
Data Mining
Prof. Pabitra Mitra

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 29
Artificial Neural Networks II

Let us now explain the mechanism of finding the correct set of weights to solve a

prediction problem.

(Refer Slide Time: 00:27)

So, we have seen in the last lecture is that we can realize certain logic gates for example,

and then or by proper choice of the weights w. So, this is interesting because what we

can do is that the same neuron same neuron we can assign different weight values to

realize different-different functions.

Functions means some-some target mapping say if this is say for example, end if this is

the input is 1; 1 output should be one if input is 1, 0 output would be 0 or minus 1. So,

like this given any input output function input to output mapping the same neuron can

realize it or by changing just a value of the weights and the bias. So, what; so, this the

same neuron this thing; these are called the architecture of the neural network the

structure of the neural network.

And what we are trying to say is that the same architecture same structure can be used to

learn different input output mappings for by varying the value of the weights. So, in the

next part what we will see is that. So, now, given some input output mapping given some

training examples of input output mapping what is the proper value of the weights that

will achieve this input output mapping as close as possible.

So, as you know. So, since; so, what will be given is that we will be given some training

examples t which will be some x i y i a number of x i y i like previous problem. So, this

y i may be either class level 0 1 or minus 1; 1 or it may be some real value we are given a

number of such weights you have to find a set of w’s which given new x will correctly or

as close as possible to correctly predict y.

So, the general technique of this training is as follows to start with initialize w to some

random values initialize initial weights w 1, w 2, w naught 2 random values and then

update the weight.

(Refer Slide Time: 03:25)

So, the rule is values; sorry, update w’s as we see the training example x i y i's 3 till w

values do not change significantly. So, this update will go on, we will call these iterations

of update there are 2 successive iterations.

If the w values do not change significantly we stop there and use this w for predicting for

a future point.

(Refer Slide Time: 04:50)

We will consider 2 such update rules will consider 2 update rules the update rule will be

of the following form. So, we have we have some initial value of w and this we are

updating say suppose at certain time in a certain iteration we have a value of w equal to

w let me call it w old current value of m.

We will see an example and rectify this value of w by adding an objective delta w and

this new value will be our new value of the weight abdicate value of tau it and this will

continue. So, next w new will become w old again we will do w; w an w we compute w

go on doing this when the difference between w new and w old comes very small. So, we

will study 2 rules as I have set the perceptron root and the delta rule.

Geometrically a way of doing this is the like this go back to the same picture if we have

positive and negative set of weights you start with a random perceptron random w

random w means random line separating line now u delta it. So, that it gets rotated and

shifted till it becomes a good discriminator for all the training points actually this can

also be looked upon as an optimization problem problem.

(Refer Slide Time: 06:37)

So, if you look at all your w values w 1 w 2 other values of w 2 other values also and we

define as a error that given certain value of w 1 w 2 to w naught how much error we are

making in predicting y. So, if you plot that value of error along the z axis for defined

different values of w 1 w 2 w naught you will get something called a error surface.

What do you want is that find the optimal value of w the value of the weights which

gives you the leasted (Refer Time: 07:32)

(Refer Slide Time: 07:36)

So, that way it is a minimization problem also we will see this first algorithm is kind of

easily visualized by you have a arbitrary plane sign line and you gradually tilt it by

correcting your w; w, we will call w vector as the vector of the pair w 1, w 2, w naught

till it becomes separately. Now I will write down the algorithm.

(Refer Slide Time: 08:01)

So, as I have mentioned, this is the object rule take any w i s for any w i have apply your

threshold function you get your y. So, take any w its new value is the old value to start

with in random initialization old value plus some delta of the assignment where what is

delta w delta w is your target minus output.

So, what is target say some for some value of input say 1 1; suppose you are learning the

n function. So, if input is 1 1, output should be 1, if your input is say this is the and

function your input is 1 1 output should be one if your input is 1 1, let us say this point 1

1 outputs will be positive.

So, this desired value is what we call as a target value it is the desired value given x what

is the output you want, but maybe the current value of these w’s do not give you the

desired value, but it give some value if you take x 1 into w 1 x 2 into w to the plus w

naught put the threshold some value of y you will get that I call as o; the output value;

what will you do? You take the difference between target and output (Refer Time: 10:14)

multiplied by that by the x the input vector; vector, note these are all vector terms delta w

is a vector because w is a bit that x is a vector x 1 x 2 and your eta is a learning constant

learning rate usually small say 0.1 ok.

So, you multiply that and this has your update rule. So, this is my update rule. So, you

note one thing that if your target output and actual output matches then delta is 0, no

change in weight only when it does not match then you have a change in weight. So, this

is an example.

(Refer Slide Time: 11:34)

There is actually another way of looking at it.

(Refer Slide Time: 11:47)

Suppose, I have 2 inputs it will be w 1 w 2 and the w naught bias that will be the weight

vector input vector it will be x 1 x 2 and third input x naught is always 1. So, I write it as

on bias input and you have a set of training samples this is a vector this is either plus one

or minus one or something plus 1 0 also you can write.

So, the rule is as follows look at the training instance x i y i if the output value for x I; x i

is same as y, I do not do anything. In other words, if a particular x is correctly classified

by your w do not do anything for that x I; otherwise, if it is mixed classified, if it is in the

misclassified by this that is class level and predicted o does not match otherwise update

w.

How you update plus eta times note if it does not match t minus o is one otherwise it is 0.

So, I am not writing t minus o that will be one and x i. So, what do you do your new

vector w vector is the old w vector plus your eta times x i times x i often in perceptron

learning rule this eta particularly in the rule it is taken to be one and you get this new w.

So, you can see what is meaning that this is your w vector this is your x if it is

misclassified you tilt it more towards that. So, that you include it in the positive side tilt

it make it new w new. So, this is just another form of writing the perceptron group

Minsky and Papert; 2 scientist famous artificial intelligence people; Marvin Minsky of

MIT, it is what long back that this update rule is always going to converge if the classes

are separable; that means, if you have classes like these that are separable whatever

random w start with, if you follow this rule after sometime it will get a proper value.

(Refer Slide Time: 16:17)

So, of course, I am not talking about sigma. I am talking about only threshold function

activation function by a line this as a nice result, all right. So, coming back to our

discussion now let us look. So, this is clear I guess. So, let us look at the second rule

second beta update rule which is the delta rule.

(Refer Slide Time: 17:23)

This rule uses the following filet of a filet of you known as the gradient descent.

(Refer Slide Time: 17:38)

(Refer Slide Time: 17:51)

What is the filet of; so, as I had said it considered something called a weight space what

it weight space it take all the weights as axises, I can draw more. So, a given set of

weight values is a point in this weight set weight space weight space this is one. So, you

can have different type of weight values that may be more weights, I am not drawing

them because you cannot visualize and in that z axis you plot the error what is error see

if you take certain value of weight for some input we will get some output.

Some set of inputs we will get that output let me call it as o i may be same as target value

t i, but the desired output or may not be same. So, the error is this difference. So, one

possible way of computing error is what is called the mean squared error is half

summation all the training points square. So, if you fix your value of w you get some

error now if you change your value of w you get a different-different values of error if

you plot them you get the error surface.

And weight learning is nothing, but finding a weight which gives a minimum error. Now

let me tell you a technique of doing that.

(Refer Slide Time: 20:47)

Suppose, I have a function f x it looks like this lets say all x this is what you have to find

how do I do guess take certain value of x; x naught let me call it draw a tangent to f x see

where it intersects that we will call as x 1 look at f x again draw a tangent call that as x 2

you see if you go on doing this soon, we will your x i will come to the minima for

functions which are well kept look parabolic.

If the function is like this it will not work, but if the function is like this again it will not

work it may stop here fortunately that the perceptron error looks like this. So, you can

calculate the gradient and do like this. So, this is the fundamental principle of something

called gradient descent. So, we had a rule the delta rule which is based on this technique

I will explain it.

(Refer Slide Time: 23:45)

So, this is what I have said this it is. So, another way of looking at it is like suppose you

are in a mountain you have to come down what you do you look around find out which

direction the slope is steepest take a step again look around take a step if you do this you

will eventually come to the lowest point it will eventually come to the lowest point this is

the fundamental principle.

(Refer Slide Time: 24:12)

So, this method is used for deriving the delta rule not going through all the derivation,

but you can finally, write down your training algorithm as this.

(Refer Slide Time: 24:32)

I am sorry, after computing all this delta and everything you can comment like this

initialize to 0, let us say random value and this is your update rule same as before an

update weight this is known as the delta rule or the LMS rule.

This is guaranteed to converge to the correct value i am not going to the derivation that

this is indeed. So, as I have said the rule is take the steepest descent look around which

direction which change in delta value a w value delta w will give you least maximum

reduction in error change it in that direction go on doing it till you can touch.

So, this is the gradient almost same functional form as the perceptron rule except for that

you add up over your error function is sum up over all the training set otherwise earlier

in the perceptron rule, it is the not sum, but single input error. So, this is the gradient rule

in the next lecture, we will move on to more complex functions than a linear hyperplane.

Thank you.

