is an exponential number, just see. 
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So T(n) will be you can always write, atleast it will be upper bounded by 2 to the power 
n. It will also be lower bounded by 2 to the power n, you can show that. I just leave it to 
you to try out because these are both numbers which would be exponential, the growth of 
this will be exponential. So this algorithm takes is of order exponential time 2 to the 
power n, it grows very rapidly compared to an algorithm like n square or n cube which 
grows as an polynomial function of n. You have to see what we can do about this. But the 
one point that we get from analyzing recursive equation is that these recursive definitions, 
the complexities of these recursive definitions can be formed by solving certain 
recurrence equations. Is that idea clear? That the solution to recursive definition are the 
complexity, time complexity, asymptotic time complexity of recursive functions or 
inductive definitions can be obtained by solving certain recurrence relations.  
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And we have already got several such problems that are in hand and we will see one of 
them. Let us see the merge sort problem. If you remember the merge sort problem was if 
we split into two parts, equal parts or unequal parts or whatever. So split into two parts 
and then sort individually and then merge the two sorted list. And we did not decide on 
where to split, right. We did not decide on where to split, we said we will decide later on. 
Now is the time we will see, if we split in different ways what we will get.  
 
Now first let us understand what this merge routine does. This merge routine it takes in 
our final implementation in the same array a set of numbers one pointer here, one pointer 
here and in another array it compares these two, the smaller of the two if you are sorting 
in that order is written. Suppose this is 5 and this is 3 then 3 will be written and this 
pointer will move here, this index would move here.  
 
So for every number which is written here at most one comparison is done, at most one 
comparison is done. So for finding out merging of m plus say m 1 plus m 2 numbers so 
total of n numbers if I have to merge, I have to do some… My complexity will be of the 
form like this no more than this because I do not have to do more than n comparison and 
more than n comparison and more than n such assignments here. That’s all I have to do. 
So merging of n elements is order n time, so we know merging of n elements is order n 
time.  
 
So we come to merge sort, we are splitting into two parts. Now we could split one n 
minus 1 2 n minus 2 3 n minus 3 or we could split up half half three fourth one fourth one 
tenth nine tenth. So suppose we split up into 1 and n minus 1. Then what will be our 
equation? T(n) is equal to constant for n equal to 1 that is known and there is one 
element, it is constant time. 
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Otherwise it is T(1) plus T(n) minus 1 plus merge time, this is order n. Order n you can 
write as n also because it will not affect the order of the complexity which is the same as 
T(n) minus 1 plus n plus 1. So T(n) is T(n) minus 1 plus n plus 1 which is, which starts 
expanding it out. How will you solve this? Can you solve this? Try it, expand it, T(n) 
minus 2 plus n minus 1 plus 1 plus n plus 1. This T(n) minus 1 will break up as T(n) 
minus 2 plus n minus 1 plus 1 like T(n) broke up as n minus 1 plus n plus 1, this will 
break up as n minus 2 plus n minus 1 plus 1. So it will be T(n) minus 2 plus n plus n plus 
1.  
 
The next step you can write in one short T(n) minus 3 plus n minus 1 plus n plus n plus 1. 
And this will go right up to T(1) plus when n, when this is n minus three this starts from n 
minus 1. So when this is 1 which is equivalent to n minus n minus 1, 1 is equivalent to n 
minus n minus 1, it will start from n minus n minus 3. If this is 3 this is 1, so if this is n 
minus 1 this is n minus 3 which is the same as 3, 3 plus 4 plus 5 plus plus n plus 1.  
 
So this will be T(1) plus 3 plus 4 plus 5 or something like that. Isn’t it? Now this is a 
series summation which will sum up to order, straight write can you write the order term. 
n square. So if you split up 1 n minus 1 2 n minus 2, we are going to get an order n square 
algorithm, alright.   
 
 
 
 
 
 
 
 



(Refer Slide Time: 30:04) 
 

 
 
Let’s see the, if you split up n minus 1 1 also you are going to get the same thing but 
suppose we split half half then our equation is T(n) is equal to 1, n is equal to 1 and is 
equal to 2 of T(n) by 2 for the 2 half’s n by 2 plus n by 2 plus n. So we have to solve this 
one, lets start expanding, two of expand T(n) by 2, T(n) by 4 plus n by 2 plus n which is 
the same as 2 square T(n) by 2 square plus n by 2 to the power 1 plus n by 2 the power 0.   
 
This will come in sorry, this will n n n, 2 into n by 2 this will be n, am sorry this is not 
this. This part is okay. What is this part? n plus n, right. This is it. This will be again 
broken up 2 square 2 T(n) by 2 cube plus n by 2 square plus n plus n. This is 2 cube t, if 
you stop me if you cannot follow.  
 
Now I can write the general term. Can anybody tell me the general term? 2 k t n by 2 k 
plus kn, alright. So now what happens? When does this become one? When n by 2 k is 
equal to 1 which implies n is equal to 2 k which implies k is equal to log n to the base 2. 
At that point of time, this is 1, 2 k is n so this becomes n into 1 plus n log n which makes 
it order n log n. So now if we split half half, we have got n log n. If we split 1 n minus 1, 
we get n square. So you remember what we were talking about in the initial class when 
we said that you leave that split alone. These are all the possible ways of designing, we 
will analyze it and then we will choose. Now you can check if I split three fourth, one 
fourth what will happen or you can write out an equation like this.  
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I want, what is my choice of algorithm? T(1) is this, otherwise minimize this function for 
whatever I minimum. Find out the minimum value of i, find out that value of i for which 
this is minimized and solve this equation. And if you can solve this equation, you will get 
the optimal choice. This I may depend on n, it may say if n is 5 then you choose two. If n 
is 7 you choose three, if n is 9 you choose whatever it is or you may get a very simple 
solution like always choose i is equal to n by 2. You may not, this may not lead to a very 
simple equation, simple solution but this is what we have to do if we want to optimize 
your choice. This is what is meant by the choice of that split. Is that clear? So we have 
now got an idea that in merge sort, if I split it into two equal half I get an order n log n.  
 
So I will use, you will see all books of merge sort split into half because there is another 
proof that this minimizes i equal to n by 2 minimizes it. But there are other proof, if you 
write n by 4 and 3 n by 4 you will still get n log n. If you split it up in any fraction, you 
will get n log n, half you will get n log n. There are more details you can prove that if you 
split in half you spend, you do less comparisons than you do when split in three fourth 
also that you can choose but in terms of asymptotic complexity, we have reached this 
point in merge sort saying that merge sort is best, we can prove which I am not doing 
here. Merge sort is best when you split into half.              
 
Let us have a look at quick sort, very similar. Quick sort equation is also very similar. 
T(n) is equal to 1 for n is equal to one and is equal to and it depends on where your pivot 
element splits you. Now the pivot element you have chosen randomly, alright. The pivot 
element is chosen randomly, so it can split you in one n minus one.  
 
So in the worst case quick sort can become ordered n square because choice of pivot 
element is not in your hands but if you could choose the pivot element in such a way that 
it broke up the list into half half then you would have got order n log n algorithm. But 



then how will you find out how to split into half half? That is if you could split in linear 
time, look you cannot take n square time to split into half half that will spoil your whole 
complexity equation. So, given a set of elements which is that element which splits it into 
half half, the median. So you have to find the median in linear time. If you could find the 
median elements of n elements in linear time then you would choose the median and do a 
quick sort based on that median.  
 
Then you would have got worst case order n log n time but then how will you find the 
median in linear time. All of us find median by sorting. It’s not a chicken and egg 
problem, there is a method to find the median in linear time but that algorithm is slightly 
more complex. I will not go into it today but you can find the median in linear time. So in 
the worst case quick sort is order n square, in the best case it is n log n provided you can 
get it. Then you can start proving in the average case what happens and other things, we 
will discuss it later on. but our tournament sort and merge sort in the worst case they are 
order n log n algorithms and therefore they are better in the worst case scenario than 
quick sort or exchange sort or bubble sort but the merge sort has to be done by splitting 
half half, not arbitrarily. So asymptotic analysis helps you a lot, not only to find out how 
good your algorithm is, it helps you to decide on how to do recursive decomposition and 
where to choose some of your choice points which you may have left for the analysis 
part. 
 
It will also help you to understand which data structure is better and how to analyze the 
efficiency of your data structure which we shall come into the, which we shall discuss 
later on. But this phase of understanding what is meant by complexity, what is meant by 
orders, how do we analyze complexity, how do we use recurrence equations etc will form 
the basis of the second phase, the last two parts of this course mainly data structures, 
complete design of algorithms as well as data structures which we shall pick in the final 
phase of this course.      


