
Programming and Data Structure
Dr.P.P.Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture 32
 Conclusions

Hello everybody. Today, we come to the conclusions of this course. The programming
methodology and data structures is a course which can go on till infinity that is no end to
continue with the techniques of programming. These are evolving techniques, even
nowadays newer techniques are coming up. Therefore we would like to draw clues and
try to recapitulate today the salient features of the aspects of programming methodology
and data structures.

At the outset I would like to reiterate one thing, we are trying to solve the problem on the
computer but we must not be dictated by actually what is available in the computer today
because if you are dictated by what is only available in the computer today then the
process of human creativity in problem solving would go. And this process of human
creativity which leads to conceptual problem solving would actually be reduced to trying
to write programs in the given architecture. So programming methodology and data
structuring has got two totally different aspects, one aspect is the conceptual problem
solving aspect, how you would conceptually organize your information, how would a
person mentally organize his or her information about the problem, how they would solve
the problem. By solving we have discussed various things about solving. The second
aspect is mapping it into the computer language, mapping it into a programming
language.

Now all programming languages will not provide you with the facilities that a human
conceptual thinking would be like because we think in an abstract manner and because of
this sort of abstract thinking, we have got abstract structures and conceptual components
of problem solving. Now programming, the paradigm of programming has slowly
evolved and due to this evolution several such conceptual structures have cropped up in
new programming languages. If you look at an assembly language program, you will see
that even simple assignment statements, conditional statements, expressions all of them
have to be written out in a very very long and difficult manner. High level languages
which provide you if then else structures, while loops, do loops and even the concept of
arrays started the concept of structuring which was available in a programming language.
But when a person can solve it in his or her mind, these structures conceptual structures
are always available. And there is a semantic gap between the person’s thinking style and
actual implementation language which is provided to a person.

Programming methodology and data structures is not related to what is the
implementation language only but it’s definitely a very important point to understand
what is the implementation language. It is important to translate our thoughts into an
implementation language but it is also important to conceptually structure our thoughts in

such a manner that we are able to understand, grasp and grapple with the problem at hand
in a more organized fashion.

Therefore what we have tried to discuss in this course on programming methodology and
data structures is both conceptual methodology, conceptual data structuring as well as
actual programming methodology and actual data structure. Coming to conceptual data
structures, what did we look at the first thing in a conceptual structure? Conceptual
problem solving as we said that the solution to a problem comes into the head of the
problem solver in some fashion. And in order to translate it into a step by step solution on
a computer certain ideas have to be put into. You cannot say that given n numbers
obviously I can see 3 numbers and I know which is the maximum but just seeing them
and finding out the maximum visually does not lead to a programming style or a solution
to a problem. And while discussing this we came to the concept of decomposition. So, the
first and the important thing about conceptual programming methodology, first the
concept we discussed, the concept of the initial definition and this initial definition we
said has two parts, there was a base condition, there was an inductive step.

(Refer Slide Time 07:27)

And this inductive step has got two phases, phase one was decomposition into sub
problems and phase two was recomposition of the sub problems. And we have solved
several sub problems and obtained an initial definition, some solution to the problems.
Somehow we have to obtain an initial definition and based on and we saw that in
conceptual programming methodology this decomposition, in this decomposition we used
the concept of recursion. That is we call the same problem again and we have done so
many problems I do not wish to repeat and pick up examples. We have tried to solve
every problem that way and this decomposition is sub problem. So we had a problem p
either that this was true, so we returned the solution or we broke it up into sub problems.
We obtain solutions to these sub problems in the same recursive manner and then these
provided their solutions and then we had this recomposition step here and then we solved

the problem. So this was our initial definition, a definition by which we were able to
define some solution to the problem.

(Refer Slide Time 08:42)

Now what is the advantage of such a conceptual initial definition? The advantage of
recursion is or an induction is that based on recursion and induction, we can get a proof
of correctness of the solution. That is when we have developed a solution which is
recursive in nature, we are also able to provide with that initial definition a proof of
correctness, we are guaranteed and we are able to prove that this definition is correct and
that is the first step in conceptual problem solving, the first step in programming
methodology that is generate an initial solution. You cannot start writing a program, if
then else loop how? You are given a problem and for this problem you have to generate a
solution. So you have to generate some initial solution and this initial solution has to be
correct.

So the first step we saw in conceptual programming was generate an initial solution and
check whether it is correct or not correct and give a proof of correctness. Now what are
the components of this initial solution? This initial solution, the first thing we had in this
initial solution was flexibility. This initial solution must not a rigid solution, this initial
solution contained various aspects. We could have interchanged the sub problems, the
order in which we did the sub problems did not matter also we put in a generalized
conditions like split air into two sub lists, non empty sub lists l 1 and l 2 that is the
flexibility indicated that the initial solution contained several alternative possibilities and
we said that a initial solution has got several alternative possibilities, split a list l 1 and l2
into two non empty lists or generate 5 sub problems. Now you can do them in any order,
now which order is the best?

So the initial solution is actually not a solution but a set of solutions combined together in
an initial recursive wrap around definition, so that was the first thing. The main criteria

here are 2, one is you have got some solution to the problem which can be translated into
a step by step definition and secondly you know that what inside it that the solution is
correct. So in conceptual programming methodology that is the first thing. Here all the
data elements none of them are pin pointed out, nobody says that this should be a array,
every data element her is general enough and kept as we have done together as a set. so
the second point is flexibility of definition is the first point, second point is data is kept in
most general form a set, a list.

You don’t say it’s an array, it’s a linked list of pointers etc etc, we just keep it in a general
concept. So after we generate this initial definition which is the nucleus of your problem
solving, next came the phase of refinement. So the second phase was analysis of initial
definition. In analysis of initial definition the first thing that we discussed was complexity
analysis and in complexity analysis we argued out various things.

(Refer Slide Time 16:08)

One is given an inductive definition, complexity analysis can be done by using recursive
equations or recurrence relations and we use recurrence relations to obtain the
complexities. So the first thing that we used here was recurrence relations. Next we
argued out that since we are working on many computers and each of them has a different
speed, the size of the input matters and we have put in lot of arguments to argue out that
getting exact values is actually not very meaningful. In order to understand why one
algorithm will be better than another approach, why making one choice would be making
than another, you remember we have number of choice points in our initial definition
which is the flexibility and each of these choices would lead to a different complexity and
we have seen that in order to make a very proper definition, a very proper analysis, we
cannot go in for exact analysis because the values of speeds of compute another issues
are there and there we came to the concept of asymptotic analysis.

In asymptotic analysis we had the ordered notation, the order, reorder, the lower bound
rotations and based on this asymptotic analysis we tried to pick and choose which of this
design strategies we will use. That is based on asymptotic analysis, we could make
certain choices and these choices were related mainly to how to balance the split.

(Refer Slide Time 17:00)

So based on this analysis of the initial definition, we moved on to the concept of
refinement. In refinement of initial definition we saw how to modify the initial definition
to obtain solutions, the exact solutions. One of them based on this was balancing the split.
Second we saw identical sub problems being solved only once by the concept of
memorizing which we saw the concept of dynamic programming and thirdly we also saw
pruning by branch and bound. These are the three techniques that we have seen in
refinement. There are several other techniques in refinement. These techniques of
refinement are related to how to improve the initial solution and what is the criteria for
improving this initial solution, the major criteria is reduction of complexity. Reduction of
complexity means reduction of time, reduction of space and since we are moving into, we
cannot do for each and every input asymptotic analysis and try to reduce the space and
time asymptotically in the worst case scenario.

So, asymptotic worst case analysis was used as the basis or the yard stick for refinement
and complexity, the time complexity came first and then came space complexity and the
techniques that we used were balancing. That is the nuclear space that we had in the
initial definition, the possibilities that we had in the initial definition were examined and
algorithmic, designs, techniques came up. Till now we are not really bothered with the
programming language that we have to use to solve the problem because if either it is
recursion or there is no recursion, even if there is recursion or no recursion we can still
solve the problem. I hope all of us understand but we will come to this issue a little bit
later but conceptually we will solve the problems. The third step after the refinement of
the initial definition came organization of data elements.

In the whole program you had some data and there were two aspects and on this data you
have some operations. For example while solving the problem or may be the problem
itself may be such that your data and its operations are clearly identified. You have got a
set of integers and you have to insert new integers and you have to pick up the maximum
at continuous point of time.

(Refer Slide Time 17:00)

So your operations are insert and delete max. So once you get the solution, you know that
these are my data elements and you also know that these are the operations on these data
elements. So now you are left with two things, one is how to store the data that is in what
exact form I will store the data and so that the complexity of operations on the data is
minimized and that is where we came to the very important issue of data structure. Now
data structuring relates to one organization or storage of data and second efficient
algorithms to operate, here operate means these operations on the data. So to generate an
algorithm we require data structuring, for data structuring we require some more
algorithms and this loop goes on and on.

So data structuring means how to organize the data and how to store it. Now here came a
very important aspects, is the data is statical, static. That is static means what? Data is
inserted and your operations do not change that is do not add new data elements and do
not remove some data elements. So after some point of time you can say that my data is
static or dynamic, dynamic means data elements are new, new data elements are added
and data elements are deleted. On a static data set you can modify certain aspects of data
but on a dynamic set, even the whole some elements of the data may be totally removed
and some may be added.

So in data structuring we had two very important concepts of data structuring, one was
static data, second was dynamic. Now storage, how we will store static data and how we
will store dynamic data? And in order to store static data, we saw that various structures

are available in dynamic something has to be done. So there are two aspects here. Other
than this in data structuring there was a conceptual structuring. For example student
information that the name, roll no, etc, subjects student has taken, the credits of that
subject, the grade a student has got for that subject. Now all this for a student we would
like to keep.

Now you can store them in various ways, you can store all students as an array, you can
store all subjects as an array, you can store students and subjects as separate array or you
can put all students and subjects together. So the next concept was encapsulation of data.
That is when you go to storage of data how you will encapsulate data. In both static and
dynamic you had encapsulation or in c language terms structure, these encapsulations
were also called structures of data. So how to organize data, which data will be structured
with which other data, how will they be linked up, whether they will be static or dynamic
all these issues are very important. And among these issues in data structuring was how
they will be linked up, so that the functions that operate on them are efficient. And when
you come to functions that operate on them, that means data elements are there and they
are connected.

For example in a matrix, elements may be connected the rows, the next row, the next
column or in a list of elements the next, next, next how will we operate on this. For this
we saw several such data structures. What is a data structure? It is a set of data and
operations efficient operations so that efficiently they can be operated upon. And what
data structures we saw? we saw stacks which was first in first out, it was a linked list, a
list of linked list of elements and in this linked list of elements, we have seen first in first
out, insert in the beginning, delete from the beginning, insert from the beginning, delete
from the end, insert in the end, delete from the beginning. These are all the possibilities
that you can have, names you will see in the books, stacks, queues and other things. We
also saw other important data structures binary search trees, balancing of balanced search
trees why it is important to reduce the time? So data structuring comes again and again
and we have seen some of them.

We will see newer problems, newer data problems will come up and in some problems
which is not known today which will be defined by its own set of operations even better
data structures will come. So data structuring was a very important part of algorithm
design and as we have just discussed, in order to get data structuring we need to do good
algorithm design. So, algorithm design and data structuring or programming
methodologies and data structuring, programming methodology involves algorithm
design as well as data structuring. These two together worked in hand in hand to develop
a program. So these are all our conceptual ideas. Now we have to translate them into
program. So in a program we have to see what programming language offers and based
on that programming language, we have to write our program.

Nowadays programming languages offered you recursion, programming languages
offered you structures, programming languages offered you dynamic allocation. So all
these were not available years ago and at that time, even at that time conceptual
decomposition was there but the translation had to be different but today the translation

has to be done, can be done in a more elegant fashion. That is you are now closer to your
conceptual programming methodology as with the actual programming methodology as
you would do in a language like c. Here you are provided with dynamic allocation, you
are provided with recursion, you are provided with structured definitions, you are
provided with arrays, you are provided with pointers, you are provided with linked lists
and so many other things.

So once you come to translating into a programming language, the conceptual structure
has to be adapted to the programming language which is the current scenario. now
tomorrow a language can come which is much better than c which allows you to
automatically write down more complex structures that you would concede and c plus
plus is one language where class definitions with the, were not only data or organized as
a structure but data and procedures are encapsulated to form a class.

Therefore these are more general structures and therefore programming, so programming
concept conceptual programming methodology has to be understood and that is most
important. Once conceptual programming methodology which includes algorithm design
and data structuring conceptually is understood better, it is only then when you have to
translate into actual language, you come to use in the language in hand but nowadays
since recursion is available, since dynamic allocation is available and very soon even
higher level structures and queries.

Suppose you are doing it on a database then you would translate it differently but your
conceptual structuring would rather remain a lot same. therefore what I would like to
stress is that programming methodology and data structures is understood conceptually
and it has two phases, one phase is that of conceptual algorithm design which involved as
we have seen and as we have studied. initial definition, correctness of the initial
definition, understanding the initial flexibility in the initial definition, generating
analyzing the solution and trying to generate a refinement of the solution, over a number
of this you can analyze and see whether this is the best possible, is there anything better
than this, can there be anything better than this.

These are issues of complexity theory which I do not want to go in it at present. And next
once you have got your conceptual algorithm and data structure, now you translate it into
your programming language and if you don’t have recursion, you will use a stack and you
will implement recursion. If you have recursion you will directly use recursion. If you
have a structure you will use a structure definition. If you don’t you will organize it in a
particular manner, if you have or do not have dynamic allocation you have to approach
the problem in a particular way.

I do not want to reiterate all the things that we have done in this whole class but
programming has to be understood as to two or three things, first what ever you have
written must be correct. That is the first and foremost criteria because if you write
something which is incorrect there is no point in trying anything else. after it is correct, it
has to be seen that it is efficient and in order to see that it is efficient, you have to do a lot
of these analysis and once you have done the conceptual analysis in a conceptual manner

and done a refinement conceptually, translating it into one or more of these known
programming languages or the one in which you have to translate it through is not a very
difficult task.

Finally you have to remember whether is the best possible that if you can prove then you
are done. Lastly but not the least some people are trying and we have not done in this
course is given a final solution, you have to verify whether this translation from the initial
definition to the final solution is indeed a correct translation. Verification is a very
difficult task and these all together makes the art of programming. Programming is a
science, it is such a refined science that it tends to become an art when programs are
becoming very very good programs. So I would suggest that these philosophies which we
are trying to study in this course, we tried again and again till these are imbibed on a
person so that they are so natural that you do not have to follow the steps, they will come
to you naturally as I expect to come anyone of you. Thank you for participating in this
course and I wish you good luck.

