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We quickly recapitulate our discussion on the naive Bayes classifier. 

(Refer Slide Time: 00:33)

What  we did in  the naive  Bayes  classifier  was the following.  We made it  made the

independence  assumption;  that  means,  if  we  have  2  variables  A and  B  if  they  are

independent, the joint probability is product of that individual probabilities.

So, as you know that if you have 2 both A and B, we call it a joint probability and if the

individual A and B we call them marginal probabilities the marginals. So, for example, in

this particular case with if this 4 attributes give birth can fly live in water have legs are

independent, we have probability this give birth equal to yes.



(Refer Slide Time: 01:24)

Let me I will write here B equal to y. And can fly equal to no. And so, this comma is an

and actually live in water w equal to yes, and have legs L equal to no. This probability

given say mammal if these attributes; that means, whether an species gives birth to a

young. Does not depend on whether it can fly.

Similarly,  it  does  not  depend  on  whether  it  lives  in  water  or  have  legs.  So,  if  the

attributes  are  independent  of  one another;  that  means,  what  value  one takes  no way

depends on what value the other variable other attribute takes. Then we can write this

joint  probability  as  probability  give  birth  yes  fly  no,  what  are  yes  legs  no,  equal  to

product of their marginal probabilities.

That means, probability birth equal to yes given mammal into probability fly equal to no

given mammal probability water equal to yes given mammal into probability legs equal

to no given mammal.

Note that we can write this only when this attributes are independent, but if we can write

it this way, then definitely there is an advantage. So, what is the advantage. The problem

we faced in the in finding out the probability of the joint 4 attributes taking on certain

combination of values is that there are only few examples out of all these 7 mammals

who have exactly this 4 combination.



So, we have a kind of absence of training set. We have not seen what happens these. We

have not encountered before what happens in this case, but each of these individual cases

that is it is mammal and give birth equal to yes. It is mammal and fly equal to no, each of

these individual cases they are not so rare, they are not so rare.

So, if you find out actually you can see that out of 7 mammals 6 give birth. Similarly, 6

cannot  fly  2  lives  in  water.  So,  in  other  words,  I  get  a  better  estimate  of  the  joint

probability by expressing it as the product of the marginal probabilities.  Which I can

again I remind again that which I can only do if they are independent.

And once you estimate this rest of the thing is same as that of the map classifier. Check

compare the 2 classes whichever is higher put it that class. In fact, in practice we to in

extreme case what happen can happen is that still, you see the one thing about this it is

that I am this probability as a product of 4 probabilities.

So, even if one of these 4 probabilities goes to becomes turns out to be 0, entire thing

becomes 0, it is a product. So, it may happen that one of the probability is small, but I

want this small thing to be represented not by 0, but by a small epsilon value, small

value. So, that is the idea of smoothing (Refer Time: 06:25) idea of smoothing.

(Refer Slide Time: 06:30)

So, if my actual estimate is this, and if this is 0, I do not make it 0 I add a small term one.

And divide it by C. So, this entire that thing will be small, but not 0. So, it will be small,



but  not 0.  And the it  will  not collapse by after  product  entire  thing.  So, in  practical

application you have to often use this.

So, I will  all  this looks very fine this  is a very attractive.  In fact,  this  is  one of the

commonly used also. So, I will maybe give you an popular example. So, it is like this. I

have I by the words it contains. So, these are the so-called attributes.

So, basically, I will take all the words w 1 that English has w n. And an email let me call

it e one is represented as. So, that this word is present I write one other is 0. So, this

binary vector is a representation of an email. 

And my talks is from this binary representation, I have to classify emails into 2 classes

spare or non-spare. So, how I do it is that I collect lot of spam mail. I apply just like I did

in the previous example count how many times w 1 is yes, count how many times w 2 is

yes. Multiply them using the Bayes assumption. And get the total probability it is a spam,

on a and similarly the total probability. It is a non-spam, and whichever is higher I put it

into that class.

The underlying assumption is the probability of what is appearing is independent of each

other. So, maybe it will happen after I do this maybe the spam emails, will have a higher

probability of having words like lottery and dollar and so on. And maybe non-spam will

have a higher probability of other words say meeting and so on. It is pretty successful

also.
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All right, but there is no guarantee that this independence holds; that means, there is no

guarantee that p of A B 2 attributes equal to, but maybe there is a less strict condition;

condition known as conditional independent independence. So, independence is; this C is

not there.

So, conditional independence says that individually you cannot write this, but I can write

this once I have another variable C and I have observe the value of that variable. So, in

other  words I  can write  probability  of A B given C is  probability  of a  given C into

probability of B given C. So, in more general terms, if you have I variables a one to A i

probability of that union given C is the product probability of their marginals given C.

So, this is less strict.

So, you can think of it is like this. Suppose, I am tossing 2 coins unbiased coins. And just

2 outcomes either one or 0 head or tail. And if the a is probability the first coin is coin is

tossed  gives  head  B  is  the  probability  that  second  coin  toss  gives  head  and  other

combinations. 

So, you see they are independent because what is the probability together both will be

head I can write as the probability of one is head and the other is head. So, it will be if

they are unbiased it will be 0.5 into 0.5 there is actually another way of writing. This this

actually you can write it as probability if a is independent of B probability of A given B



is just probability of a using the definition of probability you can derive it by the way.

So, this cross is not there. So, if they are independent they are equal actually. 

One way of looking at this is that B gives no information about A knowing what the

value of B is does not help me predict what A is. When I toss 2 coins that is the case what

is the outcome of one coin does not help me predict the outcome of the other coin. But if

there is a third variable which helps then I call it as conditionally. Independent let me

take this example tell you.

(Refer Slide Time: 15:15)

Let there be 2 persons A and B. And the events be they are both of A one of them comes

from A comes home for dinner. And becomes for term dinner and the third event is that C

is that a snow storm hits the city. So, in this case both have low probabilities of getting

home, but they are still independent. So, whether a is late does not tell you whether B is

late. 

So, if they are say to quite different they are not related in any way. So, they live far

away from each other then they are independent even if there is no or no storm, in from

where the outcome of C does not affect. So, one does not a outcome of a whether a has

come home early does not help me predict whether B will come home.

So, in this case they are independent. So, I write I can write probability. For the first case

I can write that. But suppose they we know that they stay in the same neighbourhood and



take the same transport. Then and I can use the information about A to predict B. If I

know a  is  late  I  know that  well  the  B will  also  be  late  because  they  use  the  same

transport.  So,  they  are  no  longer  independent.  So,  in  the  second  case,  first  case  is

conditionally  independent  C  i  the  second  case  is  not  C  i  pictorially  this  will  look

something like this.

(Refer Slide Time : 18:04)

So, I have 3 events red, blue and yellow. And each cell is a possibility. So, all these

whenever the blue event happens all these blue cells get a colour, and for red and for

yellow. So,  in this case you see if y is given R and B are independent  if I  know y if I

know y has happened I can tell something about relative probabilities of A and B R and

B in this case, alright.

So, this is an example so, this conditional independence that this fact that probability let

me  write  as  x  y;  conditional  independence  is  written  by  this  notation,  that  x  some

perpendicular y given z.
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So, this is the symbol for independence.  So,  plane independence is x independent of y

this  is  just  independence  x,  y,  z  are  random  variables.  And  this  is  conditional

independence.

So, if the conditional independence holds, then I can write the following 3 thing. I can

write this x equal to x means x at taking on certain value. I can symmetrically write this.

So, x independent of y means y is also independent of x. And of course, the definition I

can write this.

(Refer Slide Time : 20:48)



So, I give you a small exercise. So, I have 3 variables. A student is smart. A student

studied, and a student is prepared for an exam. And these are the probability values that

means, if a student is prepared and is smart and studied. So, this is actually prepared.

And studied and smart that probability is 0.432 and this is prepared and not studied, but

smart is 0.16. 

So, what we are supposed to do is to figure out 2 things. First thing find out from this

margin. Also, I am actually looking at (Refer Time: 22:05) prepared smart study. What

are the marginals, which things had up to 1. What are the conditionals that can be there?

And what are the conditional independencies? That hold, please do this exercise you will

get a better  idea.  I  will  put up the solution.  All  of you please note it  down. For the

moment right, it done I will put it up in the exercise set also note that it is 3 variables. 

So, all combinations 8 combinations it turns out that this kind of conditional. So, this is

one example in general there will be many.

(Refer Slide Time: 23:27)

You can capture using something called a directed acyclic graph, alright. So, every every

node is  a variable,  and the following holds and the following holds.  So,  I  hope you

understand what is a de parent ancestor, and non-descendant in a graph. So, this is a

directed graph there is a directional arrow edge. And every attribute or variable is a node

of the graph.



So,  I  can  represent  will  see  in  our  next  lecture  is  that  I  can  represent  conditional

independencies, whatever are present in among the attributes by a directed acyclic graph

like  this.  There  is  something  called  a  markov assumption  which  tells  that  it  is  it  is

memory less it  forgets other variables.  So, I can capture using this  and have a more

complex type of Bayes classifier. 
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So, in summary, this is what I have. I have some robust probabilistic classifier. It can

handle irrelevant attributes as well as missing values. You can have the independence

assumption  makes  life  easy  naive  Bayes,  or  you  can  have  a  directed  acyclic  graph

capturing conditional independencies. So, this is the summary. In the this is the basic

introduction to Bayes classifier, in our next class we will move on to the conditional

independencies and Bayesian networks. Not just classifiers.

Thank you for today.


