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We continue our study of depth first search in graphs. You will remember that the 
problem that we were tackling was that of finding out whether there is a path from a 
vertex s to a vertex t in a graph g and in that problem we first got an initial definition. The 
initial definition was a recursive one with the base condition saying that if s is equal to t 
then you will return true otherwise then for each successor w or each edge v w in the 
graph, if w to t if there is a path from w to t then obviously there is a path from v to t 
because there is an edge from v to w. So v recursively searched w to t and if anyone of 
them gives a solution, we stopped and said yes there is a path. But while implementing it 
we saw that there is a problem of identical, say there is a problem of falling into an 
infinite loop due to identical sub problems.  
 
Now there we used our concept of dynamic programming to get out of that issue and we 
used an array visited which was like the done array of Fibonacci which indicated that that 
vertex has already been seen or that sub problem has already been solved and if that was 
solved we did not solve it again. So by that we obtain the following algorithm. The 
algorithm was if v is equal to t return 1 and then mark it visited because this is the vertex 
we have visited. Otherwise that is v is not equal to, for each edge v w in t here we used 
the dynamic programming idea, here prune or do not redo identical sub problems. 
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Now if w is visited already and there was a path from w to t then the algorithm would not 
have come here, it would have stopped whenever we had solved this w earlier, alright. 



Therefore we did not take a solution from there. So if it is not visited only then you 
would recursively visit it, so that was the algorithm that we obtain now. Let us see how 
useful or what is the efficiency of that algorithm or how we will implement it in a 
particular data structure. That is will we use an adjacency list, will we use an adjacency 
matrix or will we use a direct representation which is the representation that we will use. 
So let us take an example. So, let us take our running example which we had, let us 
redraw it.  
 
Now in this example let us see how, which of the algorithms which we are going to 
implement, which of them will be efficient. So let us see what if we use an adjacency 
matrix. If v is equal to t is directly checked, visited this is an array so this will take 
constant time. For each edge v w in g, this is very crucial, this part. Now in an adjacency 
matrix as you will notice, this is a matrix with v and w. If you want to find out whether 
the edge v w exists, it is ok but if you want to find out all the edges in t although w’s 
which are connected you will have to go through all of them and here in the adjacency 
matrix representation for this case, you will have to write it out this way for if there are n 
such vertices i equal to for j, suppose this is i and this is j for j equal to 1 to n do. 
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If matrix mat v to j equal to 1 that is what is going to be is, this is the path and then you 
will write if visited w or here it will be j is equal to equal to 0 etc. So this part will replace 
this, ok the rest will be identical. So what is the complexity? Each node, each edge you 
will come, from this edge once and this edge back once. Once you come here, a node will 
be visited, will be marked visited only once. Therefore let us see if I give you 1 to say 4 
then you will come from here to here once, from here ok let we did not put this edge. 
From here to here once and once this is marked visited, you will not come back. From 
here to here once, from here to here once but this is marked visited, so you will not 
continue you will come back then from here to here you will try once and then so for 
every edge you will try it only once. 



So the complexity of this algorithm it visits, it marks a vertex visited once, marks a vertex 
to be visited only once and traverses an edge at most twice that is v w once and w v. So if 
you put both the edges then an edge is also visited once. Therefore each edge v w will be 
checked only once either v w or w v, v w will be checked once or w v will be checked 
once and no more because either once if it is checked once and if it is not visited w will 
become visited, so next time you will not required to come across this edge. 
 
Now in an adjacency matrix representation, this will be checked by checking all the 
elements here. So if there are n vertices ok, so let us see what is the complexity of the 
adjacency matrix representation. If we use an adjacency matrix representation, what is the 
complexity? 
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Visited is marked n so that is order n, there are n vertices. On the other hand here for each 
edge to check all the edges of this, you will have to go n time. So for each edge you will 
check this, this, this, this, this so for each vertex you will check all the edges. So you will 
be checking so many rows, for each vertex you will check all the rows. So the total 
number of rows is n into n, so n square comparisons here, this comparison will be done n 
square number of times.  
 
So here this is for visited v equal to 1 and this will be for checking mat v j equal to equal 
to 1, so that complexity using the adjacency matrix will be order n square. Now let us see 
what will be the complexity using an adjacency list. 
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So suppose we use an adjacency list. You will recall in an adjacency list for each vertex 
say 1 it is kept like this, 2 3. For 2 this is 1, this is 2, for 2 I will have 1, 3 and so on. 
Therefore in the algorithm for the each edge v w in g, it will just proceed along this 
linked list. So each edge will be checked only once, so the vertices visited will be marked 
here. So to mark the visited again here will be order n, visited v equal to 1 but this check 
if visited w will be checked for each edge and this each edge will be implemented like 
this by moving along this. 
 
So unlike in the adjacency matrix where you need to check whether this edge exists or 
does not exist, here you only need to check on the edges. So if e are the number of edges 
then here it will do, edges will be checked. So here this visited w, the num, if e are the 
number of edges then this check visited w equal to equal to 0 which comes here, this 
check will be done only order e times. In the matrix adjacency matrix also this check will 
be done e times but so in the adjacency matrix the check that mat i j is equal to equal to 1 
that will be checked order n times. 
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So in the adjacency matrix this will be the order e times where e is the number of edges 
you will check visited w equal to equal to 0 this or visited j equal to equal to 0, this will 
be checked e times but this will be checked n square time but this does not exist, this 
checked is not required in the adjacency list. Therefore in the adjacency it will be order n 
and order e and these are exact orders you can easily show. So this is the complexity, 
now order e the number of edges, how many edges can you have in a graph? In a graph of 
n nodes you can have n square edges.  
 
So in the worst case e is approximately n square is of order n square, so this will be order 
n square but if e is less that if e is less then it will still be order e. Therefore this 
adjacency list representation is more useful because it checks only the number of edges, 
though in the worst case the number of edges are order n square but in the better cases it 
will order e. Therefore adjacency list representation is more useful then the adjacency 
matrix representation for solving this problem, right.  
 
Now take the direct representation. The direct representation will move along the graph 
just as it is and in the direct representation you can put in that place the concept of 
visited. So the direct representation will also traverse which will be just like this and it 
will have traverse every edge only once. So the direct representation or the adjacency list 
representation both of them will work out this algorithm to find out whether there exists 
an edge or vertex in order maximum of n plus e time which is linear because the size of 
the graph is n plus e, we have to give number of edges plus number of vertices. So we get 
using depth first search, we get an optimal linear time algorithm to solve the graph 
connectivity problem. So we have how we approach the problem by a recursive definition 
and then we did use dynamic programming by marking the node visited and by such a 
simple idea, we were able to prove or we were able to obtain the feature that this 
algorithm is now an optimal linear time algorithm. 
 



(Refer Slide Time: 00:15:16) 
 

 
 
This depth first search is useful to solve a number of problems. Let us see the next 
problem and let us try and see what problems we can solve using this sort of depth first 
search. Now suppose I come back to a node and the node is visited. Can I say that I have 
got a cycle because suppose from 1 to 2, 2 to 3, 3 to 1 I have reached from 1 to 2, 2 to 3 
and I have reached back 3 to 1 and 1 is visited therefore obviously this is a cycle. So does 
this algorithm that we have written, at this point can we write down if visited this is fine 
else that if this visited that if it is already visited, can we say that this, we have reached a 
cycle. That is can we just modify the algorithm like this and write down here that is here 
we write down else printf cycle. That is if this is true we do it else we say there is a cycle 
that is we have already reached a node which we visited before that was motivated from 
this situation but it is not so easy to understand that this is a cycle. Let us go back to our 
original example and see. 
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Let us say we start from 1. So 1 is visited and we start from 1 and we have no terminal 
vertices, we just continue searching and because there is no t, therefore this part, this part 
is not there. But then will the algorithm terminate? This is not there, in our depth first 
search t is not required because if all of them are visited obviously we have reached the 
solution. Now suppose we start from 1, from 1 we will go to 2, 2 will be visited but from 
2 we will go to 1 and 1 is visited.  
 
So in an undirected graph we will say there is a cycle when there is an edge, right. So the 
solution here that if visited v equal to 0, do search otherwise print cycle this will not 
work. Why because this is a, this is just an edge. Now in this edge we will mark this edge 
to be also a cycle. So how do we get out of this issue? That is how do we indicate that an 
edge if you mark an edge then that is not a cycle. What we can do is we can quickly 
checkup whether the edge 2 1 exists. 
 
Now in order to quickly checkup whether the edge 2 1 exist that is from 1 to 2 we have 
reached and we have found that this is like this then what we need to do is we need to 
checkup whether this edge is a, is existing or not. If this edge is existing then obviously 
this cannot be a cycle. So if we do that then we modify this part instead of writing printf 
cycle. Here we check if edge w, see this means that from v to w we have reached but 
edge v w exists. Now what is this cycle from? This cycle must have been from 
somewhere.  
 
For example from 1 to 2, 2 to 3 I will get 1 2 3 and then here this will be a cycle. So how 
do we avoid this issue? We avoid this issue by denoting in the depth first search, who is 
the parent of 1. For example 1 will be the parent of 2, so parent of 2 is equal to 1, parent 
of 3 is equal to 2. So this way if we mark the parents and we come to a node here which 
is already visited, we have to check that it is not the parent because if it is the parent then 
obviously there is a cycle, there is no cycle but if it is not the parent then obviously we 



can reach a cycle. So based on this idea, we now try and develop the algorithm as to solve 
the query is there a cycle. 
 
So let us have a look at the algorithm which does is there a cycle. During this algorithm 
we also do a numbering on the graph that is we start numbering the nodes in a particular 
way. How do we number. We instead of marking it visited, we give a number to them 
that is we say this is visited first then this second then this third then this four, if it is in 
this order, the number will be 1 2 3 4 it depends on the order in which we are going to 
visit them. 
 
So we make a modification of this depth first search algorithm by incorporating one 
something called the depth first number. So we are going to reach our final depth first 
search algorithm. Include we have already included visited depth first number and we can 
put instead of marking it 1 or 0 we can put the depth first number in the visited array and 
we also include the parent.  
 
(Refer Slide Time: 00:22:20) 
 

 
 
By marking including all these three we are now ready to find out whether there is a 
cycle. So note the dynamic programming on the concept of remembering something or 
trying to do data structuring where you remember, first you remember whether you 
visited it before. Now you are trying to remember also who is the parent. So you are 
trying to keep more data while doing the search. So data structuring during of the search 
is as we mentioned, we are done some simple examples earlier now we come to some 
concrete cases where we will require it. The algorithm let us write it down and develop it 
slowly then we will get. The algorithm is called depth first search dfs v.  
 
What we do is we have a depth first number this is a global array df numb, this is 
incremented initially it was 0, instead of marking this node visited now we don’t have 
any goal t, we are only at a node and we are trying to search everything. For each edge, 



so instead of visited equal to 1 or 0 we put the depth first number. For each edge v, i in g 
if obviously visited this part remains visited i is equal to equal to 0. we search it but 
before we do dfs (i) that is we are going to do dfs (i) but before we do dfs (i) we will 
remember that the parent of i is equal to v. 
 
So if it is not visited we do this else we come to the cycle detection part. And in the cycle 
detection part what do we have? If parent v that is, that means we have already reached 
visited. Now if v, parent of v is not equal to i that means there is no direct edge like that. 
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If this is true and i was visited before v obviously, if i must, if i is visited then i must have 
been visited before v, previously 1 or 0 was the case. Now since v is visited already and i 
is also visited then i must have been visited before v and visited i less than visited v then 
printf cycle between this and this, between v and i and you close your brackets. So this 
was our cycle detection part. The earlier part here we have just put in a number to 
indicate which is visited before what, alright and this part remains the same, only we 
have put in the parent concept here and this detects whether there is a cycle. Here just it 
should not be the parent and visited i is equal to visited is less than visited v.  
 
So let us work it out on an example. So that is now we have started incorporating our 
ideas of dynamic programming. An incorporated, we are now moving more deeply into 
the problem. Once you move more deeply into the problem you start getting into the 
group of graph algorithms. You talk in terms of depth first search only, you forget about 
that we are using dynamic programming etc because once you get used to these ideas 
these will come naturally. So let us see what happens when we use this algorithm.  
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Suppose we take 1 2 3 4, I am purposely giving some other numbers so that the depth 
first number, so the visited array will be marked in pink that is the visited array number 
will be marked here. So visited this is an array of 7 nodes, initially all are 0 I am not 
writing it down, 1 2 3 4 5 6 7 initially all are 0. df numb is initially 0 and there is the 
parent array so let the down part of it be the parent array. There is the parent array which 
is also 0, all of them are 0, this is vertex 1 2 3 4 5 6.  
 
So let us start with vertex 1. df numb will become 1. See what is the first idea? df numb 
becomes 1 then visited and then loop inside and go on. So the algorithm if you have 
noted down, I think the base thing would be to note down this algorithm by hand and then 
keep it at your hand and once we keep it with you, you can follow what we are doing. So 
first please note down this algorithm. Then, so first df numb is made 1 then visited 1 is 
made df numb, so this is made 1. Then for each edge these two, vi 2 and 7 start is if 
visited 2 is 0 yes, visited 2 is 0. So you move in and make parent of 2 equal to 1 and call 
it recursively. So you have called this then here again you go into the loop, you increment 
df numb to 2, visited this make it 2, come here.  
 
Now this has got this edge and this edge. For this edge visited i is equal to 0. So you 
come to the else part that is in the algorithm, here for each edge this visited i is already 
done, it is not 0 because visited 1 is 1. So you will come here and check whether it is a 
cycle. Parent of v which is 2 is not equal to i, here parent of 2 is 1. So this condition is 
falsified therefore cycle detection will not be done, this is not a cycle so you go back into 
the loop and you forget about this edge. So let us see how we have forgotten about this 
edge. 
 
Now once we have forgotten about this side, we come to 4. This is the other edge so we 
come to vertex number 4 and before you come to vertex number 4, the rent of 4 is made 
2. Now here I knew recursively go to dfs 4, once you go into dfs 4 dfs numb increases, 



this number becomes 3. Once this number becomes 3 you start doing dfs here. So you 
will do 2. This one again this is visited and you will see the parent of 4 is 2, therefore this 
edge cannot detect a cycle. So you will come here, so you will come to 3.  
 
Now in 3 you will see, you will mark 4 to be the parent of 3, you will increment df numb 
to 4, you will come here mark this visited 4 equal to df numb, search from 3, from 3 there 
is only 4 but the parent of 3 is 4. Therefore cycle cannot be detected here. Now 3, from 3 
there is no where else to go so we will come up, come back to 4 come to 5, 5 is not 
visited so you will mark 4 to be the parent of 5, df numb will become 5, visited 5 will 
become 5. 
 
Here you will check with 4, this is already visited but parent of 5 is 4 so this cannot be a 
cycle. So you will come back out of the recursion and go back to call of 4. Once you go 
back to the call of 4 then you have already checked this side, all these 3 done so now you 
will come here. Now once you come to 7, 7 is not visited, so you will mark 4 to be the 
parent and start searching 7. So number will be 6, this number will be 6.  
 
Now here you will start searching for 7. For 7 the first child is 1. The first child is 1 is 
visited. Now once 1 is visited you come here. Once you come here, you will able to see 
that parent of 7. Is it 1? No, it is not 1 and visited 1 is less than visited 7, visited 1 is 1 and 
visited 7 is 6 so this is true. Therefore there is a cycle between 7 and 6. So there is a cycle 
between 7 and 1. So now you have detected the cycle at this point. So this is how you see 
that we are able to detect the cycle at a node. So using the concepts of dynamic 
programming, we are slowly moving on to a very important algorithm of depth first 
search in graphs. In graphs this concept of depth first searching is very important and the 
data structures that are maintained, the parent, the visited, the depth first number etc etc 
are very useful.  
 
Now let us see if this depth first search, can you find out whether, so we have answered 
two queries. One is whether there is a path from s to v, s to t. We have also found out 
whether there is any cycle both we have found out in order n plus e time. I am not 
working out in details but you can find out that we have found in order n plus e time. 
Now let us see what is the concept of a connected graph or graph is said to be connected 
if there is the path from every node to every other node. 
 
Now if you apply depth first search here, you will move to every node to every other 
node. But suppose there was a vertex 8 and 9, you start depth first search from anyone, 
anywhere here you will never come here or you start anywhere here, you will never come 
here. So what will happen is at the end of depth first search, if you start from this cluster 
you start anywhere from this cluster, after the completion of depth first search, the depth 
8 and 9 will have visited equal to 0. And if you start from this cluster, after the 
completion you will have for all of them visited will be 0. 
 
Therefore to check whether a graph is connected, all you have to do is to perform depth 
first search. And once you perform depth first search and then check for all the vertices if 
anyone is not yet visited, if anyone is not yet visited you can say that the graph is not 



connected. Therefore we have solved several problems, one is whether a graph has got a 
cycle, whether there is a path, whether there is a connected path. Now you can try and 
solve these problems for directed graphs as well. The algorithm will slightly change but 
the depth first variation will be similar. 
 
The next question is shortest path, short length path how will we solve that problem. So 
we have to look at that problem. So we will look at that problem in the next class but let 
us remember that there are other issues which we can solve in here. Suppose is marking 
cities and path between cities or telephone lines and we would like to ensure that the 
graph is such that even if one link fails, there is still it is connected between every other 
node. How will we solve that problem and how will we do that efficiently.  
 
We will see the depth first search and other types of search like breadth first search etc 
will be very useful in solving search graph type of problems. So I would suggest that you 
go deeply into depth first search and try and see these algorithms and graph. In graphs we 
have got a number of algorithms to solve where these techniques of dynamic 
programming of recursive definition, even of balancing will come into the picture, 
techniques of branch and bound will also come into the picture.  
 
In fact, when you are trying to solve the shortest path length, shortest length path in a 
graph you will see how you use dynamic programming to solve the problem. So today we 
will conclude the class by saying that we have tried to see graph algorithms that is the 
data structures of graphs can be represented by adjacency matrix or adjacency list or 
direct representation and depth first search is a very useful way of answering a number of 
connectivity especially path related problems. 
 
For edge and node related problems, it is obvious and here in such problem the adjacency 
list representation is often useful. There are other problems where the adjacency matrix 
representation is also useful. So this is now we conclude our initial study of graphs. 
Graphs is a very detailed subject, lot of issues remain in graph algorithms but our idea 
was to study how algorithm design and data structures and programming methodology 
goes hand in hand to solve a number of application areas. And graphs is one area when 
all these will go on together. So we do not have the scope or the time to discuss graphs in 
absolute details therefore we conclude here. I would refer to you to any standard book on 
algorithm design because the end of this course really moves you more deeply into 
algorithm design. We have just done a bit of data structuring, deep analysis algorithm 
analysis of algorithms, design of algorithms which have to go hand in hand will come up. 
So we conclude our initial discussion on graph algorithms today. 


