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In the last class we have started discussing some algorithm design techniques and we 
discussed the concept of balancing where the recursive split was balanced to obtain the 
optimal structure and there we studied how to minimize the complexity of that balancing. 
And today we will discuss another issue and that issue is related to solving of identical 
sub problems and it leads to the concept of dynamic programming and we shall pick it up 
with traditional example and  the old one which is the problem of solving Fibonacci 
numbers.  
 
We have already seen that in order to solve Fibonacci numbers we have got the recursive 
equation is like this. The program is fib (n) if n is equal to 0, we return 0. If n is equal to 1 
return 1 and otherwise we can return fib n minus 1 plus fib of n minus 2. This is the 
recursive definition of the problem. And in order to analyze whether this program is good 
or not, we will have to like in the split we tried to open up the recursive structure and see 
which one was most optimal. Here again we will open up the recursive structure. In order 
to analyze any such program we will have to open up the structure.  
 
So let us see, let us solve it for fib 5. So to solve fib 5 you have to solve 4 and 3 and 
recursively you will first solve 4 and then 3, so you will come to solve 4, for that you will 
solve 3 and then obviously after 3 you will come to 2. You will come here, you will solve 
2 then you will solve 1. Then for 2 you will solve 1 and 0, 1 is a base condition here and 
this will return a value 1. It will come here, it will call this, this will return a value 0. This 
will add these two and this will return here a value 1. 
  
It will come and solve this, this will return a value 1. It will come here, this will return 2. 
Similarly it will come here and again you will stop solving this 1 to return a value 1 then 
come here 0, return 0. Then this will combine to return 1, this will combine to return 3. It 
will come here and repeat all these steps that this structure will be repeated here. The 
whole sequence will be repeated and this will return 2. So this is how we will be able to 
solve the Fibonacci number problem and also we have also seen to develop a recursive 
equation to find out how many additions you will do. The number of additions we saw, 
the number of additions we saw A(n) is equal to 0 if n is equal to, n is less than equal to 
1. And it is the number of additions that you would do for n minus 1 plus the number of 
additions that you would do for n minus 2 plus 1 for n greater than 1. Isn’t it? 
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This is what and we solved it in some class before and so this is possibly fib n plus 1 
minus 1 or something like that. This is what it really does come to. And fib n, we know is 
an exponential number, so this algorithm is going to take exponential term. Now in order 
to analyze why this algorithm does not work polynomially is if you open this structure, 
the first thing that you will notice is that identical problems, sub problems are solved 
repeatedly. And this is what leads to this one, obviously is a base condition, so there is no 
question of repeating this. But 2 is going to be solved here once, here once and inside this 
also once because this structure is there. So 2 will be solved three times, 3 will be solved 
twice, 4 and 5 will obviously be solved once only but if you take a large number say 100, 
each of these lay around numbers will be solved again and again. So this is the core 
problem of such solving Fibonacci numbers.  
 
So how do we get about solving such problems, get about solving identical problems 
repeatedly? This problem has to be circumvented and in other situations where you come 
to a problem and you open up the recursive structure and see that a sub problem occurs 
multiple times and because you have written it out in a recursive fashion, this sub 
problem has to be solved repeatedly again and again. So how do we get about, how do we 
circumvent this problem and how do we resolve it? The method of doing so and solving a 
identical problem only once is the gross idea of dynamic programming in computer 
science language.  
 
Now there are various ways of looking at it. First we shall see the most general approach 
and after we see the most general approach, we shall see how to adapt it to such 
Fibonacci numbers and how we can use this for other problems. For example instead of 
given a Fibonacci sequence, somebody may have given you f n is equal to f n minus 1 
plus 2 into f of n minus 12 or you may be told f n is equal to f of 2 n plus f of n by 2. And 
you have got this conditions that this is for n greater than 1 and n less than 100 and n 
greater than 100 it is 0 and n less than 1 that is when n is equal to 0, it is 0 and it is 1 for n 



equal to 1. Even in this you may be asked to find out and if you open this up you will see 
again identical sub problems will be repeating again and again. So how would you solve 
such recurrence equations or in general such recursive problems where you have got 
identical sub problems occurring many times? 
  
So the first thing and the most obvious thing which would come to mind to solve such 
identical sub problems is memorizing the solutions to a sub problem solved. That is if 
you have solved a sub problem already and if you remember that solution you can just 
pick it up next time you come around. So, but in order to memorize all in order to 
remember, so in order to remember this you need to have some data area and this will be 
a global data area which you will have to remember.  
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So given any such problem where you have to do and you know that you have to 
remember certain values, the simplest idea would be to maintain an array of those values. 
So let us see how would we do it here in the Fibonacci numbers problem. We would 
maintain two arrays, one is the array of f values and the other done which would be a 
Boolean array which would indicate whether this value is already obtained or not. So let 
us do two things, one is let us maintain a value array and let us maintain a done array. 
How it may be made dynamic etc etc, we will look at it later on. But if you maintain 
these two arrays, global arrays and initialize them like this. 
  
We initialize them val 0 is equal to 0, val 1 is equal to 1 and done 0 is equal to done 1 is 
equal to true, so true is 1. So we initialize it like this and we write out our recursive 
structure again but with a slight modification. See then we need not bother about this 
conditions any more but even if you bother about base conditions it does not matter. Can 
anybody now tell me how we will solve this problem? If done[n] is equal to equal to 1 
then return yes, return val n. Otherwise what would you do? X equal to recursively call it 
n minus 1 plus now what else would you do.  



Yes, done [n] must be now made 1, okay done [n] must be made 1 and val [n] must be 
made z and return. Here also you must initialize all other done’s to 0 that you must 
maintain all other done [n] is equal to 0.  
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Now if you have done this then let us solve fib 5. To solve 5 we see first what val and 
done arrays are. Val 0 is 0, so this is val and done. It starts like this and all these will be 0. 
So to solve 5, you will see it is done. No, this is the array index 0 1 2 3 4 5. Done 5 is 
true, no, so you will call this. So you will call 4 and after you come back from 4 you will 
call 3. So you will come to 4, done is true. No, you will call 3 then 3 you will call 2, 2 
you will call 1. When you come to 1, done is true so you will return val. So here you will 
return 1 then 2 will call this part 0, when it comes into 0 again done is 1, so it will return 
0.  
 
So now done 2 will be made 1 and val 2 will become 1 and it will return 1. When it 
comes to 3 it will call 2 again sorry, 1 again, 2 has done. Now 1 again, done 1 is 1, so it 
returns 1. Here now at 3 it will make done 3 1, it will make val 3 2 and it will return to 2. 
Here it will call 2 but when it comes here, it will get done 2 equal to 1 and once it gets 
done 2 equal to 1 it will just take val 2. Now, here this will make it 1 and this val will 
become 3 it will return here. It will call 3 done 3 is 1, so val 3 will be returned, val 3 is 2. 
Now done 5 will be made 1, the value of 5 will now become value of 4 plus 3, 5 and 8 
will be returned. 
  
So this way a problem which was solved before specially here and here is not solved 
again. So the total number of additions is now limited to this, this and this. So total 
number of additions becomes the number of values only but you have to make as many 
numbers of comparisons as well and you have to have additional data to store this. 
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So for storing this information, we have reduced the addition from exponential to order n. 
The comparisons have also become order n but that’s fine because the number of 
additions are now order n. So you have reduced the exponential time algorithm to a linear 
time algorithm by just remembering certain values. The same idea can be used in places 
like this where the range of n is known apriori. If the range of n is not known apriori then 
what will you do? You will have to maintain a data structure like a linked list for storing 
the values which you know. And what data structure will you maintain if the range is not 
known apriori? Suppose you have got arithmetic problems then you will not know the 
range of numbers then what data structure will you maintain. You can maintain a linked 
list of values or what do you have to find. You have to find out done n. So dynamic, you 
don’t know which n’s are now actually present, so you have to find n quickly and when a 
new n is done, you have to insert n.  
 
So your operations are insert and find on a set of numbers. So to do insert and find on set 
of numbers what will you, which data structure will you apply? A balanced binary search 
tree. So this is how you see that as and when the problem comes and as the data 
structures are known to you, you will be using data structures for algorithm design an 
algorithm design for data structuring and they go hand in hand to solve a large number of 
problems. So that is what I tried to say in the beginning that algorithm and data 
structuring are so interlinked that they go exactly hand in hand to solve a problem and 
you cannot separate one from another when you come to a particular problem.  
 
So here you have seen that to do dynamic programming in an efficient way in many 
situations, you will need a data structure to store that memory that we were talking about, 
all right. And we have already seen that to solve many data structuring problems we need 
to solve a number of algorithm design problems. We shall come to it in subsequent 
classes. So this is the obvious way of solving a problem but if you want to solve a 



problem in a more, there is another way of looking at it even deeper to see exactly how 
much you need to remember. 
  
Do we need to remember everything? Yes or no. For that you will have to go in depth to 
see how the recursion proceeds and see how the values are nominated. Here though you 
have written them down in a top down fashion for 5 but see how the values are 
calculated. 5 calls 4 it does not compute the value of 4, it calls 3 2 1 and the values are 
computed in this sequence. So the values are, where the columns are made top down, the 
actual value computation goes bottom up. So if you have understood this definition which 
was the intuitive definition of the problem, if you have understood that what I have done 
has to be remembered and if you have understood in exact terms how this algorithm 
computes the value you might have as well throw away the whole thing and computed 
yourself.  
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So the best way to compute this is to compute it bottom up yourself now because now 
you have understood how to do it. So we compute it backwards that is in order to 
compute 5, we know we have to compute 4, we have to compute 3, we have to compute 2 
and we have to compute 1 and then we know 1 and 0. So we might as well compute two 
backwards up because that is the data dependency.  
  
The data dependency is obvious here but it may not be obvious in problems like this. In 
problems like this the data dependency may not be so obvious, only when the data 
dependency is not obvious then use a done array and val array then your problem is 
solved but if you can go further and find out the data dependency then you can work it 
out according to your dependency in your own way. How would you do it? Solve it 
bottom up for i is equal to 2, i less than 6 or n plus 1, i plus plus simple, val i depends on i 
minus 1 and i minus 2 and if you are solving bottom up you know that when you are 



solving val i and val i minus 1 and i minus 2 are done and you need not check they are 
already done.  
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This is a simple example where this comes obviously. So in other example where you 
know the structure you will see what is the approach to be followed. But let us see here it 
is not this and the dependency structure is something like this. Now suppose your 
dependency structure was in some other problem, suppose your dependency structure was 
like this then you would have to compute it in what sequence? This one first, so you 
would have to do a numbering this one first then second you can compute this or this or 
this. Can you compute this because this depends on this. 
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So you could have computed this second or this second. So this is the first which you 
compute, this is the second layer which you compute, this is the third layer which you 
compute, this is fourth and this is last. So you need to find out the sequence of 
dependencies. And once you know the sequence of dependencies, you can forget about 
maintaining the done array, you can forget about the recursion and you can solve it based 
on the dependencies itself. So you will see various versions of dynamic programming. If 
a person can find out dependencies, you will simply write it file loops, one or more for 
loops.  
 
In other situations where the dependency is not known, you will use a done array or a 
variation of that done array to remember what problem has been solved earlier and use 
the value itself. So dependency usage and remembering what you have already done 
before so not to solve this problem repeatedly is the idea of dynamic programming. And 
this idea is used in several applications. I will just give you some examples of problems 
where these are used.  
 
Consider the problem of multiplying some set of matrices M1. Now in order to multiply 
this 10 by 20, this must be some 20 by something so 30. This must be some 30 by say 10 
and this may be 10 by 40. Now to multiply two matrices, if you use the simple algorithm 
M1, suppose I multiply M1 by M2. This is, how many multiplications do I require? 
Multiplications are more expensive than addition, you require 10 into 20 into 30 
multiplications, all right. So to multiply two matrices like this I require so many 
multiplications. Now I have got lot of alternatives to do. Matrix multiplication is 
associative, I can multiply this, these all and then with this or I can multiply M1 cross M2 
with M3 cross M4. If I multiply this with this, I will be multiplying a 10 by 30 matrix 
with a 30 by 40 matrix and here I will multiply this and this. 
  



Now depending on the sequence in which I multiply, my total number of operations, total 
number of multiplications will come. If I have to find out the optimal sequence, what will 
I have to do? 
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I will have to find out all possible such associative combinations, all right. To solve this 
problem what are my choices? To solve from M14 my choices are with M1 M24 or M11 
with M24 or M12 with M34 or M13 with M44. And then again 2 4, I will now have various 
choices and based on these choices which ever is the minimum that is the one I should 
take. And if you write out see, therefore m14 is equal to minimum of m11 multiplied sorry 
m11 multiplied by m24 plus m12 multiplied by m34 sorry plus comma, comma m13 
multiplied by m44 and again recursively m24, m11 is 0 multiply a matrix by itself or if the 
difference is 2 you know what is the cost, all right. 
  
So multiplying these two we will be multiplying, this is 0, 2 to 4 you can find the optimal 
cost and then this will be 10 into 20 into 40. So this way you can set up the equations and 
you will see that when you have a large one, M1 say 10 then you will have multiple 
occurrences of M25 will occur in many places in the recursion. If you draw the full 
recursion tree, you will see lot of identical sub problems coming up and this is a problem 
which is a very clear candidate for dynamic program. So such problem, there are various 
other problems which are candidates for dynamic programming which comes up when 
the opening up of a recursion leads to several identical sub problems to be solved and all 
of them can be solved by various grades of approaches. 
  
The approaches are firstly you have to remember the problem that you have solved 
before, secondly you have to see yourself can find out the dependencies. If you can find 
out the dependencies then you can forget about the done array and just work it out in a 
loop and if you cannot find out the dependency, you can simply use the done array and 



the recursion, at least the number of repeated problems, the sub problems which are 
identical will not be solved repeatedly, you will be requiring some extra space that’s all. 
  
So dynamic programming to conclude is very essential component of algorithm design 
like balancing which tries to optimize the recursion split or the way in which we 
decompose the sub problem. Dynamic programming tries to ensure that identical sub 
problems are not solved multiple times. Therefore dynamic programming like balancing 
is another very very important aspect of algorithm design and it comes into play in many 
cases and in both in many situations; you will see the combination of balancing and 
dynamic programming coming into the approach.  
 
 
 


